Joint Antenna Selection and Grouping in Massive MIMO Systems

Size: px
Start display at page:

Download "Joint Antenna Selection and Grouping in Massive MIMO Systems"

Transcription

1 Joint Antenna Selection and Grouping in Massive MIMO Systems Mouncef Benmimoune, Elmahdi Driouch, Wessam Ajib Department of Computer Science, Université du Québec à Montréal, CANADA {benmimoune.moncef, driouch.elmahdi, Abstract Massive MIMO (Multi-Input Multi-Output) is considered as a promising technology for the fifth generation of wireless communication systems (5G). In this paper, we deal with the CSI feedback reduction issue when a base station (BS) equipped with a large number of antennas serves a limited number of receiver nodes disposed in several groups. This paper considers the practical case where spatial correlation exists among the transmit antennas of the BS. We propose a novel scheme that achieves a considerable reduction in CSI feedback overhead communicated by the receiver nodes to the BS. The proposed approach performs a joint antenna selection and grouping to handle the spatial correlation issue. To this end, we propose a low complexity algorithm that runs antenna selection distributively at each group of receiver nodes. We show that the proposed scheme offers enormous reduction in CSI feedback while ensuring acceptable performance in terms of achievable sum-rate and low computational complexity thanks to its greedy nature. Index Terms Massive MIMO, user grouping, antenna selection, channel correlation I. INTRODUCTION Recently, massive MIMO (Multi-Input Multi-Output) technology has attracted a significant interest in the definition of potential technologies for 5G wireless systems [1]. A massive MIMO system refers to a system where a transmitter equipped with a large number of antennas (e.g. tens or hundreds) communicates with a relatively limited number of users [2]. It was shown that the large antenna array at the transmitter can provide high degrees of freedom and thus increase significantly the system capacity [3]. Also, based on random matrix theory, it was demonstrated that massive MIMO systems can achieve the capacity gain with simple and linear signal processing methods [4]. The availability of channel state information (CSI) at the transmitter is essential to fully benefit from massive MIMO systems. This CSI could be obtained either explicitly by feedback in frequency-division duplexed (FDD) mode or implicitly by channel reciprocity in time-division duplexed (TDD) mode. Although most prior work on massive MIMO considers TDD mode, this mode faces serious challenges such as the pilot contamination problem [5] and the need for tight calibration of radio frequency (RF) chains. Therefore, since many contemporary networks are operating in FDD mode, which is generally considered to be more effective for systems with symmetric traffic and delay-sensitive applications [6], it is of great interest to explore effective approaches for obtaining CSI for such mode in massive MIMO systems. However, as CSI feedback overhead is proportional to the number of active antennas at the base station (BS), there has been much research proposing methods to reduce this overhead; two original examples are [7] and [8]. In [7], the authors propose to partition the user space into groups of users with similar transmit correlation in order to reduce the effective channel dimension and consequently reduce the CSI feedback. Based on the grouping process, other proposals have been presented in the literature. For instance, the authors in [9] propose an antenna grouping scheme that maps multiple correlated antenna elements into a single representative value using predefined patterns. On the other hand, in [8], the authors propose an efficient transmit antenna selection strategy to significantly reduce the CSI feedback. In this paper, an FDD-based massive MIMO downlink channel is considered. It also assumes the practical scenario where spatial correlation exists among the BS transmit antennas. A novel scheme that achieves a reduction in the CSI feedback overhead between the BS and the receiver nodes (RNs) is proposed. The proposed scheme performs jointly antenna selection and grouping in order to handle the spatial correlation issue. In fact, this issue, if not taken into consideration when devising the communication techniques, may result in serious sum-rate degradation. Therefore, our proposed scheme disposes the BS antennas to several groups, where each of these groups serves independently a group of RNs. In fact, by allocating a small portion of BS antennas to each group of receivers, the number of channel coefficients required to deliver towards the BS can be reduced substantially, resulting in a significant reduction in the overall feedback overhead. To this end, a low complexity algorithm that performs the antenna assignment is proposed. We show through simulations that the proposed scheme presents interesting performance in terms of the achievable sum-rate, especially in low signal-tonoise (SNR) regime, while reducing dramatically the amount of CSI feedback compared to a conventional zero-forcing beamforming (ZFBF) system. Throughout the paper, lower-case bold letters are used for vectors and upper-case bold letters for matrices; denotes the cardinality of a set or the absolute value of a scalar; I denotes the identity matrix; ( ) H and ( ) T represents the Hermitian and the transpose of a matrix, respectively and denotes the floor function. The remainder of this paper is organized as follows. The system model is given in the next section. The proposed joint /16/$ IEEE

2 antennas and small cells grouping is detailed in Section III. Numerical results are presented and discussed in Section IV, and we conclude with Section VI. II. SYSTEM MODEL We consider a single-cell downlink scenario consisting of one BS and K RNs. The BS is equipped with M antennas whereas each RN has one antenna. The term receiver node is a general term that may designate either a small base station (SBS) (such as a relay node as proposed in the Long term evolution-advanced (LTE-A) standard [10]) or a user equipment (UE). We assume that RNs are predisposed in a given number of groups based on their geographical positions (as depicted in Fig. 1). The RNs in the same group are assumed to be able to communicate directly with each other. In fact, SBSs may communicate both data and control messages using fast and reliable communication links as proposed in the coordinated multipoint (CoMP) technique in LTE-A [10]. Also, UEs can exchange such messages using deviceto-device communication techniques [11]. Since both kinds of communication techniques add delay, a tradeoff between performance gain and communication cost in terms of delay should be efficiently resolved by restricting the number of RNs in a group. Studying the impact of this delay is out of the scope of this paper and will be subject of future work. In this setup, the received signal of the k th RN can be expressed as: y k = h H k x + n k, k =1,...,K, (1) where h k C M 1 is the channel vector of the k th RN which is assumed to be a quasi-static Rayleigh fading channel, x C M 1 is the transmit signal and n k is the noise term according to an independent complex Gaussian distribution with zero mean and unit variance, i.e. CN(0,σn). 2 Considering the utilization of linear beamforming at the BS, the transmitted signal is a summation of the products formed by the desired signal and the associated beamforming vector. Hence, the received signal at the k th RN belonging to group g can be written as: y k = p k h H k v k s k + pi h H k v i s i i =k i g + pj h H k v j s j + n k, (2) g =g j g where v k C 1 K denotes the beamforming vector, s k represents the data symbol signal of the k th RN and i g denotes that RN i belongs to group g. The first term of the right-hand side in (2) represents the desired signal for the k th RN, the second term represents the intra-group interference caused by the transmissions destined to other RN in the same group, the third term represents the inter-group interference caused by the transmissions towards RNs belonging to groups other than g, which we denote in the rest of this paper by I g and the last term is the background noise that is assumed to be additive Fig. 1. Illustration of a downlink cell with three groups of RNs. white Gaussian noise (AWGN). The optimal beamforming for achieving the sum capacity in MIMO downlink channels, when there is no inter-group interference, is dirty paper coding (DPC) but its implementation is unpractical [12]. In this work, the use of linear ZFBF is assumed because of its low complexity and near optimal performance. Since the channels are spatially correlated across the transmit antenna array, the well-known Kronecker correlation model is considered [13], [14]: H =Σ 1/2 R H(iid) Σ 1/2 T, (3) where the elements of H (iid) are independent and identically distributed (i.i.d.), Σ R and Σ T denote the receive and transmit correlation matrices, respectively. To model a typical cellular downlink case, we adopt the one-ring model which is a popular geometry-based stochastic model [13]. In this model, the transmitter BS is elevated and not obstructed by local scattering, whereas RNs may be often placed near ground level and are surrounded by local scatterers. Thus, we have Σ R = I and let Σ = Σ T for notational simplicity. Let θ be the azimuth angle of the RN location, d the distance between the BS and the RN, r the radius of the scattering ring, and Δ the angle spread, which can be approximated as Δ arctan(r/d). The correlation between the channel coefficient 1 m, p M is given by (see [13] and references therein): [Σ] m,p = 1 Δ e jkt (α+θ)(u m u p) dα, (4) 2Δ Δ where k(α) = 2π λ (cos(α), sin(α))t is the vector for a planar wave impinging with angle of arrival α, λ denotes the carrier wavelength, u m and u p are the position vectors of antennas m and p, respectively.

