Medium Access Methods. Lecture 9

Size: px
Start display at page:

Download "Medium Access Methods. Lecture 9"

Transcription

1 Medium Access Methods Lecture 9

2 Medium Access Control Medium Access Control (MAC) is the method that defines a procedure a station should follow when it needs to send a frame or frames. The use of regulated method ensure that there is no conflict among the stations. The problem of controlling the access to the medium is similar to the rules of speaking in an assembly. Rules are established to ensure that two people do not speak at the same time 2

3 Medium Access Methods MAC can be divided into two broad categories: Random access and controlled access. See the figure below

4 Random Access With Random Access or contention methods no station is superior to another station and non of them are assign the control of others. No schedule time for a station to transmit -transmission is random among the stations. No rule that specifies what station should send next stations complete with each other to access the medium hence contention methods Each station that has data to send uses the procedure defined in the protocol in relation to the state of the medium (idle/busy) to make a decision on whether or not to send 4

5 Random Access The procedure that station use to access the medium with Random Access method must answer the following Questions: When should the station access the medium? What should the station do when the medium is busy? How should the station determine the success or failure of the transmission? What should the station do if there is an access conflict? 5

6 Evolution of Random Access Methods

7 The first method, known as ALOHA, used a very simple procedure called Multiple Access (MA). This Method was improved with addition of procedure that forces the station to sense the medium before transmitting. This was called Carrier Sense Multiple Access (CSMA). This method was later evolved into two parallel methods: CSMA/CD and CSMA/CA CSMA/CD tries to show what the station should do if a collision is detected CSMA/CA tries to avoid the collision

8 Random Access Methods Multiple Access (MA) Carrier Sense with Multiple Access (CSMA) Carrier Sense with Multiple Access with Collision Detection (CSMA/CD) Carrier Sense with Multiple Access with Collision Avoidance (CSMA/CA)

9 Carrier Sense Multiple Access (CSMA) The chance of collision can be reduced if a station sense the medium before trying to use it. CSMA requires that each station first listen to the medium (or check the state of the medium) before sending CSMA is based on the principle sense before transmit or Listen before talk CSMA can reduce the possibility of collision, but can not eliminate it 9

10 Collision in CSMA

11 Vulnerable Time: Vulnerable Time: Vulnerable time for CSMA is the propagation time,. This is the time needed for a signal to propagate Tprop from one end of the medium to the other. When a station sends a frame, and any other station tries to send a frame during Vulnerable time, a collision will result. 11

12 Persistence Strategies Persistence Strategy: define what a station should do if, when sensing the medium, it finds it busy. Two strategies:

13 Non-persistent Method Non persistence Method: In the non-persistence method, a station with a frame to send, it senses the medium: If the medium is idle, it sends immediately If the medium is not idle it waits a random time and then sense the medium again

14 1-Persistent Approach In persistence strategy, a station senses the medium. If the medium is idle, it sends the frame. 1-persistence: In this method, after the station finds the medium idle, it sends its frame immediately (with a probability of 1). 1-persistence method increases the chances of collision as two or more station may find the medium idle and send their frames immediately.

15 P-Persistent Approach In P-Persistence method, after the station finds the medium idle, it may or may not send It sends with probability p and refrain from sending with probability 1-p The station generates the random number between 1 and 100. If the random number is less than 20, the station will send; otherwise the station refrain from sending. The station waits one time slot before sensing the medium again. P-Persistence: reduces the chances of collision and improves the efficiency

16 Example of P-Persistent For example, if p is 0.2, it means that each station, after sensing an idle line, sends with a probability of 0.2 (20 percent of the time) and refrain from sending with a probability of 0.8 (80 percent of the time)

17 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) CSMA method does not define what should be done if a collision occurs. That is why it was never implemented. CSMA/CD, a modified version of CSMA, adds a procedure to handle the collision Back off time is between 0 and 2Nx(maximum propagation time) 17

18 Collision If the collision occurs, the frame should be sent again. To reduce the probability of collision the second time, the station should wait- is should back-off. It should wait a little the first time, more is the collision occur again, much more if it happens a third time, and so on

19 Back-off exponential Method In the exponential back-off method, the station waits an amount of time between 0 and 2 N x (Maximum propagation time) N: number of attempted transmission It waits between 0 and 2 x (Maximum propagation time) for the first time. Between 0 and 2 2 x (Maximum propagation time) for the second time

20 CSMA/CD Procedure

21 Jam Signal The jam signal is intended to inform other stations of the situation s collision. It alerts them that collision has occurred. The maximum value of the back-off parameter is 15

22 Controlled Access In controlled access method, the stations consult each other to find which station has the right to send. The station can not send unless it has been authorized by other stations. 22

23 Token Passing Network In the Token passing method, a station is authorized to send data when it receives a special frame called a token.

