LOAD BEHAVIOUR DURING VOLTAGE DIPS: A VOLTAGE QUALITY STUDY IN LOW VOLTAGE DISTRIBUTION SYSTEM

Size: px
Start display at page:

Download "LOAD BEHAVIOUR DURING VOLTAGE DIPS: A VOLTAGE QUALITY STUDY IN LOW VOLTAGE DISTRIBUTION SYSTEM"

Transcription

1 LOAD BEHAVIOUR DURING VOLTAGE DIPS: A VOLTAGE QUALITY STUDY IN LOW VOLTAGE DISTRIBUTION SYSTEM I. Rendroyoko R.E. Morrison Peter K.C. Wong* Department of Electrical & Computer Science Monash University, PO BOX 35, CLAYTON, VICTORIA 38 Phone: , Fax: Ignatius.rendroyoko@eng.monash.edu.au * United Energy Ltd., PO BOX 1185, Moorabbin, VIC 3189 Abstract Over the last ten years, many studies have been performed on voltage dip characteristics in industrial, commercial and residential systems. The characteristic of each voltage dip is unique and particular to each electrical system. This paper presents a study of load behaviour during voltage dips on a low voltage distribution system, consisting of light commercial and residential customers. The recorded voltage dip measurements were used to analyze the system voltage dip characteristic. The Power System Blockset (PSB) from MATLAB was used in modeling the distribution system components and simulating the voltage dips caused by faults. The influence of loads on voltage dips during faults, especially during the winter and summer season, is presented. It is concluded that the load may influence the voltage dip characterization and that load effects must be accounted for to achieve high modeling accuracy. 1. INTRODUCTION Voltage dips have become a major concern in power quality in the past decade. The cost of economical loses and inconveniences caused by voltage dips have triggered some studies and research activities. Many experts have tried to characterise voltage dips [1,2,3]. The existing standard on voltage dip characterises the voltage dips in terms of magnitude and duration. The characterisation of the standard is based on the assumption that faults will cause rectangular voltage dips. It is also assumed that the voltage drops to a certain low value immediately and when the fault is cleared, the voltage recovers back to normal immediately. The assumption of rectangular voltage dips, however, is not correct in a realistic system, which largely consists of rotating machines or motors. When a fault occurs, all the rotating machines in the system slow down and after the fault is cleared, the motors will accelerate to the normal condition. During acceleration, motor will draw high current from the system and thus prolong the voltage dip. This paper will discuss load behaviour on a system during and after a voltage dip. For the purpose of this paper, one sub-system in south-eastern Victoria was selected. This sub-system has significant differences in load characteristics between the summer and winter season. In the summer season, there is an increase of energy consumption, which is mostly due to the operation of air conditioners. Therefore, part of the load consists of electrical rotating machines. 2. SYSTEM COMPONENTS The distribution system under study is presented in fig. 1. A main 66kV bus bar supplies the 22kV distribution system trough 2 66/22kV 3-MVA transformers and the sub-system is supplied at 415 V from a 22/.415kV 4-kVA transformer. The transmission and distribution systems supply electric power to a south-east area of Melbourne in the geographical distribution area of United Energy Ltd. (UE). The sub-system supplies mostly commercial customers, and a few residential and light industrial customers.