3 By using the Karhunen-Leoeve transform, the channel vector from the BS antenna array to the k th RN can be expressed as: h k = UΛ 1/2 h (iid) k, (5) where U and Λ denote respectively a unitary matrix comprising eigenvectors of Σ and a diagonal matrix with eigenvalues of Σ. Given that the ZFBF is used and assuming perfect knowledge of CSI at the BS, the second term in (2) drops to zero. Therefore, the received signal-to-interference-plus-noise ratio (SINR) at the k th RN can be written as: γ k (h k, v k )= p k h H k v k 2 I g + σn 2, (6) where p k denotes the transmit power towards the k th RN. p k for k =1,...,K must satisfy the following inequality: K p k P, (7) k=1 where P is the total transmit power. Power allocation is performed using the well-known water-filling algorithm. Therefore, the power allocated to the k th RN must satisfy ( p k = μ I g + σn 2 ) + h H, (8) k v k 2 where (x) + is equal to max(0,x), and the water level μ is chosen to satisfy K ( μ I g + σn 2 ) + h H P. (9) k v k 2 k=1 Therefore, assuming that the inter-group interference is treated as noise, the downlink sum-rate can be given by: R sum = K log 2 (1 + γ k (h k, v k )). (10) k=1 III. JOINT ANTENNA SELECTION AND GROUPING In practice, massive MIMO based-fdd system suffers from a large CSI feedback overhead. Indeed, to enable effective downlink precoding at the BS, the RNs need to feed back a huge amount of CSI, which consumes prohibitively uplink resources. On the other hand, with spatial correlation among antennas, which is a practical issue that has to be considered in wireless communication systems design in general and in the massive MIMO context in particular, the system performance is highly degraded especially when ZFBF is used. To reduce the CSI feedback overhead and tackle the spatial correlation issue, we propose in this section a joint antennas selection and grouping algorithm. The basic idea is to divide the BS antennas into several groups. Each group of antennas serves simultaneously a given group of RNs. Therefore, the required amount of CSI to feed back to the BS is reduced substantially, since the antenna selection is performed at the Algorithm 1: Greedy Antenna Selection and Grouping Algorithm (executed at group g) Input: Channels coefficients of RNs in group g; Already selected groups of antennas A g,g <g; Number of antennas to select K g = N/G ; Initialization: A g M\ A g ; g <g t M K g ; g =g 1 while t>k g do 2 maxrate 0; 3 foreach a in A g do 4 R a = R sum (A g \{m}); 5 if R a > maxr then 6 maxr R a ; 7 a wo a; 8 end 9 end 10 A g A g \{a wo }; 11 t t 1; 12 end Output: The set of antennas selected by group g, A g. RNs side. Indeed, instead of communicating all its channel coefficients to the BS, each group of RNs feeds back only the coefficients of the selected antennas. In addition, as it will be shown in the Section IV, the effect of channel correlation is reduced especially in low SNR regime. Let G be the number of the RN groups. Each group of RNs selects a group of antennas to be served with (see Fig. 1). The BS can use N antennas out of its M transmit antennas to serve the G groups. Let A g be the group of antennas selected to serve RN group g. For the sake of fairness, we assume that each group of RNs selects an almost equal number of antennas. Furthermore, since the paper assumes no cooperation between groups, it is difficult to optimize the number of antennas per group for sum rate maximization. Therefore, we impose that A g = N/G, for all g {1,...,G 1} and A G = N (G 1) N/G. A. Antenna Selection and Grouping Algorithm In this subsection, we propose a low complexity greedy algorithm, which aims to select the best antennas by disposing them into groups that serve the predefined groups of RNs. The proposed algorithm is run distributively at each group of RNs in a successive manner. We assume that group g+1 is aware of the decisions made by the g preceding groups, and selects its preferred antennas according to these decisions. Once again, for the sake of fairness and because the order of the groups has a non negligible impact on their performance, we impose that the position of a group in this order changes from one time slot to another in a round robin manner. Hence, group g in time slot