24 Token Passing When no data is being sent, a token circulate around the ring. If the station needs to send data, it waits for the token. The station capture the token, sends one or more frames (as long as it has some frames to send or the time allocated hasn t expired). It releases the token to be used by the successor station 24

25 Token Passing Procedure

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 2 Medium Access Control (MAC) Schemes Course Instructor: Dr. Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents Why Multiple Access Random Access Aloha Slotted

More information

DOPPLER SHIFT. Thus, the frequency of the received signal is

DOPPLER SHIFT. Thus, the frequency of the received signal is DOPPLER SHIFT Radio Propagation Doppler Effect: When a wave source and a receiver are moving towards each other, the frequency of the received signal will not be the same as the source. When they are moving

More information

6.1 Multiple Access Communications

6.1 Multiple Access Communications Chap 6 Medium Access Control Protocols and Local Area Networks Broadcast Networks: a single transmission medium is shared by many users. ( Multiple access networks) User transmissions interfering or colliding

More information

ECE 333: Introduction to Communication Networks Fall Lecture 15: Medium Access Control III

ECE 333: Introduction to Communication Networks Fall Lecture 15: Medium Access Control III ECE 333: Introduction to Communication Networks Fall 200 Lecture 5: Medium Access Control III CSMA CSMA/CD Carrier Sense Multiple Access (CSMA) In studying Aloha, we assumed that a node simply transmitted

More information

Multiple Access CHAPTER 12. Solutions to Review Questions and Exercises. Review Questions

Multiple Access CHAPTER 12. Solutions to Review Questions and Exercises. Review Questions CHAPTER 12 Multiple Access Solutions to Review Questions and Exercises Review Questions 1. The three categies of multiple access protocols discussed in this chapter are random access, controlled access,

More information

Lecture on Sensor Networks

Lecture on Sensor Networks Lecture on Sensor Networks Copyright (c) 2008 Dr. Thomas Haenselmann (University of Mannheim, Germany). Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

More information

Lecture 8: Media Access Control. CSE 123: Computer Networks Stefan Savage

Lecture 8: Media Access Control. CSE 123: Computer Networks Stefan Savage Lecture 8: Media Access Control CSE 123: Computer Networks Stefan Savage Overview Methods to share physical media: multiple access Fixed partitioning Random access Channelizing mechanisms Contention-based

More information

Outline. EEC-484/584 Computer Networks. Homework #1. Homework #1. Lecture 8. Wenbing Zhao Homework #1 Review

Outline. EEC-484/584 Computer Networks. Homework #1. Homework #1. Lecture 8. Wenbing Zhao Homework #1 Review EEC-484/584 Computer Networks Lecture 8 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline Homework #1 Review Protocol verification Example

More information

Mobile Communications

Mobile Communications COMP61242 Mobile Communications Lecture 7 Multiple access & medium access control (MAC) Barry Cheetham 16/03/2018 Lecture 7 1 Multiple access Communication links by wire or radio generally provide access

More information

COSC 3213: Computer Networks I Instructor: Dr. Amir Asif Department of Computer Science York University Section B

COSC 3213: Computer Networks I Instructor: Dr. Amir Asif Department of Computer Science York University Section B MAC: Scheduled Approaches 1. Reservation Systems 2. Polling Systems 3. Token Passing Systems Static Channelization: TDMA and FDMA COSC 3213: Computer Networks I Instructor: Dr. Amir Asif Department of

More information

Multiple Access Methods

Multiple Access Methods Helsinki University of Technology S-72.333 Postgraduate Seminar on Radio Communications Multiple Access Methods Er Liu liuer@cc.hut.fi Communications Laboratory 16.11.2004 Content of presentation Protocol

More information

Lecture 8: Media Access Control

Lecture 8: Media Access Control Lecture 8: Media Access Control CSE 123: Computer Networks Alex C. Snoeren HW 2 due NEXT WEDNESDAY Overview Methods to share physical media: multiple access Fixed partitioning Random access Channelizing

More information

Chapter 2 Overview. Duplexing, Multiple Access - 1 -

Chapter 2 Overview. Duplexing, Multiple Access - 1 - Chapter 2 Overview Part 1 (2 weeks ago) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (last week) Modulation, Coding, Error Correction Part 3

More information

Medium Access Control

Medium Access Control CMPE 477 Wireless and Mobile Networks Medium Access Control Motivation for Wireless MAC SDMA FDMA TDMA CDMA Comparisons CMPE 477 Motivation Can we apply media access methods from fixed networks? Example

More information

Department of Computer Science and Engineering. CSE 3213: Computer Networks I (Fall 2009) Instructor: N. Vlajic Date: Dec 11, 2009.

Department of Computer Science and Engineering. CSE 3213: Computer Networks I (Fall 2009) Instructor: N. Vlajic Date: Dec 11, 2009. Department of Computer Science and Engineering CSE 3213: Computer Networks I (Fall 2009) Instructor: N. Vlajic Date: Dec 11, 2009 Final Examination Instructions: Examination time: 180 min. Print your name

More information

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller Wireless Networks: Medium Access Control Guevara Noubir Slides adapted from Mobile Communications by J. Schiller S200, COM3525 Wireless Networks Lecture 4, Motivation Can we apply media access methods

More information

ECT-215 Homework #1 Solution Set Chapter 14 Problems 1-29

ECT-215 Homework #1 Solution Set Chapter 14 Problems 1-29 Scoring: 1 point per problem, 29 points total. ECT-215 Homework #1 Solution Set Chapter 14 Problems 1-29 1. For the system of figure 14-1, give the binary code output that will result for each of the following

More information

06/02/2006. Sharing the Medium. Peter Rounce Room Notes Courtesy of Graham Knight P.A.