2 subsystem could be due to air conditioners. In summer, the sub-system will have more rotating machines Subsystem Max Load KVAR1 KW1 KVA1 KVAR2 KW2 KVA Load Figure 1 One-line diagram of the sub-system under study The circuit parameters of the distribution system under study are shown on table 1. Circuit Voltage Postv Seq-%on 1MVA Zero Seq-%on 1MVA From To No kv Type R1 X1 B1 R X B Source NW66kV 66 Generator/Source 2.5% 6.99% 2.11% 17.95% NW66kV NW22kV 1 66/22 Trfr - 2/3MVA 1.98% 51.36% 7.92% 2.54% NW66kV NW22kV 2 66/22 Trfr - 2/3MVA 1.93% 5.96% 7.72% 2.38% NW22kV WHORSE-SVLE 1 22 O/H- 19/3.25AAC kV/433V 4kVA 1 22/.433 Trfr - 4KVA 4.% 4.% Cap Banks NW22kV Mvar Cap Banks NW22kV Mvar Table 1 Sub-system's Circuit Parameters For monitoring and measurement purposes, UE has installed power quality monitoring equipment at the 22kV bus and 415V bus. Thus, every fault occurring in the system will be recorded. 3. SUMMER AND WINTER LOADS The subsystem under study has a specific characteristic in load trend. To some extent, the amount of load is different between summer and winter seasons. Usually, in summer, the system has more loads than in winter. The load variation between summer and winter is shown in fig. 2. Since, the subsystem consists of residential, commercial and light industrial customers, the difference of load between summer and winter in this 5 1 : Winter 1 load 2 : Summer load Days Figure 2 Summer and Winter Max Load Variation 4. VOLTAGE RECOVERY Faults in the distribution system might cause voltage dips. The location of fault, type of fault, fault clearing time and the electrical system configuration will also affect the voltage dip [3]. A Voltage dip is normally characterised by a magnitude and duration, however, another researcher also mentioned phase angle jump and post fault dip as a further important characteristics [4]. A voltage dip occurring in a system that has resistive loads, will have rectangular shaped dips. When the fault occurs, the voltage directly reduces to a particular value, and when the fault is cleared, the voltage recovers back to its original level immediately [1]. This does not happen when parts of the load consist of rotating machines such as induction motors or air conditioner motors. One of the results of the voltage dip recording is shown in figure 3. Figure 3 shows 415V bus voltage due to a fault of 2ms on a 22kV distribution system. The fault which has occurred on the 22kV system is a single phase to ground fault. However, it is seen in the low voltage side as a two phase to ground fault because of transformer vector connection (delta/star). The voltage dip was recorded at 2:51:34, on 1 December 2. When the fault occurred, the bus voltage dip did not follow step change but instead decreased to a certain point and then decaying to a lower rapidly voltage

3 levels during the short circuit period. After the fault is cleared, the voltage did not directly recover to its level before fault. The voltage need a longer time to recover back and this could be caused by air conditioning motor loads. 5.1 Balanced Fault During a 3Ph-G fault in the 22kV system, the 415V bus bar voltage also drops in magnitude. Some of the simulation results are shown below: V Figure 3 Voltage dips in the subsystem 5. SIMULATION OF POST FAULT LOAD BEHAVIOUR Figure 4 Voltage dip for a 3Ph-G fault Load Current during I3 In order to evaluate and analyse the rotating machine's influence to the sub-system, a simulation model of the sub-system has been developed. The simulation uses the power system blockset tools within the MATLAB package. For simulation purposes, a SLGF and a 3Ph-G fault are simulated at both 22kV and 415V. In the model, the subsystem mimics the real subsystem shown in figure 1. There are six feeders supplying electricity to consumers consisting of resistive loads and rotating motor load models. The air conditioning motor load is 27% of the load in the subsystem. The typical air conditioning motor parameters used in the simulation are given below: Phase 1 Ph Motor 3Ph Motor Rated Capacity 1 Hp 8 HP Power Supply 24 V 415 V Frequency 5 Hz 5 Hz Rs (stator resistance) 1.2 Xs (stator reactance) Rr (rotor resistance).9.4 Xr (rotor reactance) Xm (magnetizing reactance) J (rotor inertia) Table 2 Air conditioning motor parameters Figure 5 Load current during 3Ph-G fault Figure 4 and 5 show the 415V-bus voltage and load current during a 3Ph-G fault in the 22kV system. At the 3Ph-G fault, the bus voltage will be suppressed until the fault is cleared. The characteristics of the airconditioning motor load affects the voltage drop and voltage recovery. The subsystem voltage may swing for a few cycles before returning to normal. These swings lengthen the duration of the recovery process [3]. 5.2 Unbalanced Fault Most of the faults on a medium voltage system are single-phase to ground faults [5]. Single-phase faults