4 t will be g+1 in time slot t+1, and group G becomes group 1. Therefore, because channel conditions change randomly from one time slot to another (according to a Rayleigh fading distribution), long term fairness is ensured. As in our previous work [15], the basic idea of the algorithm is to add iteratively the best antennas, one by one, in a greedy iterative fashion where the decision at each iteration is definitive and cannot be changed in the subsequent iterations. The steps of the proposed algorithm run at group g are presented in Algorithm 1. The algorithm takes as input the channel coefficients between the BS transmit antennas and the antennas of the RNs forming the group as well as the parameter K g = A g. The algorithm constructs the set of selected antennas A g. It starts by initializing A g to the set of available transmit antennas, i.e. A g = M\ g 1 A i where i=1 M is the set of BS antennas. In each iteration, the algorithm iterates over all the antennas in set A g and then removes from A g the antenna without which the system can provide the maximum sum-rate. The sum-rate values are computed taking into account the inter-group interference generated by the g 1 groups that already have selected their antennas. By the end of each foreach loop (lines 3-9), the proposed algorithm removes one antenna and a total of N/G antennas remains in the set A g, the set of antennas that will serve group g and for which the channel coefficient have to be fed back to the BS. B. Feedback Reduction In this subsection, we present a comparison between the feedback resources needed in a conventional massive MIMO ZFBF based system and the proposed scheme. In the former system, each RN estimate all the channel coefficients between its antenna and the BS antennas before transmitting them back to the BS through finite-rate feedback. Due to computational complexity of best codewords search the well-know limited feedback approaches, codebook techniques are poorly adapted to massive MIMO systems. Therefore, the use of large scale antenna arrays constrains the system to deal with a feedback overhead that is proportional to both the number of antennas and RNs. The total number of feedback which are sent to the BS is F conv = M K. After collecting this large number of channel coefficients, the conventional system performs an exhaustive search in order to determine the best antennas to use for transmission introducing another processing delay because of the complexity of this search. On the other hand, the proposed scheme partitions the antenna array into groups of small sizes and then applies ZFBF separately towards each group of RNs. By allocating a small portion of BS antennas to each group of RN, the number of channel coefficients required to deliver towards the BS can be reduced substantially. Accordingly, the number of feedback coefficients forwarded by each RNs group to the BS is F prop (g) =K g N/G (where K g is the number of RNs in group g) with a total of only F prop = N K/G coefficients. it is clear that the proposed scheme provides a drastically reduction of CSI feedback as it will be shown in Section IV. Average Sum Rate (bps/hz) Conventionnal ZFBF Proposed scheme SNR(dB) Fig. 2. Sum-rate performance as a function of SNR for a massive MIMO system with M =32, N =24, K =8and G =2. Furthermore, due to the greedy nature of the algorithm, the complexity of selecting and grouping the antennas is highly reduced at the cost of acceptable performance degradation. IV. NUMERICAL RESULTS In this section, several numerical simulations are performed to evaluate the sum-rate performance and feedback reduction of the proposed scheme. To this end, we consider a system consisting of one BS and several single antenna RNs. The RNs are deployed in a cell sector of 120 degrees. The presented results are averaged over 1000 correlated Rayleigh channel realizations. The other parameters are similar to [16]: θ min = 60,θ max =60, Δ min =5 and Δ max =15. We also assume that the CSI is perfectly known at each RN. In all results, we compare the proposed scheme against the conventional ZFBF system. Fig. 2 presents the performance in terms of average sumrate as a function of SNR. We assume that there are K =8 RNs in the system disposed in two groups with K 1 = K 2 =4. The BS serves the RNs using N =24antennas selected out of M =32transmit antennas. It can be seen from the figure that the proposed scheme outperforms the conventional ZFBF scheme at SNR values below 15 db. However, the two curves cross at an SNR of near 16 db. Indeed, at high SNR, the benchmark performs better than the proposed scheme when the inter-group interference becomes more severe than the effect of channel correlation. Therefore, the inter-group interference forces the sum-rate achieved by the proposed scheme to start saturating. Anyhow, the savings in CSI feedback and computational complexity obtained by the proposed scheme may favor it compared to the conventional ZFBF even for high SNR values beyond 16 db. In Fig. 3, we compare the performance in terms of average sum-rate as a function of number of RNs in the system. In this simulation, the number of RNs varies from 6 to 10. We set N =24, M =32and the SNR to 10 db. The RNs are

5 Average Sum Rate (bps/hz) Proposed scheme Conventionnal ZFBF Number of users K Feedback (Number of channel coefficients) Conventionnal ZFBF Proposed scheme Number of groups G Fig. 3. Sum-rate performance as a function of SNR for a massive MIMO system with M =32, N =24, G =2and SNR=10dB. Fig. 4. Feedback as a function of number of group for a massive MIMO system with M =32, K =8and SNR=10dB. disposed in two groups with K 1 = K 2. We observe that the proposed scheme outperforms the benchmark when K is more than 8 RNs but achieves lower performance for a small value of K. As expected, the conventional ZFBF system suffers from channel correlation, especially when K grows, since the matrix inversion impacts negatively the system sum-rate. Therefore, as the number of RNs grows large, the performance gap between the two schemes becomes more and more important, e.g. the gap attains more than 4 bps/hz for K =10(i.e. the proposed scheme is two times higher than the conventional one). Fig. 4 plots the amount of CSI feedback in terms of the number of channel coefficients transmitted to the BS as a function of the number of RNs groups G. In this simulation, the number of groups varies from 2 to 8 and the SNR is fixed to 10 db. The number of RNs is fixed to K =8with K g = 8/G, g G and K G = K g K g. The BS uses at most N =24out of its M =32transmit antennas. Since K is fixed, the amount of feedback needed by the conventional scheme is the same for all values of G. However, as the value of G increases, the proposed scheme provides a drastic CSI feedback reduction. However, as the inter-group interference impacts highly the sum-rate achieved by the proposed scheme (as noticed from Fig. 2), there is a trade-off between the sum-rate performance and the number of RNs groups. Not forgetting also that the number of users in each group has an impact on the aforementioned trade-off. V. CONCLUSION In this paper, we presented an efficient scheme to reduce the CSI feedback overhead in massive MIMO systems. The studied system is made from one base station equipped with a large antenna array, which serves receiver nodes predisposed in several distinct groups. We considered the practical case where the channels are spatially correlated assuming the wellknown one ring model. The proposed scheme is based on a low complexity greedy algorithm that performs joint antenna selection and grouping in a distributed fashion. The algorithm is run successively in each group of receiver nodes in order to select their best group of antennas. It has been shown using simulations that the proposed scheme outperforms the conventional ZFBF (taken as a benchmark) in low SNR regime. Moreover, it reduces remarkably the CSI feedback overhead compared to the same benchmark. However, this gain comes at the expense of inter-group interference, which causes performance saturation at high SNR. In future work, we will investigate the design of a beamforming scheme that can reduce or eliminate the effect of intergroup interference in order to further improve the sum-rate performance. Another important and practical issue to resolve is the impact of imperfect CSI, which must be studied carefully and taken into account for a robust beamforming design. REFERENCES [1] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and J. Zhang, What will 5g be? IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp , June [2] T. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas, IEEE Trans. Wireless Commun., vol. 9, no. 11, pp , Nov [3] F. Rusek, D. Persson, B. K. Lau, E. Larsson, T. Marzetta, O. Edfors, and F. Tufvesson, Scaling up MIMO: Opportunities and challenges with very large arrays, IEEE Signal Process. Mag., vol. 30, no. 1, pp , Jan [4] L. Lu, G. Li, A. Swindlehurst, A. Ashikhmin, and R. Zhang, An overview of massive MIMO: Benefits and challenges, IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp , Oct [5] J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath, Pilot contamination and precoding in multi-cell TDD systems, IEEE Trans. Wireless Commun., vol. 10, no. 8, pp , Aug [6] P. Chan, E. Lo, R. Wang, E. Au, V. Lau, R. Cheng, W. H. Mow, R. Murch, and K. Letaief, The evolution path of 4g networks: FDD or TDD? IEEE Commun. Mag., vol. 44, no. 12, pp , Dec [7] J. Nam, J.-Y. Ahn, A. Adhikary, and G. Caire, Joint spatial division and multiplexing: Realizing massive MIMO gains with limited channel state information, in CISS 2012, Mar. 2012, pp. 1 6.