06/02/2006. Sharing the Medium. Peter Rounce Room Notes Courtesy of Graham Knight P.A. Sharing the Medium Peter Rounce (P.Rounce@cs.ucl.ac.uk) Room 6.18 Notes Courtesy of Graham Knight 2011-05 P.A.Rounce 2011-05-1 Sharing a link Introduction TDM, FDM - fixed allocations Statistical multiplexing

More information

Fine-grained Channel Access in Wireless LAN. Cristian Petrescu Arvind Jadoo UCL Computer Science 20 th March 2012

Fine-grained Channel Access in Wireless LAN. Cristian Petrescu Arvind Jadoo UCL Computer Science 20 th March 2012 Fine-grained Channel Access in Wireless LAN Cristian Petrescu Arvind Jadoo UCL Computer Science 20 th March 2012 Physical-layer data rate PHY layer data rate in WLANs is increasing rapidly Wider channel

More information

1. Introduction 1.2 Medium Access Control. Prof. JP Hubaux

1. Introduction 1.2 Medium Access Control. Prof. JP Hubaux 1. Introduction 1.2 Medium Access Control Prof. JP Hubaux 1 Modulation and demodulation (reminder) analog baseband digital signal data digital analog 101101001 modulation modulation radio transmitter radio

More information

TSIN01 Information Networks Lecture 9

TSIN01 Information Networks Lecture 9 TSIN01 Information Networks Lecture 9 Danyo Danev Division of Communication Systems Department of Electrical Engineering Linköping University, Sweden September 26 th, 2017 Danyo Danev TSIN01 Information

More information

Multiple Access (3) Required reading: Garcia 6.3, 6.4.1, CSE 3213, Fall 2010 Instructor: N. Vlajic

Multiple Access (3) Required reading: Garcia 6.3, 6.4.1, CSE 3213, Fall 2010 Instructor: N. Vlajic 1 Multiple Access (3) Required reading: Garcia 6.3, 6.4.1, 6.4.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Medium Sharing Techniques Static Channelization FDMA TDMA Attempt to produce an orderly access

More information

Mobile Computing. Chapter 3: Medium Access Control

Mobile Computing. Chapter 3: Medium Access Control Mobile Computing Chapter 3: Medium Access Control Prof. Sang-Jo Yoo Contents Motivation Access methods SDMA/FDMA/TDMA Aloha Other access methods Access method CDMA 2 1. Motivation Can we apply media access

More information

PULSE: A MAC Protocol for RFID Networks

PULSE: A MAC Protocol for RFID Networks PULSE: A MAC Protocol for RFID Networks Shailesh M. Birari and Sridhar Iyer K. R. School of Information Technology Indian Institute of Technology, Powai, Mumbai, India 400 076. (e-mail: shailesh,sri@it.iitb.ac.in)

More information

Computer Networks. Week 03 Founda(on Communica(on Concepts. College of Information Science and Engineering Ritsumeikan University

Computer Networks. Week 03 Founda(on Communica(on Concepts. College of Information Science and Engineering Ritsumeikan University Computer Networks Week 03 Founda(on Communica(on Concepts College of Information Science and Engineering Ritsumeikan University Agenda l Basic topics of electromagnetic signals: frequency, amplitude, degradation

More information

Cellular systems 02/10/06

Cellular systems 02/10/06 Cellular systems 02/10/06 Cellular systems Implements space division multiplex: base station covers a certain transmission area (cell) Mobile stations communicate only via the base station Cell sizes from

More information

FPGA-BASED DESIGN AND IMPLEMENTATION OF THREE-PRIORITY PERSISTENT CSMA PROTOCOL

FPGA-BASED DESIGN AND IMPLEMENTATION OF THREE-PRIORITY PERSISTENT CSMA PROTOCOL U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 4, 2017 ISSN 2286-3540 FPGA-BASED DESIGN AND IMPLEMENTATION OF THREE-PRIORITY PERSISTENT CSMA PROTOCOL Xu ZHI 1, Ding HONGWEI 2, Liu LONGJUN 3, Bao LIYONG 4,

More information

ICT 5305 Mobile Communications. Lecture - 4 April Dr. Hossen Asiful Mustafa

ICT 5305 Mobile Communications. Lecture - 4 April Dr. Hossen Asiful Mustafa ICT 5305 Mobile Communications Lecture - 4 April 2016 Dr. Hossen Asiful Mustafa Media Access Motivation Can we apply media access methods from fixed networks? Example CSMA/CD Carrier Sense Multiple Access

More information

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Wei Ye and John Heidemann CS577 Brett Levasseur 12/3/2013 Outline Introduction Scheduled Channel Polling (SCP-MAC) Energy Performance Analysis Implementation