4 often result from lightning, wind, tree-branch contact or insulator failure. The behaviour of the sub-system under study during an unbalanced fault is more complicated than during a three-phase to ground balanced fault. The results of this process are shown in figure 8 and 9 below V V Figure 6 Voltage dip for a 1Ph-G fault Load Current during I3 Figure 8 Positive, negative and zero sequence voltage for the single phase to ground fault shown in fig I Figure 7 Load Current during 1Ph-G fault The busbar voltage during a single phase to ground fault at 22kV line is shown in fig. 6. The 22/.415kV transformer connection makes the voltage dip seen as a 2Ph-G fault at the 415V busbar voltage. Single phase to ground faults give less severe problems to motor loads than 3Ph-G faults. However, voltage recovery after the fault is still affected. Using symmetrical components, the characteristics of the voltage waveform can be clearly seen by dividing them into positive, negative and zero sequence voltage components Figure 9 Positive, negative and zero sequence current for the single phase to ground fault shown in fig. 7 After fault initiation, the positive-sequence voltage decreases while the negative-sequence voltage increases. In fig. 9, the positive-sequence current drops after fault initiation and suddenly jumps to almost three times than normal load current before its slowly decays to a steady level during the fault. This phenomenon is caused by the air conditioning motor characteristics. When the fault occurs, the motors slow down causing a decrease in positivesequence impedance. This decrease in positivesequence impedance is the cause of the increase in positive-sequence current and the decrease in positive-

5 sequence voltage. The effect is probably due to speed reduction of the motor. 6. CONCLUSIONS It has been reported that voltage dips which occur on a system with no rotating machines result in a rectangular profile dip. The voltage directly drops to a particular level during fault. After the fault is cleared, the voltage returns to the level present before the fault occurred to 1983 and at Staffordshire University from 1983 to He joined Monash University, Australia in 1997 as director of The Centre for Electrical Power Engineering. Peter KC Wong received his BSc in Electrical Engineering from the University of Hong Kong in He is currently the Protection & Planning Manager, United Energy, where he is responsible for protection strategy and long-term system planning of the electricity and natural gas distribution networks. He is a member of IEE and IEAust. A different phenomenon can be found in a system with rotating machine loads. When a fault occurs, the voltage does not directly drop to its minimum level but it decays until reaching a steady condition before the fault is cleared. At that time, the voltage does not directly return, but recovers slowly until reaching its original level. From these two results, it can be concluded that load influences the voltage dip characteristization. 7. REFERENCES 1. Math H.J Bollen, "Understanding Power Quality Problems: Voltage Sags and Interruptions", IEEE Press, New York, Math H.J Bollen, The Influence of Motor Reacceleration on Voltage sags, IEEE Trans. on Ind. Applicat., Vol. 31, No. 4, July/August J.C Das, The effects of momentary voltage dips on the operation of induction and synchronous motors, IEEE Trans. Ind. Applicat., vol.26, pp , Lidong Zhang; Math H.J. Bollen, Characteristic of (Sags) in Power Systems, 8 th International Conference on Harmonics and Quality of Power ICHQP 98, 1998, pp McGranaghan, Mark F., Mueller, David R., Samotyj Marek J., Voltage Sags in Industrial Systems, IEEE Trans. on Ind. Applicat., Vol. 29, No. 2, March/April Shaffer, John W., Air Conditioner Response to Transmission Faults, IEEE Transactions on Power Systems, Vol.12, No.2, May 1997 Ignatius Rendroyoko, a student member of IEEE, was born in Indonesia in 197. He graduated from the Institute Technology of Bandung, Indonesia in 1994 and served as an electrical engineer in PLN since He is currently working towards a M.Eng.Sc. degree at Monash University, Australia. Professor RE Morrison was born in Stoke on Trent, United Kingdom in He received his BSc degree and PhD degree from University of Staffordshire University, UK in 1973 and 1981 respectively. Professor Morrison worked for ALSTOM (UK) from

DISTRIBUTION SYSTEM VOLTAGE SAGS: INTERACTION WITH MOTOR AND DRIVE LOADS

DISTRIBUTION SYSTEM VOLTAGE SAGS: INTERACTION WITH MOTOR AND DRIVE LOADS DISTRIBUTION SYSTEM VOLTAGE SAGS: INTERACTION WITH MOTOR AND DRIVE LOADS Le Tang, Jeff Lamoree, Mark McGranaghan Members, IEEE Electrotek Concepts, Inc. Knoxville, Tennessee Abstract - Several papers have