6 [8] M. Benmimoune, E. Driouch, W. Ajib, and D. Massicotte, Feedback reduction and efficient antenna selection for massive MIMO system, in IEEE VTC-Fall 2015, Sept [9] B. Lee, J. Choi, J.-Y. Seol, D. Love, and B. Shim, Antenna grouping based feedback reduction for FDD-based massive MIMO systems, in Proc. IEEE ICC, June 2014, pp [10] Y.-H. Nam, L. Liu, and J. C. Zhang, Cooperative communications for LTE-advanced - relay and CoMP, International J. of Commun. Syst., vol. 27, no. 10, pp , [11] A. Asadi, Q. Wang, and V. Mancuso, A survey on device-to-device communication in cellular networks, IEEE Commun. Surveys Tuts, vol. 16, no. 4, pp , Fourthquarter [12] G. Caire and S. Shamai, On the achievable throughput of a multiantenna Gaussian broadcast channel, IEEE Trans. Inf. Theory, vol. 49, no. 7, pp , Jul [13] D. Shiu, G. Foschini, M. Gans, and J. Kahn, Fading correlation and its effect on the capacity of multielement antenna systems, IEEE Trans. Commun., vol. 48, no. 3, pp , Mar [14] C.-N. Chuah, D. Tse, J. Kahn, and R. Valenzuela, Capacity scaling in MIMO wireless systems under correlated fading, IEEE Trans. Inf. Theory, vol. 48, no. 3, pp , Mar [15] M. Benmimoune, E. Driouch, W. Ajib, and D. Massicotte, Joint transmit antenna selection and user scheduling for massive MIMO systems, in IEEE WCNC 2015, Mar. 2015, pp [16] Y. Xu, G. Yue, and S. Mao, User grouping for massive MIMO in FDD systems: New design methods and analysis, Access, IEEE, vol. 2, pp , 2014.

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error

Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Energy Harvested and Achievable Rate of Massive MIMO under Channel Reciprocity Error Abhishek Thakur 1 1Student, Dept. of Electronics & Communication Engineering, IIIT Manipur ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems IEEE WAMICON 2016 April 11-13, 2016 Clearwater Beach, FL System Performance of Massive MIMO Downlink 5G Cellular Systems Chao He and Richard D. Gitlin Department of Electrical Engineering University of

More information

Analysis of massive MIMO networks using stochastic geometry

Analysis of massive MIMO networks using stochastic geometry Analysis of massive MIMO networks using stochastic geometry Tianyang Bai and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University

More information

Potential Throughput Improvement of FD MIMO in Practical Systems

Potential Throughput Improvement of FD MIMO in Practical Systems 2014 UKSim-AMSS 8th European Modelling Symposium Potential Throughput Improvement of FD MIMO in Practical Systems Fangze Tu, Yuan Zhu, Hongwen Yang Mobile and Communications Group, Intel Corporation Beijing

More information

Performance Evaluation of Massive MIMO in terms of capacity

Performance Evaluation of Massive MIMO in terms of capacity IJSRD National Conference on Advances in Computer Science Engineering & Technology May 2017 ISSN: 2321-0613 Performance Evaluation of Massive MIMO in terms of capacity Nikhil Chauhan 1 Dr. Kiran Parmar

More information

User Grouping and Scheduling for Joint Spatial Division and Multiplexing in FDD Massive MIMO System

User Grouping and Scheduling for Joint Spatial Division and Multiplexing in FDD Massive MIMO System Int. J. Communications, Networ and System Sciences, 2017, 10, 176-185 http://www.scirp.org/journal/ijcns ISSN Online: 1913-3723 ISSN Print: 1913-3715 User rouping and Scheduling for Joint Spatial Division

More information

REMOTE CONTROL OF TRANSMIT BEAMFORMING IN TDD/MIMO SYSTEMS

REMOTE CONTROL OF TRANSMIT BEAMFORMING IN TDD/MIMO SYSTEMS The 7th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 6) REMOTE CONTROL OF TRANSMIT BEAMFORMING IN TDD/MIMO SYSTEMS Yoshitaa Hara Kazuyoshi Oshima Mitsubishi

More information

Measured propagation characteristics for very-large MIMO at 2.6 GHz

Measured propagation characteristics for very-large MIMO at 2.6 GHz Measured propagation characteristics for very-large MIMO at 2.6 GHz Gao, Xiang; Tufvesson, Fredrik; Edfors, Ove; Rusek, Fredrik Published in: [Host publication title missing] Published: 2012-01-01 Link

More information

Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels

Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels Random Beamforming with Multi-beam Selection for MIMO Broadcast Channels Kai Zhang and Zhisheng Niu Dept. of Electronic Engineering, Tsinghua University Beijing 84, China zhangkai98@mails.tsinghua.e.cn,

More information

Beamforming with Finite Rate Feedback for LOS MIMO Downlink Channels

Beamforming with Finite Rate Feedback for LOS MIMO Downlink Channels Beamforming with Finite Rate Feedback for LOS IO Downlink Channels Niranjay Ravindran University of innesota inneapolis, N, 55455 USA Nihar Jindal University of innesota inneapolis, N, 55455 USA Howard

More information

Pilot-Decontamination in Massive MIMO Systems via Network Pilot Data Alignment

Pilot-Decontamination in Massive MIMO Systems via Network Pilot Data Alignment Pilot-Decontamination in Massive MIMO Systems via Network Pilot Data Alignment Majid Nasiri Khormuji Huawei Technologies Sweden AB, Stockholm Email: majid.n.k@ieee.org Abstract We propose a pilot decontamination

More information

UPLINK SPATIAL SCHEDULING WITH ADAPTIVE TRANSMIT BEAMFORMING IN MULTIUSER MIMO SYSTEMS

UPLINK SPATIAL SCHEDULING WITH ADAPTIVE TRANSMIT BEAMFORMING IN MULTIUSER MIMO SYSTEMS UPLINK SPATIAL SCHEDULING WITH ADAPTIVE TRANSMIT BEAMFORMING IN MULTIUSER MIMO SYSTEMS Yoshitaka Hara Loïc Brunel Kazuyoshi Oshima Mitsubishi Electric Information Technology Centre Europe B.V. (ITE), France

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Analysis of Massive MIMO With Hardware Impairments and Different Channel Models

Analysis of Massive MIMO With Hardware Impairments and Different Channel Models Analysis of Massive MIMO With Hardware Impairments and Different Channel Models Fredrik Athley, Giuseppe Durisi 2, Ulf Gustavsson Ericsson Research, Ericsson AB, Gothenburg, Sweden 2 Dept. of Signals and

More information

Distributed Coordinated Multi-Point Downlink Transmission with Over-the-Air Communication

Distributed Coordinated Multi-Point Downlink Transmission with Over-the-Air Communication Distributed Coordinated Multi-Point Downlink Transmission with Over-the-Air Communication Shengqian Han, Qian Zhang and Chenyang Yang School of Electronics and Information Engineering, Beihang University,

More information

Massive MIMO a overview. Chandrasekaran CEWiT

Massive MIMO a overview. Chandrasekaran CEWiT Massive MIMO a overview Chandrasekaran CEWiT Outline Introduction Ways to Achieve higher spectral efficiency Massive MIMO basics Challenges and expectations from Massive MIMO Network MIMO features Summary