More information

Medium Access Control Protocol for WBANS

Medium Access Control Protocol for WBANS Medium Access Control Protocol for WBANS Using the slides presented by the following group: An Efficient Multi-channel Management Protocol for Wireless Body Area Networks Wangjong Lee *, Seung Hyong Rhee

More information

ALERT2 TDMA Manager. User s Reference. VERSION 4.0 November =AT Maintenance Report Understanding ALERT2 TDMA Terminology

ALERT2 TDMA Manager. User s Reference. VERSION 4.0 November =AT Maintenance Report Understanding ALERT2 TDMA Terminology ALERT2 TDMA Manager User s Reference VERSION 4.0 November 2014 =AT Maintenance Report Understanding ALERT2 TDMA Terminology i Table of Contents 1 Understanding ALERT2 TDMA Terminology... 3 1.1 General

More information

COM-405 Mobile Networks. Module A (Part A2) Introduction

COM-405 Mobile Networks. Module A (Part A2) Introduction COM-405 Mobile Networks Module A (Part A2) Introduction Prof. JP Hubaux http://mobnet.epfl.ch Note: some of the slides of this and other modules and derived from Schiller s book 1 Modulation and demodulation

More information

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster INTRODUCTION TO WIRELESS SENSOR NETWORKS CHAPTER 3: RADIO COMMUNICATIONS Anna Förster OVERVIEW 1. Radio Waves and Modulation/Demodulation 2. Properties of Wireless Communications 1. Interference and noise

More information

DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers

DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers Kwang-il Hwang, Kyung-tae Kim, and Doo-seop Eom Department of Electronics and Computer Engineering, Korea University 5-1ga,

More information

Achieving Network Consistency. Octav Chipara

Achieving Network Consistency. Octav Chipara Achieving Network Consistency Octav Chipara Reminders Homework is postponed until next class if you already turned in your homework, you may resubmit Please send me your peer evaluations 2 Next few lectures

More information

Politecnico di Milano Advanced Network Technologies Laboratory. Beyond Standard MAC Sublayer

Politecnico di Milano Advanced Network Technologies Laboratory. Beyond Standard MAC Sublayer Politecnico di Milano Advanced Network Technologies Laboratory Beyond Standard 802.15.4 MAC Sublayer MAC Design Approaches o Conten&on based n Allow collisions n O2en CSMA based (SMAC, STEM, Z- MAC, GeRaF,

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 9: MAC Protocols for WLANs Fine-Grained Channel Access in Wireless LAN (SIGCOMM 10) Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 1 Physical-Layer Data Rate PHY

More information

Exercise Data Networks

Exercise Data Networks (due till January 19, 2009) Exercise 9.1: IEEE 802.11 (WLAN) a) In which mode of operation is this network in? b) Why is the start of the back-off timers delayed until the DIFS contention phase? c) How

More information

Chapter 3 : Media Access. Mobile Communications. Collision avoidance, MACA

Chapter 3 : Media Access. Mobile Communications. Collision avoidance, MACA Mobile Communications Chapter 3 : Media Access Motivation Collision avoidance, MACA SDMA, FDMA, TDMA Polling Aloha CDMA Reservation schemes SAMA Comparison Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Multiple access techniques

Multiple access techniques Multiple access techniques Narrowband and wideband systems FDMA TDMA CDMA /FHMA SDMA Random-access techniques Summary Wireless Systems 2015 Narrowband and wideband systems Coherence BW B coh 1/σ τ σ τ

More information

Department of Computer Science and Engineering. CSE 3213: Communication Networks (Fall 2015) Instructor: N. Vlajic Date: Dec 13, 2015

Department of Computer Science and Engineering. CSE 3213: Communication Networks (Fall 2015) Instructor: N. Vlajic Date: Dec 13, 2015 Department of Computer Science and Engineering CSE 3213: Communication Networks (Fall 2015) Instructor: N. Vlajic Date: Dec 13, 2015 Final Examination Instructions: Examination time: 180 min. Print your

More information

Analysis of Collided Signal Waveform on the Long Transmission Line of UART-CSMA/CD Control Network

Analysis of Collided Signal Waveform on the Long Transmission Line of UART-CSMA/CD Control Network PIERS ONLINE, VOL. 5, NO. 2, 2009 171 Analysis of Collided Signal Waveform on the Long Transmission Line of UART-CSMA/CD Control Network Chuzo Ninagawa 1 and Yasumitsu Miyazaki 2 1 Mitsubishi Heavy Industries,

More information

CS 438 Communication Networks Spring 2014 Homework 2 Due Date: February 19

CS 438 Communication Networks Spring 2014 Homework 2 Due Date: February 19 1. Questions to ponder a) What s the tradeoffs between copper and optical? b) Introduce two multiple access methods / protocols that weren t covered in class. Discuss their advantages and disadvantages.