More information

RESEARCH ON CLASSIFICATION OF VOLTAGE SAG SOURCES BASED ON RECORDED EVENTS

RESEARCH ON CLASSIFICATION OF VOLTAGE SAG SOURCES BASED ON RECORDED EVENTS 24 th International Conference on Electricity Distribution Glasgow, 2-5 June 27 Paper 97 RESEARCH ON CLASSIFICATION OF VOLTAGE SAG SOURCES BASED ON RECORDED EVENTS Pengfei WEI Yonghai XU Yapen WU Chenyi

More information

Level 6 Graduate Diploma in Engineering Electrical Energy Systems

Level 6 Graduate Diploma in Engineering Electrical Energy Systems 9210-114 Level 6 Graduate Diploma in Engineering Electrical Energy Systems Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler,

More information

INFLUENCE OF VOLTAGE SAGS ON PM SYNCHRONOUS MOTOR DRIVES

INFLUENCE OF VOLTAGE SAGS ON PM SYNCHRONOUS MOTOR DRIVES 7 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 27 29, 2 4 INFLUENCE OF VOLTAGE SAGS ON PM SYNCHRONOUS MOTOR DRIVES Vlado POROBIC 1, Vladimir KATIC

More information

ENGINEERING DATA SUBMITTAL For the Interconnection of Generation System

ENGINEERING DATA SUBMITTAL For the Interconnection of Generation System WHO SHOULD FILE THIS SUBMITTAL: Anyone in the final stages of interconnecting a Generation System with Nodak Electric Cooperative, Inc. This submittal shall be completed and provided to Nodak Electric

More information

Owner/Customer Name: Mailing Address: City: County: State: Zip Code: Phone Number: Representative: Address: Fax Number:

Owner/Customer Name: Mailing Address: City: County: State: Zip Code: Phone Number: Representative:  Address: Fax Number: Interconnection of a Customer-Owned Renewable Generation System of Greater than 100 KW and Less than or Equal to 1 MW to the LCEC Electric Grid Tier 3 Application and Compliance Form Instructions: Complete

More information

State of North Dakota Engineering data submittal Page 1 For interconnection of distributed generation to Otter Tail Power Company

State of North Dakota Engineering data submittal Page 1 For interconnection of distributed generation to Otter Tail Power Company Engineering data submittal Page 1 WHO SHOULD FILE THIS SUBMITTAL : Anyone in the final stages of in terconnecting a Generation System with Otter Tail Power. This submittal shall be completed and provided

More information

EASTERN ILLINI ELECTRIC COOPERATIVE Application for Operation of Member-Owned Generation

EASTERN ILLINI ELECTRIC COOPERATIVE Application for Operation of Member-Owned Generation EASTERN ILLINI ELECTRIC COOPERATIVE Application for Operation of Member-Owned Generation This application is to be completed and returned to the Cooperative member service representative in order to begin

More information

APPLICATION FOR INTERCONNECTION & OPERATIONS OF MEMBER-OWNED GENERATION

APPLICATION FOR INTERCONNECTION & OPERATIONS OF MEMBER-OWNED GENERATION APPLICATION FOR INTERCONNECTION & OPERATIONS OF MEMBER-OWNED GENERATION This application should be completed and returned to in order to begin processing the request for interconnecting as required by

More information

SOUTH CENTRAL INDIANA REMC Application for Operation of Member-Owned Small Power Generation Systems

SOUTH CENTRAL INDIANA REMC Application for Operation of Member-Owned Small Power Generation Systems SOUTH CENTRAL INDIANA REMC Application for Operation of Member-Owned Small Power Generation Systems This application should be completed as soon as possible and returned to the Cooperative in order to

More information

NORTH CAROLINA INTERCONNECTION REQUEST. Utility: Designated Contact Person: Address: Telephone Number: Address:

NORTH CAROLINA INTERCONNECTION REQUEST. Utility: Designated Contact Person: Address: Telephone Number:  Address: NORTH CAROLINA INTERCONNECTION REQUEST Utility: Designated Contact Person: Address: Telephone Number: Fax: E-Mail Address: An is considered complete when it provides all applicable and correct information

More information

PART 1 OWNER/APPLICANT INFORMATION

PART 1 OWNER/APPLICANT INFORMATION CALHOUN COUNTY ELECTRIC COOP. ASSN. Application for Operation of Customer-Owned Generation This application should be completed as soon as possible and returned to the Cooperative in order to begin processing