More information

Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers

Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers 11 International Conference on Communication Engineering and Networks IPCSIT vol.19 (11) (11) IACSIT Press, Singapore Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers M. A. Mangoud

More information

Proportional Fair Scheduling for Wireless Communication with Multiple Transmit and Receive Antennas 1

Proportional Fair Scheduling for Wireless Communication with Multiple Transmit and Receive Antennas 1 Proportional Fair Scheduling for Wireless Communication with Multiple Transmit and Receive Antennas Taewon Park, Oh-Soon Shin, and Kwang Bok (Ed) Lee School of Electrical Engineering and Computer Science

More information

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC

MU-MIMO in LTE/LTE-A Performance Analysis. Rizwan GHAFFAR, Biljana BADIC MU-MIMO in LTE/LTE-A Performance Analysis Rizwan GHAFFAR, Biljana BADIC Outline 1 Introduction to Multi-user MIMO Multi-user MIMO in LTE and LTE-A 3 Transceiver Structures for Multi-user MIMO Rizwan GHAFFAR

More information

ISSN Vol.03,Issue.17 August-2014, Pages:

ISSN Vol.03,Issue.17 August-2014, Pages: www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.17 August-2014, Pages:3542-3548 Implementation of MIMO Multi-Cell Broadcast Channels Based on Interference Alignment Techniques B.SANTHOSHA

More information

On the Value of Coherent and Coordinated Multi-point Transmission

On the Value of Coherent and Coordinated Multi-point Transmission On the Value of Coherent and Coordinated Multi-point Transmission Antti Tölli, Harri Pennanen and Petri Komulainen atolli@ee.oulu.fi Centre for Wireless Communications University of Oulu December 4, 2008

More information

Performance Analysis of Massive MIMO Downlink System with Imperfect Channel State Information

Performance Analysis of Massive MIMO Downlink System with Imperfect Channel State Information International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 3 Issue 12 ǁ December. 2015 ǁ PP.14-19 Performance Analysis of Massive MIMO

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

Sum Rate Maximizing Zero Interference Linear Multiuser MIMO Transmission

Sum Rate Maximizing Zero Interference Linear Multiuser MIMO Transmission Sum Rate Maximizing Zero Interference Linear Multiuser MIMO Transmission Helka-Liina Määttänen Renesas Mobile Europe Ltd. Systems Research and Standardization Helsinki, Finland Email: helka.maattanen@renesasmobile.com

More information

Coordinated Multi-Point Transmission for Interference Mitigation in Cellular Distributed Antenna Systems

Coordinated Multi-Point Transmission for Interference Mitigation in Cellular Distributed Antenna Systems Coordinated Multi-Point Transmission for Interference Mitigation in Cellular Distributed Antenna Systems M.A.Sc. Thesis Defence Talha Ahmad, B.Eng. Supervisor: Professor Halim Yanıkömeroḡlu July 20, 2011

More information

IN RECENT years, wireless multiple-input multiple-output

IN RECENT years, wireless multiple-input multiple-output 1936 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004 On Strategies of Multiuser MIMO Transmit Signal Processing Ruly Lai-U Choi, Michel T. Ivrlač, Ross D. Murch, and Wolfgang

More information

Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection

Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection Mohammad Torabi Wessam Ajib David Haccoun Dept. of Electrical Engineering Dept. of Computer Science Dept. of Electrical

More information

CHAPTER 8 MIMO. Xijun Wang

CHAPTER 8 MIMO. Xijun Wang CHAPTER 8 MIMO Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 10 2. Tse, Fundamentals of Wireless Communication, Chapter 7-10 2 MIMO 3 BENEFITS OF MIMO n Array gain The increase

More information

ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM WITH LEAST SQUARE METHOD AND ZERO FORCING RECEIVER

ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM WITH LEAST SQUARE METHOD AND ZERO FORCING RECEIVER ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEM 2017, VOLUME: 08, ISSUE: 03 DOI: 10.21917/ijct.2017.0228 ON PILOT CONTAMINATION IN MASSIVE MULTIPLE-INPUT MULTIPLE- OUTPUT SYSTEM

More information

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Effect of Fading Correlation on the Performance of Spatial Multiplexed MIMO systems with circular antennas M. A. Mangoud Department of Electrical and Electronics Engineering, University of Bahrain P. O.

More information

Novel Transmission Schemes for Multicell Downlink MC/DS-CDMA Systems Employing Time- and Frequency-Domain Spreading

Novel Transmission Schemes for Multicell Downlink MC/DS-CDMA Systems Employing Time- and Frequency-Domain Spreading Novel Transmission Schemes for Multicell Downlink MC/DS-CDMA Systems Employing Time- and Frequency-Domain Spreading Jia Shi and Lie-Liang Yang School of ECS, University of Southampton, SO7 BJ, United Kingdom

More information

Precoding and Massive MIMO

Precoding and Massive MIMO Precoding and Massive MIMO Jinho Choi School of Information and Communications GIST October 2013 1 / 64 1. Introduction 2. Overview of Beamforming Techniques 3. Cooperative (Network) MIMO 3.1 Multicell

More information

Reflections on the Capacity Region of the Multi-Antenna Broadcast Channel Hanan Weingarten

Reflections on the Capacity Region of the Multi-Antenna Broadcast Channel Hanan Weingarten IEEE IT SOCIETY NEWSLETTER 1 Reflections on the Capacity Region of the Multi-Antenna Broadcast Channel Hanan Weingarten Yossef Steinberg Shlomo Shamai (Shitz) whanan@tx.technion.ac.ilysteinbe@ee.technion.ac.il

More information

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System Arumugam Nallanathan King s College London Performance and Efficiency of 5G Performance Requirements 0.1~1Gbps user rates Tens

More information

Hybrid Transceivers for Massive MIMO - Some Recent Results

Hybrid Transceivers for Massive MIMO - Some Recent Results IEEE Globecom, Dec. 2015 for Massive MIMO - Some Recent Results Andreas F. Molisch Wireless Devices and Systems (WiDeS) Group Communication Sciences Institute University of Southern California (USC) 1

More information

THE emergence of multiuser transmission techniques for

THE emergence of multiuser transmission techniques for IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 54, NO. 10, OCTOBER 2006 1747 Degrees of Freedom in Wireless Multiuser Spatial Multiplex Systems With Multiple Antennas Wei Yu, Member, IEEE, and Wonjong Rhee,

More information

On the Capacity Region of the Vector Fading Broadcast Channel with no CSIT

On the Capacity Region of the Vector Fading Broadcast Channel with no CSIT On the Capacity Region of the Vector Fading Broadcast Channel with no CSIT Syed Ali Jafar University of California Irvine Irvine, CA 92697-2625 Email: syed@uciedu Andrea Goldsmith Stanford University Stanford,

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave?