More information

Wireless Communications Lecture 4: Multiple Access Technologies

Wireless Communications Lecture 4: Multiple Access Technologies Wireless Communications Lecture 4: Multiple Access Technologies Module Representive: Prof. Dr.-Ing. Hans D. Schotten schotten@eit.uni-kl.de Lecturer: Dr. Vincenzo Sciancalepore vincenzo.sciancalepore@neclab.eu

More information

Network Management System for Telecommunication and Internet Application

Network Management System for Telecommunication and Internet Application Network Management System for Telecommunication and Internet Application Gerd Bumiller GmbH Unterschlauersbacher-Hauptstr. 10, D-906 13 Groahabersdorf, Germany Phone: +49 9105 9960-51, Fax: +49 9105 9960-19,

More information

Figure 8.1 CSMA/CD worst-case collision detection.

Figure 8.1 CSMA/CD worst-case collision detection. Figure 8.1 CSMA/CD worst-case collision detection. Figure 8.2 Hub configuration principles: (a) topology; (b) repeater schematic. Figure 8.3 Ethernet/IEEE802.3 characteristics: (a) frame format; (b) operational

More information

Channel partitioning protocols

Channel partitioning protocols Wireless Networks a.y. 2010-2011 Channel partitioning protocols Giacinto Gelli DIBET gelli@unina.it 1 Outline Introduction Duplexing techniques FDD TDD Channel partitioning techniques FDMA TDMA CDMA Hybrid

More information

Wireless Transmission & Media Access

Wireless Transmission & Media Access Wireless Transmission & Media Access Signals and Signal Propagation Multiplexing Modulation Media Access 1 Significant parts of slides are based on original material by Prof. Dr.-Ing. Jochen Schiller,

More information

Contrail TDMA Manager User s Reference

Contrail TDMA Manager User s Reference Contrail TDMA Manager User s Reference VERSION 6 Published: May 2018 =AT Maintenance Report Understanding Contrail TDMA Terminology i Contents Chapter 1: Understanding Contrail TDMA Terminology... 3 General

More information

Medium Access Control via Nearest-Neighbor Interactions for Regular Wireless Networks

Medium Access Control via Nearest-Neighbor Interactions for Regular Wireless Networks Medium Access Control via Nearest-Neighbor Interactions for Regular Wireless Networks Ka Hung Hui, Dongning Guo and Randall A. Berry Department of Electrical Engineering and Computer Science Northwestern

More information

Introduction to Mobile Computing The rapidly expanding technology of cellular communication, wireless LANs, and satellite services will make information accessible anywhere and at any time. Regardless

More information

OSI Reference Model. Application Layer. Presentation Layer. Session Layer. Chapter 4: Application Protocols. Transport Layer.

OSI Reference Model. Application Layer. Presentation Layer. Session Layer. Chapter 4: Application Protocols. Transport Layer. Chapter 2: Computer Networks 2.1: Physical Layer and Data Link Layer 2.2: Examples for Local Area Networks 2.3: Examples for Wide Area Networks 2.4: Wireless Networks OSI Reference Model Application Layer

More information

A feasibility study of CDMA technology for ATC. Summary

A feasibility study of CDMA technology for ATC. Summary International Civil Aviation Organization Tenth Meeting of Working Group C of the Aeronautical Communications Panel Montréal, Canada, 13 17 March 2006 Agenda Item 4: New technologies selection criteria

More information

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn Increasing Broadcast Reliability for Vehicular Ad Hoc Networks Nathan Balon and Jinhua Guo University of Michigan - Dearborn I n t r o d u c t i o n General Information on VANETs Background on 802.11 Background

More information

Simple, Optimal, Fast, and Robust Wireless Random Medium Access Control

Simple, Optimal, Fast, and Robust Wireless Random Medium Access Control Simple, Optimal, Fast, and Robust Wireless Random Medium Access Control Jianwei Huang Department of Information Engineering The Chinese University of Hong Kong KAIST-CUHK Workshop July 2009 J. Huang (CUHK)

More information

Visible Light Communication (VLC) Low-Complexity Visible Light Networking with LED-to-LED Communication. Application: Toy-to-Toy Communication

Visible Light Communication (VLC) Low-Complexity Visible Light Networking with LED-to-LED Communication. Application: Toy-to-Toy Communication Introduction Visible Light Communication (VLC) Low-Complexity Visible Light Networking with LED-to-LED Communication Domenico Giustiniano, Nils Ole Tippenhauer, Stefan Mangold VLC is an emerging technology,

More information

EUROPEAN ETS TELECOMMUNICATION July 1997 STANDARD

EUROPEAN ETS TELECOMMUNICATION July 1997 STANDARD EUROPEAN ETS 300 719-2 TELECOMMUNICATION July 1997 STANDARD Source: ETSI TC-RES Reference: DE/RES-04005-2 ICS: 33.020 Key words: Paging, private, radio Radio Equipment and Systems (RES); Private wide area

More information

Analyzing Split Channel Medium Access Control Schemes

Analyzing Split Channel Medium Access Control Schemes IEEE TRANS. ON WIRELESS COMMNICATIONS, TO APPEAR Analyzing Split Channel Medium Access Control Schemes Jing Deng, Member, IEEE, Yunghsiang S. Han, Member, IEEE, and Zygmunt J. Haas, Senior Member, IEEE

More information

Scheduling of Event-Triggered Controllers on a Shared Network Anton Cervin and Toivo Henningsson

Scheduling of Event-Triggered Controllers on a Shared Network Anton Cervin and Toivo Henningsson on a Shared Network Automatic Control LTH Lund University Sweden The Problem Plant 1 Plant 2 A 1 S 1 A 2 S 2 S 3 A 3 Plant 3 How to schedule the sampling and communication to get optimum control performance?