More information

IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form)

IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form) IDAHO PURPA GENERATOR INTERCONNECTION REQUEST (Application Form) Transmission Provider: IDAHO POWER COMPANY Designated Contact Person: Jeremiah Creason Address: 1221 W. Idaho Street, Boise ID 83702 Telephone

More information

APPENDIX B: Generation Interconnection Application Form

APPENDIX B: Generation Interconnection Application Form 2 APPENDIX B: Generation Interconnection Application Form WHO SHOULD FILE THIS APPLICATION: Anyone expressing interest to install generation which will interconnect with Xcel Energy (Local electric utility)

More information

Voltage Sags in Distribution Systems with Induction Motor Loads Fed by Power Converters and Voltage Mitigation using DVR and D-STATCOM

Voltage Sags in Distribution Systems with Induction Motor Loads Fed by Power Converters and Voltage Mitigation using DVR and D-STATCOM International Journal of Electrical Engineering. ISSN 0974-2158 Volume 5, Number 7 (2012), pp. 889-902 International Research Publication House http://www.irphouse.com Voltage Sags in Distribution Systems

More information

Issued: September 2, 2014 Effective: October 3, 2014 WN U-60 Attachment C to Schedule 152, Page 1 PUGET SOUND ENERGY

Issued: September 2, 2014 Effective: October 3, 2014 WN U-60 Attachment C to Schedule 152, Page 1 PUGET SOUND ENERGY WN U-60 Attachment C to Schedule 152, Page 1 SCHEDULE 152 APPLICATION FOR INTERCONNECTING A GENERATING FACILITY TIER 2 OR TIER 3 This Application is considered complete when it provides all applicable

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Voltage Sag Effects on the Process Continuity of a Refinery with Induction Motors Loads

Voltage Sag Effects on the Process Continuity of a Refinery with Induction Motors Loads Voltage Sag Effects on the Process Continuity of a Refinery with Induction Motors Loads Prof. Dr. Mahmoud. A. El-Gammal1, Prof. Dr. Amr Y. Abou-Ghazala1, Eng. Tarek I. ElShennawy2 1Electrical Engineering

More information

A Guide to the DC Decay of Fault Current and X/R Ratios

A Guide to the DC Decay of Fault Current and X/R Ratios A Guide to the DC Decay of Fault Current and X/R Ratios Introduction This guide presents a guide to the theory of DC decay of fault currents and X/R ratios and the calculation of these values in Ipsa.

More information

IMPROVEMENT OF VOLTAGE SAG MITIGATION USING DYNAMIC VOLTAGE RESTORER (DVR)

IMPROVEMENT OF VOLTAGE SAG MITIGATION USING DYNAMIC VOLTAGE RESTORER (DVR) IMPROVEMENT OF VOLTAGE SAG MITIGATION USING DYNAMIC VOLTAGE RESTORER (DVR) Hadi Suyono 1, Lauhil Mahfudz Hayusman 2 and Moch. Dhofir 1 1 Department of Electrical Engineering, Brawijaya University, Malang,

More information

Effects of Transformer Connection on Voltage Sag Characterization

Effects of Transformer Connection on Voltage Sag Characterization Effects of Transformer Connection on Voltage Sag Characterization Parijat Deb 1, Amit Gupta 2 ¹PG Scholar, Gyan Ganga College of Technology, Jabalpur, M.P (India) 2 Asst.Professor, Gyan Ganga College of

More information

UNDERSTANDING SUB-HARMONICS

UNDERSTANDING SUB-HARMONICS UNDERSTANDING SUB-HARMONICS Joe Perez, P.E., SynchroGrid, College Station, TX 77845, jperez@synchrogrid.com Introduction: Over the years, engineers have employed fundamental principles of electrical engineering

More information

ETAP PowerStation. Electrical Transient Analyzer Program. ETAP PowerStation. Short Circuit Analysis. ANSI Standard 3-Phase Fault Currents

ETAP PowerStation. Electrical Transient Analyzer Program. ETAP PowerStation. Short Circuit Analysis. ANSI Standard 3-Phase Fault Currents Page: 1 Electrical Transient Analyzer Program Short Circuit Analysis ANSI Standard 3-Phase Fault Currents Number of Buses: Swing Generator Load Total 1 0 4 5 Number of Branches: XFMR2 XFMR3 Reactor Line/Cable