What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmwave? Robert W. Heath Jr. The University of Texas at Austin Wireless Networking and Communications Group www.profheath.org

More information

Beamforming with Imperfect CSI

Beamforming with Imperfect CSI This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 007 proceedings Beamforming with Imperfect CSI Ye (Geoffrey) Li

More information

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION Jigyasha Shrivastava, Sanjay Khadagade, and Sumit Gupta Department of Electronics and Communications Engineering, Oriental College of

More information

Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS

Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS Analysis of Novel Eigen Beam Forming Scheme with Power Allocation in LSAS Saransh Malik, Sangmi Moon, Hun Choi, Cheolhong Kim. Daeijin Kim, and Intae Hwang, Non-Member, IEEE Abstract Massive MIMO (also

More information

Optimization of Coded MIMO-Transmission with Antenna Selection

Optimization of Coded MIMO-Transmission with Antenna Selection Optimization of Coded MIMO-Transmission with Antenna Selection Biljana Badic, Paul Fuxjäger, Hans Weinrichter Institute of Communications and Radio Frequency Engineering Vienna University of Technology

More information

Reduction of Co-Channel Interference in transmit/receive diversity (TRD) in MIMO System

Reduction of Co-Channel Interference in transmit/receive diversity (TRD) in MIMO System Reduction of Co-Channel Interference in transmit/receive diversity (TRD) in MIMO System Manisha Rathore 1, Puspraj Tanwar 2 Department of Electronic and Communication RITS,Bhopal 1,2 Abstract In this paper

More information

Performance Enhancement of Interference Alignment Techniques for MIMO Multi Cell Networks

Performance Enhancement of Interference Alignment Techniques for MIMO Multi Cell Networks Performance Enhancement of Interference Alignment Techniques for MIMO Multi Cell Networks B.Vijayanarasimha Raju 1 PG Student, ECE Department Gokula Krishna College of Engineering Sullurpet, India e-mail:

More information

Optimal subcarrier allocation for 2-user downlink multiantenna OFDMA channels with beamforming interpolation

Optimal subcarrier allocation for 2-user downlink multiantenna OFDMA channels with beamforming interpolation 013 13th International Symposium on Communications and Information Technologies (ISCIT) Optimal subcarrier allocation for -user downlink multiantenna OFDMA channels with beamforming interpolation Kritsada

More information

Complexity reduced zero-forcing beamforming in massive MIMO systems

Complexity reduced zero-forcing beamforming in massive MIMO systems Complexity reduced zero-forcing beamforming in massive MIMO systems Chan-Sic Par, Yong-Su Byun, Aman Miesso Boiye and Yong-Hwan Lee School of Electrical Engineering and INMC Seoul National University Kwana

More information

Relay Selection for Cognitive Massive MIMO Two-Way Relay Networks

Relay Selection for Cognitive Massive MIMO Two-Way Relay Networks Relay Selection for Cognitive Massive MIMO Two-Way Relay Networks Shashindra Silva, Masoud Ardakani and Chintha Tellambura Department of Electrical and Computer Engineering, University of Alberta, Edmonton,

More information

Hybrid Compression and Message-Sharing Strategy for the Downlink Cloud Radio-Access Network

Hybrid Compression and Message-Sharing Strategy for the Downlink Cloud Radio-Access Network Hybrid Compression and Message-Sharing Strategy for the Downlink Cloud Radio-Access Network Pratik Patil and Wei Yu Department of Electrical and Computer Engineering University of Toronto, Toronto, Ontario

More information

Distributed Alamouti Full-duplex Relaying Scheme with Direct Link

Distributed Alamouti Full-duplex Relaying Scheme with Direct Link istributed Alamouti Full-duplex elaying Scheme with irect Link Mohaned Chraiti, Wessam Ajib and Jean-François Frigon epartment of Computer Sciences, Université dequébec à Montréal, Canada epartement of

More information

MIMO Channel Capacity in Co-Channel Interference

MIMO Channel Capacity in Co-Channel Interference MIMO Channel Capacity in Co-Channel Interference Yi Song and Steven D. Blostein Department of Electrical and Computer Engineering Queen s University Kingston, Ontario, Canada, K7L 3N6 E-mail: {songy, sdb}@ee.queensu.ca

More information

Transmit Power Allocation for BER Performance Improvement in Multicarrier Systems

Transmit Power Allocation for BER Performance Improvement in Multicarrier Systems Transmit Power Allocation for Performance Improvement in Systems Chang Soon Par O and wang Bo (Ed) Lee School of Electrical Engineering and Computer Science, Seoul National University parcs@mobile.snu.ac.r,

More information

Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode

Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode Yan Li Yingxue Li Abstract In this study, an enhanced chip-level linear equalizer is proposed for multiple-input multiple-out (MIMO)

More information

Combined Opportunistic Beamforming and Receive Antenna Selection

Combined Opportunistic Beamforming and Receive Antenna Selection Combined Opportunistic Beamforming and Receive Antenna Selection Lei Zan, Syed Ali Jafar University of California Irvine Irvine, CA 92697-262 Email: lzan@uci.edu, syed@ece.uci.edu Abstract Opportunistic

More information

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I

Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I Massive MIMO: Signal Structure, Efficient Processing, and Open Problems I Saeid Haghighatshoar Communications and Information Theory Group (CommIT) Technische Universität Berlin CoSIP Winter Retreat Berlin,

More information

Novel Detection Scheme for LSAS Multi User Scenario with LTE-A and MMB Channels

Novel Detection Scheme for LSAS Multi User Scenario with LTE-A and MMB Channels Novel Detection Scheme for LSAS Multi User Scenario with LTE-A MMB Channels Saransh Malik, Sangmi Moon, Hun Choi, Cheolhong Kim. Daeijin Kim, Intae Hwang, Non-Member, IEEE Abstract In this paper, we analyze

More information

Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System

Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System Uplink Receiver with V-BLAST and Practical Considerations for Massive MIMO System Li Tian 1 1 Department of Electrical and Computer Engineering, University of Auckland, Auckland, New Zealand Abstract Abstract

More information

Fig.1channel model of multiuser ss OSTBC system

Fig.1channel model of multiuser ss OSTBC system IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. V (Feb. 2014), PP 48-52 Cooperative Spectrum Sensing In Cognitive Radio

More information

SumRate Performance of Precoding Techniques in Multiuser MIMO Systems

SumRate Performance of Precoding Techniques in Multiuser MIMO Systems ENGINEERING SCIENCE AND TECHNOLOGY INTERNATIONAL RESEARCH JOURNAL, VOL.2, NO.1, MAR, 2018 39 SumRate Performance of Precoding Techniques in Multiuser MIMO Systems ISSN (e) 2520--7393 ISSN (p) 5021-5027

More information

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels Kambiz Azarian, Hesham El Gamal, and Philip Schniter Dept of Electrical Engineering, The Ohio State University Columbus, OH

More information

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Communications Express, Vol., 1 6 Experimental evaluation of massive MIMO at GHz