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS CHAPTER 7 2. Guided and unguided media 4. Twisted pair, coaxial, and fiber-optic cable 6. Coaxial cable can carry higher frequencies than twisted pair cable and is less sus-ceptible to noise. 8. a. The

More information

Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance of a Moving Target

Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance of a Moving Target Sensors 2009, 9, 3563-3585; doi:10.3390/s90503563 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance

More information

Research Article Dynamic Cognitive Self-Organized TDMA for Medium Access Control in Real-Time Vehicle to Vehicle Communications

Research Article Dynamic Cognitive Self-Organized TDMA for Medium Access Control in Real-Time Vehicle to Vehicle Communications Mathematical Problems in Engineering Volume, Article ID 7, pages http://dx.doi.org/.//7 Research Article Dynamic Cognitive Self-Organized TDMA for Medium Access Control in Real-Time Vehicle to Vehicle

More information

Lecture 23: Media Access Control. CSE 123: Computer Networks Alex C. Snoeren

Lecture 23: Media Access Control. CSE 123: Computer Networks Alex C. Snoeren Lecture 23: Media Access Control CSE 123: Computer Networks Alex C. Snoeren Overview Finish encoding schemes Manchester, 4B/5B, etc. Methods to share physical media: multiple access Fixed partitioning

More information

Half-Duplex Spread Spectrum Networks

Half-Duplex Spread Spectrum Networks Half-Duplex Spread Spectrum Networks Darryl Smith, B.E., VK2TDS POBox 169 Ingleburn NSW 2565 Australia VK2TDS@ozemail.com.au ABSTRACT: This paper is a response to the presentation of the TAPR SS Modem

More information

TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS

TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS A Thesis by Masaaki Takahashi Bachelor of Science, Wichita State University, 28 Submitted to the Department of Electrical Engineering

More information

Wireless Intro : Computer Networking. Wireless Challenges. Overview

Wireless Intro : Computer Networking. Wireless Challenges. Overview Wireless Intro 15-744: Computer Networking L-17 Wireless Overview TCP on wireless links Wireless MAC Assigned reading [BM09] In Defense of Wireless Carrier Sense [BAB+05] Roofnet (2 sections) Optional

More information

Efficient Method of Secondary Users Selection Using Dynamic Priority Scheduling

Efficient Method of Secondary Users Selection Using Dynamic Priority Scheduling Efficient Method of Secondary Users Selection Using Dynamic Priority Scheduling ABSTRACT Sasikumar.J.T 1, Rathika.P.D 2, Sophia.S 3 PG Scholar 1, Assistant Professor 2, Professor 3 Department of ECE, Sri

More information

AN EFFICIENT MULTIACCESS PROTOCOL FOR WIRELESS NETWORKS. Benjamin W. Wah and Xiao Su

AN EFFICIENT MULTIACCESS PROTOCOL FOR WIRELESS NETWORKS. Benjamin W. Wah and Xiao Su AN EFFICIENT MULTIACCESS PROTOCOL FOR WIRELESS NETWORKS enjamin W. Wah and Xiao Su Department of Electrical and Computer Engineering and the Coordinated Science Laboratory University of Illinois at Urbana-Champaign

More information

LTE-Unlicensed. Sreekanth Dama, Dr. Kiran Kuchi, Dr. Abhinav Kumar IIT Hyderabad

LTE-Unlicensed. Sreekanth Dama, Dr. Kiran Kuchi, Dr. Abhinav Kumar IIT Hyderabad LTE-Unlicensed Sreekanth Dama, Dr. Kiran Kuchi, Dr. Abhinav Kumar IIT Hyderabad Unlicensed Bands Shared spectrum Huge available spectrum Regulations Dynamic frequency selection Restrictions over maximum

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access ECS455: Chapter 4 Multiple Access Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 1 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30 ECS455: Chapter 4 Multiple

More information

Multiple Access System

Multiple Access System Multiple Access System TDMA and FDMA require a degree of coordination among users: FDMA users cannot transmit on the same frequency and TDMA users can transmit on the same frequency but not at the same

More information

Mobile Computing Unit 1 WIRELESS COMMUNICATION FUNDAMENTALS

Mobile Computing Unit 1 WIRELESS COMMUNICATION FUNDAMENTALS WIRELESS COMMUNICATION FUNDAMENTALS Objective Unit I present some basics about wireless transmission technology. The topics covered include: frequencies used for communication, signal characteristics,