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) ISSN 976 6545(Print) ISSN 976 6553(Online) olume 3, Issue, January- June (), pp. 97-9 IAEME: www.iaeme.com/ijeet.html Journal Impact

More information

Impact Assessment Generator Form

Impact Assessment Generator Form Impact Assessment Generator Form This connection impact assessment form provides information for the Connection Assessment and Connection Cost Estimate. Date: (dd/mm/yyyy) Consultant/Developer Name: Project

More information

Voltage Unbalance Effects on Induction Motor Performance

Voltage Unbalance Effects on Induction Motor Performance Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September -4, 006 11 Voltage Unbalance Effects on Induction Motor Performance L. REFOUFI,

More information

APPENDIX A MATLAB CODE FOR CALCULATION OF MOTOR TORQUE

APPENDIX A MATLAB CODE FOR CALCULATION OF MOTOR TORQUE APPENDIX A MATLAB CODE FOR CALCULATION OF MOTOR TORQUE Table 1 MATLAB code for calculating motor torque[1] %Definition of Motor Parameters V=4000/sqrt(3); %Phase voltage NoPh=3; %Number of Phase NoPo=2

More information

Influence of Wind Generators in Voltage Dips

Influence of Wind Generators in Voltage Dips Influence of Wind Generators in Voltage Dips E. Belenguer, N. Aparicio, J.L. Gandía, S. Añó 2 Department of Industrial Engineering and Design Universitat Jaume I Campus de Riu Sec, E-27 Castelló (Spain)

More information

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer

Bahram Amin. Induction Motors. Analysis and Torque Control. With 41 Figures and 50 diagrams (simulation plots) Springer Bahram Amin Induction Motors Analysis and Torque Control With 41 Figures and 50 diagrams (simulation plots) Springer 1 Main Parameters of Induction Motors 1.1 Introduction 1 1.2 Structural Elements of

More information

VOLTAGE DIPS are generally considered a power-quality

VOLTAGE DIPS are generally considered a power-quality IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 19, NO. 2, APRIL 2004 783 Assessment of Voltage Dips in HV-Networks: Deduction of Complex Voltages From the Measured RMS Voltages Math H. J. Bollen, Senior Member,

More information

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 84 CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 4.1 INTRODUCTION Now a days, the growth of digital economy implies a widespread use of electronic equipment not only in the industrial

More information

Harmonic resonances due to transmission-system cables

Harmonic resonances due to transmission-system cables International Conference on Renewable Energies and Power Quality (ICREPQ 14) Cordoba (Spain), 8 th to 1 th April, 214 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-38 X, No.12, April 214

More information

Voltage Sag Effects on a Refinery with Induction Motors Loads

Voltage Sag Effects on a Refinery with Induction Motors Loads From the SelectedWorks of Tarek Ibrahim ElShennawy 29 Voltage Sag Effects on a Refinery with Induction Motors Loads Tarek Ibrahim ElShennawy, Dr. Amr Yehia Abou-Ghazala, A. Prof. Mahmoud El-Gammal, Prof.

More information

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION International Journal of Electrical, Electronics and Data Communication, ISSN: 23284 Volume, Issue-4, April14 INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION 1 V.S.VENKATESAN, 2 P.CHANDHRA

More information

Induction Machine Test Case for the 34-Bus Test Feeder -Distribution Feeders Steady State and Dynamic Solutions

Induction Machine Test Case for the 34-Bus Test Feeder -Distribution Feeders Steady State and Dynamic Solutions Induction Machine Test Case for the 34-Bus Test Feeder -Distribution Feeders Steady State and Dynamic Solutions Induction Machine Modeling for Distribution System Analysis panel IEEE PES General Meeting

More information

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by

More information

ANALYSIS OF VOLTAGE TRANSIENTS IN A MEDIUM VOLTAGE SYSTEM

ANALYSIS OF VOLTAGE TRANSIENTS IN A MEDIUM VOLTAGE SYSTEM ANALYSIS OF VOLTAGE TRANSIENTS IN A MEDIUM VOLTAGE SYSTEM Anna Tjäder Chalmers University of Technology anna.tjader@chalmers.se Math Bollen Luleå University of Technology math.bollen@stri.se ABSTRACT Power