More information

A Complete MIMO System Built on a Single RF Communication Ends

A Complete MIMO System Built on a Single RF Communication Ends PIERS ONLINE, VOL. 6, NO. 6, 2010 559 A Complete MIMO System Built on a Single RF Communication Ends Vlasis Barousis, Athanasios G. Kanatas, and George Efthymoglou University of Piraeus, Greece Abstract

More information

Communication over MIMO X Channel: Signalling and Performance Analysis

Communication over MIMO X Channel: Signalling and Performance Analysis Communication over MIMO X Channel: Signalling and Performance Analysis Mohammad Ali Maddah-Ali, Abolfazl S. Motahari, and Amir K. Khandani Coding & Signal Transmission Laboratory Department of Electrical

More information

On the Trade-Off Between Transmit and Leakage Power for Rate Optimal MIMO Precoding

On the Trade-Off Between Transmit and Leakage Power for Rate Optimal MIMO Precoding On the Trade-Off Between Transmit and Leakage Power for Rate Optimal MIMO Precoding Tim Rüegg, Aditya U.T. Amah, Armin Wittneben Swiss Federal Institute of Technology (ETH) Zurich, Communication Technology

More information

Two Models for Noisy Feedback in MIMO Channels

Two Models for Noisy Feedback in MIMO Channels Two Models for Noisy Feedback in MIMO Channels Vaneet Aggarwal Princeton University Princeton, NJ 08544 vaggarwa@princeton.edu Gajanana Krishna Stanford University Stanford, CA 94305 gkrishna@stanford.edu

More information

TIME-MULTIPLEXED / SUPERIMPOSED PILOT SELECTION FOR MASSIVE MIMO PILOT DECONTAMINATION

TIME-MULTIPLEXED / SUPERIMPOSED PILOT SELECTION FOR MASSIVE MIMO PILOT DECONTAMINATION TIME-MULTIPLEXED / SUPERIMPOSED PILOT SELECTION FOR MASSIVE MIMO PILOT DECONTAMINATION Karthik Upadhya Sergiy A. Vorobyov Mikko Vehkapera Department of Signal Processing and Acoustics, Aalto University,

More information

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Presented at: Huazhong University of Science and Technology (HUST), Wuhan, China S.M. Riazul Islam,

More information

ADAPTIVE RESOURCE ALLOCATION FOR WIRELESS MULTICAST MIMO-OFDM SYSTEMS

ADAPTIVE RESOURCE ALLOCATION FOR WIRELESS MULTICAST MIMO-OFDM SYSTEMS ADAPTIVE RESOURCE ALLOCATION FOR WIRELESS MULTICAST MIMO-OFDM SYSTEMS SHANMUGAVEL G 1, PRELLY K.E 2 1,2 Department of ECE, DMI College of Engineering, Chennai. Email: shangvcs.in@gmail.com, prellyke@gmail.com

More information

Degrees of Freedom in Multiuser MIMO

Degrees of Freedom in Multiuser MIMO Degrees of Freedom in Multiuser MIMO Syed A Jafar Electrical Engineering and Computer Science University of California Irvine, California, 92697-2625 Email: syed@eceuciedu Maralle J Fakhereddin Department

More information

Interference Mitigation via Scheduling for the MIMO Broadcast Channel with Limited Feedback

Interference Mitigation via Scheduling for the MIMO Broadcast Channel with Limited Feedback Interference Mitigation via Scheduling for the MIMO Broadcast Channel with Limited Feedback Tae Hyun Kim The Department of Electrical and Computer Engineering The University of Illinois at Urbana-Champaign,

More information

Channel Estimation and Multiple Access in Massive MIMO Systems. Junjie Ma, Chongbin Xu and Li Ping City University of Hong Kong, Hong Kong

Channel Estimation and Multiple Access in Massive MIMO Systems. Junjie Ma, Chongbin Xu and Li Ping City University of Hong Kong, Hong Kong Channel Estimation and Multiple Access in Massive MIMO Systems Junjie Ma, Chongbin Xu and Li Ping City University of Hong Kong, Hong Kong 1 Main references Li Ping, Lihai Liu, Keying Wu, and W. K. Leung,

More information

When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network

When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network Nadia Fawaz, David Gesbert Mobile Communications Department, Eurecom Institute Sophia-Antipolis, France {fawaz, gesbert}@eurecom.fr

More information

On Using Channel Prediction in Adaptive Beamforming Systems

On Using Channel Prediction in Adaptive Beamforming Systems On Using Channel rediction in Adaptive Beamforming Systems T. R. Ramya and Srikrishna Bhashyam Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai - 600 036, India. Email:

More information

TRANSMIT diversity has emerged in the last decade as an

TRANSMIT diversity has emerged in the last decade as an IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 5, SEPTEMBER 2004 1369 Performance of Alamouti Transmit Diversity Over Time-Varying Rayleigh-Fading Channels Antony Vielmon, Ye (Geoffrey) Li,

More information

742 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 5, OCTOBER An Overview of Massive MIMO: Benefits and Challenges

742 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 5, OCTOBER An Overview of Massive MIMO: Benefits and Challenges 742 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 5, OCTOBER 2014 An Overview of Massive MIMO: Benefits and Challenges Lu Lu, Student Member, IEEE, Geoffrey Ye Li, Fellow, IEEE, A.

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels

Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels Achievable Unified Performance Analysis of Orthogonal Space-Time Block Codes with Antenna Selection over Correlated Rayleigh Fading Channels SUDAKAR SINGH CHAUHAN Electronics and Communication Department

More information

Downlink Performance of Cell Edge User Using Cooperation Scheme in Wireless Cellular Network

Downlink Performance of Cell Edge User Using Cooperation Scheme in Wireless Cellular Network Quest Journals Journal of Software Engineering and Simulation Volume1 ~ Issue1 (2013) pp: 07-12 ISSN(Online) :2321-3795 ISSN (Print):2321-3809 www.questjournals.org Research Paper Downlink Performance

More information

Downlink Scheduling in Long Term Evolution

Downlink Scheduling in Long Term Evolution From the SelectedWorks of Innovative Research Publications IRP India Summer June 1, 2015 Downlink Scheduling in Long Term Evolution Innovative Research Publications, IRP India, Innovative Research Publications

More information

Resource Allocation for OFDM and Multi-user. Li Wei, Chathuranga Weeraddana Centre for Wireless Communications

Resource Allocation for OFDM and Multi-user. Li Wei, Chathuranga Weeraddana Centre for Wireless Communications Resource Allocation for OFDM and Multi-user MIMO Broadcast Li Wei, Chathuranga Weeraddana Centre for Wireless Communications University of Oulu Outline Joint Channel and Power Allocation in OFDMA System

More information

Bringing the Magic of Asymptotic Analysis to Wireless Networks

Bringing the Magic of Asymptotic Analysis to Wireless Networks Massive MIMO Bringing the Magic of Asymptotic Analysis to Wireless Networks Dr. Emil Björnson Department of Electrical Engineering (ISY) Linköping University, Linköping, Sweden International Workshop on