More information

Advanced Computer Networks. Wireless Networks Fundamentals

Advanced Computer Networks. Wireless Networks Fundamentals Advanced Computer Networks 263 3501 00 Wireless Networks Fundamentals Patrick Stuedi Spring Semester 2014 Oriana Riva, ETH Zürich Course Outline 1. General principles of network design Review of basic

More information

Lecture 7: Centralized MAC protocols. Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday

Lecture 7: Centralized MAC protocols. Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday Lecture 7: Centralized MAC protocols Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday Centralized MAC protocols Previous lecture contention based MAC protocols, users decide who transmits when in a decentralized

More information

Calculation of the Spatial Reservation Area for the RTS/CTS Multiple Access Scheme

Calculation of the Spatial Reservation Area for the RTS/CTS Multiple Access Scheme Calculation of the Spatial Reservation Area for the RTS/CTS Multiple Access Scheme Chin Keong Ho Eindhoven University of Technology Elect. Eng. Depart., SPS Group PO Box 513, 56 MB Eindhoven The Netherlands

More information

Medium Access Schemes

Medium Access Schemes Medium Access Schemes Winter Semester 2010/11 Integrated Communication Systems Group Ilmenau University of Technology Media Access: Motivation The problem: multiple users compete for a common, shared resource

More information

Analysis of Random Access Protocol and Channel Allocation Schemes for Service Differentiation in Cellular Networks

Analysis of Random Access Protocol and Channel Allocation Schemes for Service Differentiation in Cellular Networks Eleventh LACCEI Latin American and Cariean Conference for Engineering and Technology (LACCEI 2013) Innovation in Engineering, Technology and Education for Competitiveness and Prosperity August 14-16, 2013

More information

Self-Stabilizing Deterministic TDMA for Sensor Networks

Self-Stabilizing Deterministic TDMA for Sensor Networks Self-Stabilizing Deterministic TDMA for Sensor Networks Mahesh Arumugam Sandeep S. Kulkarni Software Engineering and Network Systems Laboratory Department of Computer Science and Engineering Michigan State

More information

CS434/534: Topics in Networked (Networking) Systems

CS434/534: Topics in Networked (Networking) Systems CS434/534: Topics in Networked (Networking) Systems Wireless Foundation: Wireless Mesh Networks Yang (Richard) Yang Computer Science Department Yale University 08A Watson Email: yry@cs.yale.edu http://zoo.cs.yale.edu/classes/cs434/

More information

On the Effects of Node Density and Duty Cycle on Energy Efficiency in Underwater Networks

On the Effects of Node Density and Duty Cycle on Energy Efficiency in Underwater Networks On the Effects of Node Density and Duty Cycle on Energy Efficiency in Underwater Networks Francesco Zorzi, Milica Stojanovic and Michele Zorzi Dipartimento di Ingegneria dell Informazione, Università degli

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Toshiba Proposal for IEEE802.15.3e CFP (Full Proposal) Date Submitted: 8 July 2015 Source: Ko Togashi Company: Toshiba

More information

IN wireless communication networks, Medium Access Control

IN wireless communication networks, Medium Access Control IEEE TRANSACTIONS ON WIRELESS COMMNICATIONS, VOL. 5, NO. 5, MAY 6 967 Analyzing Split Channel Medium Access Control Schemes Jing Deng, Member, IEEE, Yunghsiang S. Han, Member, IEEE, and Zygmunt J. Haas,

More information

Multiple Access Schemes

Multiple Access Schemes Multiple Access Schemes Dr Yousef Dama Faculty of Engineering and Information Technology An-Najah National University 2016-2017 Why Multiple access schemes Multiple access schemes are used to allow many

More information

Energy-Efficient Duty Cycle Assignment for Receiver-Based Convergecast in Wireless Sensor Networks

Energy-Efficient Duty Cycle Assignment for Receiver-Based Convergecast in Wireless Sensor Networks Energy-Efficient Duty Cycle Assignment for Receiver-Based Convergecast in Wireless Sensor Networks Yuqun Zhang, Chen-Hsiang Feng, Ilker Demirkol, Wendi B. Heinzelman Department of Electrical and Computer

More information

D3.2 MAC layer mechanisms and adaptations for Hybrid Terrestrial-Satellite Backhauling

D3.2 MAC layer mechanisms and adaptations for Hybrid Terrestrial-Satellite Backhauling MAC layer mechanisms and adaptations for Hybrid Terrestrial-Satellite Backhauling Grant Agreement nº: 645047 Project Acronym: SANSA Project Title: Shared Access Terrestrial-Satellite Backhaul Network enabled

More information

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Title: Toshiba Proposal for IEEE802.15.3e CFP (Full Proposal) Date Submitted: 8 July 2015 Source: Ko Togashi Company: Toshiba

More information

Fiber Distributed Data Interface

Fiber Distributed Data Interface Fiber istributed ata Interface FI: is a 100 Mbps fiber optic timed token ring LAN Standard, over distance up to 200 km with up to 1000 stations connected, and is useful as backbone Token bus ridge FI uses

More information

StarPlus Hybrid Approach to Avoid and Reduce the Impact of Interference in Congested Unlicensed Radio Bands

StarPlus Hybrid Approach to Avoid and Reduce the Impact of Interference in Congested Unlicensed Radio Bands WHITEPAPER StarPlus Hybrid Approach to Avoid and Reduce the Impact of Interference in Congested Unlicensed Radio Bands EION Wireless Engineering: D.J. Reid, Professional Engineer, Senior Systems Architect

More information

Spread Spectrum Communications and Jamming Prof. Debarati Sen G S Sanyal School of Telecommunications Indian Institute of Technology, Kharagpur

Spread Spectrum Communications and Jamming Prof. Debarati Sen G S Sanyal School of Telecommunications Indian Institute of Technology, Kharagpur Spread Spectrum Communications and Jamming Prof. Debarati Sen G S Sanyal School of Telecommunications Indian Institute of Technology, Kharagpur Lecture 07 Slow and Fast Frequency Hopping Hello students,

More information

A MAC Interaction Aware Routing Metric in Wireless Networks

A MAC Interaction Aware Routing Metric in Wireless Networks A MAC Interaction Aware Routing Metric in Wireless Networks Saquib Razak 1 Vinay Kolar 1 Nael Abu-Ghazaleh 1,2 1 Department of Computer Science Carnegie Mellon University, Qatar 2 Department of Computer

More information

Experimental Studies and Modeling of. An Information Embedded Power System

Experimental Studies and Modeling of. An Information Embedded Power System Experimental Studies and Modeling of An Information Embedded Power System A Thesis Submitted to the Faculty of Drexel University by Stephen P. Carullo in partial fulfillment of the requirements for the

More information

Lecture 5 Transmission. Physical and Datalink Layers: 3 Lectures

Lecture 5 Transmission. Physical and Datalink Layers: 3 Lectures Lecture 5 Transmission Peter Steenkiste School of Computer Science Department of Electrical and Computer Engineering Carnegie Mellon University 15-441 Networking, Spring 2004 http://www.cs.cmu.edu/~prs/15-441

More information

IEEE P Wireless LANs IEEE802.11h Dynamic Frequency Selection (DFS) in an Independent BSS (IBSS) Abstract

IEEE P Wireless LANs IEEE802.11h Dynamic Frequency Selection (DFS) in an Independent BSS (IBSS) Abstract IEEE P802.11 Wireless LANs IEEE802.11h Dynamic Frequency Selection (DFS) in an Independent BSS (IBSS) Date: September 21, 2001 Author: S. Black 1, S. Choi 2, S. Gray 1, A. Soomro 2 Nokia Research Center

More information

Canova Tech The Art of Silicon Sculpting

Canova Tech The Art of Silicon Sculpting Canova Tech The Art of Silicon Sculpting PIERGIORGIO BERUTO ANTONIO ORZELLI TF Short Reach PCS, PMA and PLCA baseline proposal November 7 th, 2017 Supporters Gergely Huszak (Kone) Kirsten Matheus (BMW)

More information

WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol

WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol S. Mahlknecht, M. Spinola Durante Institute of Computer Technology Vienna University of Technology Vienna, Austria {mahlknecht,spinola}@ict.tuwien.ac.at

More information

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks

Cognitive Wireless Network : Computer Networking. Overview. Cognitive Wireless Networks Cognitive Wireless Network 15-744: Computer Networking L-19 Cognitive Wireless Networks Optimize wireless networks based context information Assigned reading White spaces Online Estimation of Interference

More information

CS445: Modeling Complex Systems

CS445: Modeling Complex Systems CS445: Modeling Complex Systems Travis Desell! Averill M. Law, Simulation Modeling & Analysis, Chapter 2!! Time-Shared Computer Model Time Shared Computer Model Terminals Computer Unfinished s 2 2... Active

More information

Jinbao Li, Desheng Zhang, Longjiang Guo, Shouling Ji, Yingshu Li. Heilongjiang University Georgia State University

Jinbao Li, Desheng Zhang, Longjiang Guo, Shouling Ji, Yingshu Li. Heilongjiang University Georgia State University Jinbao Li, Desheng Zhang, Longjiang Guo, Shouling Ji, Yingshu Li Heilongjiang University Georgia State University Outline Introduction Protocols Design Theoretical Analysis Performance Evaluation Conclusions

More information

What LTE parameters need to be Dimensioned and Optimized

What LTE parameters need to be Dimensioned and Optimized What LTE parameters need to be Dimensioned and Optimized Leonhard Korowajczuk CEO/CTO CelPlan International, Inc. www.celplan.com webinar@celplan.com 8/4/2014 CelPlan International, Inc. www.celplan.com

More information

Mobile Communications: Technology and QoS

Mobile Communications: Technology and QoS Mobile Communications: Technology and QoS Course Overview! Marc Kuhn, Yahia Hassan kuhn@nari.ee.ethz.ch / hassan@nari.ee.ethz.ch Institut für Kommunikationstechnik (IKT) Wireless Communications Group ETH

More information