More information

Optimized Data Symbol Allocation in Multicell MIMO Channels

Optimized Data Symbol Allocation in Multicell MIMO Channels Optimized Data Symbol Allocation in Multicell MIMO Channels Rajeev Gangula, Paul de Kerret, David Gesbert and Maha Al Odeh Mobile Communications Department, Eurecom 9 route des Crêtes, 06560 Sophia Antipolis,

More information

Energy Efficient Power Control for the Two-tier Networks with Small Cells and Massive MIMO

Energy Efficient Power Control for the Two-tier Networks with Small Cells and Massive MIMO Energy Efficient Power Control for the Two-tier Networks with Small Cells and Massive MIMO Ningning Lu, Yanxiang Jiang, Fuchun Zheng, and Xiaohu You National Mobile Communications Research Laboratory,

More information

Precoding and Scheduling Techniques for Increasing Capacity of MIMO Channels

Precoding and Scheduling Techniques for Increasing Capacity of MIMO Channels Precoding and Scheduling Techniques for Increasing Capacity of Channels Precoding Scheduling Special Articles on Multi-dimensional Transmission Technology The Challenge to Create the Future Precoding and

More information

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems Jiangzhou Wang University of Kent 1 / 31 Best Wishes to Professor Fumiyuki Adachi, Father of Wideband CDMA [1]. [1]

More information

LIMITED DOWNLINK NETWORK COORDINATION IN CELLULAR NETWORKS

LIMITED DOWNLINK NETWORK COORDINATION IN CELLULAR NETWORKS LIMITED DOWNLINK NETWORK COORDINATION IN CELLULAR NETWORKS ABSTRACT Federico Boccardi Bell Labs, Alcatel-Lucent Swindon, UK We investigate the downlink throughput of cellular systems where groups of M

More information

Pareto Optimization for Uplink NOMA Power Control

Pareto Optimization for Uplink NOMA Power Control Pareto Optimization for Uplink NOMA Power Control Eren Balevi, Member, IEEE, and Richard D. Gitlin, Life Fellow, IEEE Department of Electrical Engineering, University of South Florida Tampa, Florida 33620,

More information

Research Article Intercell Interference Coordination through Limited Feedback

Research Article Intercell Interference Coordination through Limited Feedback Digital Multimedia Broadcasting Volume 21, Article ID 134919, 7 pages doi:1.1155/21/134919 Research Article Intercell Interference Coordination through Limited Feedback Lingjia Liu, 1 Jianzhong (Charlie)

More information

Opportunistic Collaborative Beamforming with One-Bit Feedback

Opportunistic Collaborative Beamforming with One-Bit Feedback Opportunistic Collaborative Beamforming with One-Bit Feedback Man-On Pun, D. Richard Brown III and H. Vincent Poor Abstract An energy-efficient opportunistic collaborative beamformer with one-bit feedback

More information

New Uplink Opportunistic Interference Alignment: An Active Alignment Approach

New Uplink Opportunistic Interference Alignment: An Active Alignment Approach New Uplink Opportunistic Interference Alignment: An Active Alignment Approach Hui Gao, Johann Leithon, Chau Yuen, and Himal A. Suraweera Singapore University of Technology and Design, Dover Drive, Singapore

More information

INVESTIGATION OF CAPACITY GAINS IN MIMO CORRELATED RICIAN FADING CHANNELS SYSTEMS

INVESTIGATION OF CAPACITY GAINS IN MIMO CORRELATED RICIAN FADING CHANNELS SYSTEMS INVESTIGATION OF CAPACITY GAINS IN MIMO CORRELATED RICIAN FADING CHANNELS SYSTEMS NIRAV D PATEL 1, VIJAY K. PATEL 2 & DHARMESH SHAH 3 1&2 UVPCE, Ganpat University, 3 LCIT,Bhandu E-mail: Nirav12_02_1988@yahoo.com

More information

Low Complexity Multiuser Scheduling in MIMO Broadcast Channel with Limited Feedback

Low Complexity Multiuser Scheduling in MIMO Broadcast Channel with Limited Feedback Low Complexity Multiuser Scheduling in MIMO Broadcast Channel with Limited Feedback Feng She, Hanwen Luo, and Wen Chen Department of Electronic Engineering Shanghai Jiaotong University Shanghai 200030,

More information

MULTIPATH fading could severely degrade the performance

MULTIPATH fading could severely degrade the performance 1986 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 12, DECEMBER 2005 Rate-One Space Time Block Codes With Full Diversity Liang Xian and Huaping Liu, Member, IEEE Abstract Orthogonal space time block

More information

Degrees of Freedom of the MIMO X Channel

Degrees of Freedom of the MIMO X Channel Degrees of Freedom of the MIMO X Channel Syed A. Jafar Electrical Engineering and Computer Science University of California Irvine Irvine California 9697 USA Email: syed@uci.edu Shlomo Shamai (Shitz) Department

More information

An Efficient Linear Precoding Scheme Based on Block Diagonalization for Multiuser MIMO Downlink System

An Efficient Linear Precoding Scheme Based on Block Diagonalization for Multiuser MIMO Downlink System An Efficient Linear Precoding Scheme Based on Block Diagonalization for Multiuser MIMO Downlink System Abhishek Gupta #, Garima Saini * Dr.SBL Sachan $ # ME Student, Department of ECE, NITTTR, Chandigarh

More information

Channel Norm-Based User Scheduler in Coordinated Multi-Point Systems

Channel Norm-Based User Scheduler in Coordinated Multi-Point Systems Channel Norm-Based User Scheduler in Coordinated Multi-Point Systems Shengqian an, Chenyang Yang Beihang University, Beijing, China Email: sqhan@ee.buaa.edu.cn cyyang@buaa.edu.cn Mats Bengtsson Royal Institute

More information

Sum-Rate Analysis and Optimization of. Self-Backhauling Based Full-Duplex Radio Access System

Sum-Rate Analysis and Optimization of. Self-Backhauling Based Full-Duplex Radio Access System Sum-Rate Analysis and Optimization of 1 Self-Backhauling Based Full-Duplex Radio Access System Dani Korpi, Taneli Riihonen, Ashutosh Sabharwal, and Mikko Valkama arxiv:1604.06571v1 [cs.it] 22 Apr 2016

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /PIMRC.2009.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /PIMRC.2009. Beh, K. C., Doufexi, A., & Armour, S. M. D. (2009). On the performance of SU-MIMO and MU-MIMO in 3GPP LTE downlink. In IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications,

More information

Adaptive selection of antenna grouping and beamforming for MIMO systems

Adaptive selection of antenna grouping and beamforming for MIMO systems RESEARCH Open Access Adaptive selection of antenna grouping and beamforming for MIMO systems Kyungchul Kim, Kyungjun Ko and Jungwoo Lee * Abstract Antenna grouping algorithms are hybrids of transmit beamforming

More information

Analysis of maximal-ratio transmit and combining spatial diversity

Analysis of maximal-ratio transmit and combining spatial diversity This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. Analysis of maximal-ratio transmit and combining spatial diversity Fumiyuki Adachi a),

More information