More information

Simulation of Voltage Sag Magnitude Estimation in a Power System Network

Simulation of Voltage Sag Magnitude Estimation in a Power System Network Simulation of Voltage Sag Magnitude Estimation in a Power System Network Manish N. Sinha 1, Dr.B.R.Parekh 2 Assistant Professor, Dept. of Electrical Engineering, BVM Engineering College, Vallabh Vidyanagar

More information

Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss

Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss Power Conditioning Equipment for Improvement of Power Quality in Distribution Systems M. Weinhold R. Zurowski T. Mangold L. Voss Siemens AG, EV NP3 P.O. Box 3220 91050 Erlangen, Germany e-mail: Michael.Weinhold@erls04.siemens.de

More information

ISSN Vol.03,Issue.11, December-2015, Pages:

ISSN Vol.03,Issue.11, December-2015, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.03,Issue.11, December-2015, Pages:2020-2026 Power Quality Improvement using BESS Based Dynamic Voltage Restorer B. ABHINETHRI 1, K. SABITHA 2 1 PG Scholar, Dr. K.V. Subba

More information

EMERGING distributed generation technologies make it

EMERGING distributed generation technologies make it IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 4, NOVEMBER 2005 1757 Fault Analysis on Distribution Feeders With Distributed Generators Mesut E. Baran, Member, IEEE, and Ismail El-Markaby, Student Member,

More information

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 16, NO. 1, MARCH 2001 55 Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method S. L. Ho and W. N. Fu Abstract

More information

WIND FARM Flexible AC Transmission Systems

WIND FARM Flexible AC Transmission Systems WIND FARM Flexible AC Transmission Systems WIND ENERGY AND GRID INTEGRATION Madrid 24-25 January 2006 Jacques COURAULT Assumption: Wind farm is with Fixed Speed Induction Generator (FSIG) SUMMARY 1/ Wind

More information

Electricity Ten Year Statement November Electricity Ten Year Statement November Appendix D

Electricity Ten Year Statement November Electricity Ten Year Statement November Appendix D Electricity Ten Year Statement November 2017 01 Electricity Ten Year Statement November 2017 001 Appendix D 1 Short-circuit currents 02 2 Short-circuit current terminology 04 3 Data requirements 07 4 Fault

More information

OPERATING, METERING AND EQUIPMENT PROTECTION REQUIREMENTS FOR PARALLEL OPERATION OF LARGE-SIZE GENERATING FACILITIES GREATER THAN 25,000 KILOWATTS

OPERATING, METERING AND EQUIPMENT PROTECTION REQUIREMENTS FOR PARALLEL OPERATION OF LARGE-SIZE GENERATING FACILITIES GREATER THAN 25,000 KILOWATTS OPERATING, METERING AND EQUIPMENT PROTECTION REQUIREMENTS FOR PARALLEL OPERATION OF LARGE-SIZE GENERATING FACILITIES GREATER THAN 25,000 KILOWATTS AND MEDIUM-SIZE FACILITIES (5,000-25,000KW) CONNECTED

More information

Unsymmetrical Fault Analysis & Protection Of The Existing Power System

Unsymmetrical Fault Analysis & Protection Of The Existing Power System Ministry of New & Renewable Energy From the SelectedWorks of Radhey Shyam Meena September 9, 2015 Unsymmetrical Fault Analysis & Protection Of The Existing Power System Radhey Shyam Meena Available at:

More information

TABLE OF CONTENT

TABLE OF CONTENT Page : 1 of 34 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 3 REFERENCES

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Modeling and Simulation of Induction Motor Drive with Space Vector Control

Modeling and Simulation of Induction Motor Drive with Space Vector Control Australian Journal of Basic and Applied Sciences, 5(9): 2210-2216, 2011 ISSN 1991-8178 Modeling and Simulation of Induction Motor Drive with Space Vector Control M. SajediHir, Y. Hoseynpoor, P. MosadeghArdabili,

More information

DISCRIMINATION AND ASSESSMENT OF VOLTAGE SAG IN DISTRIBUTION NETWORKS

DISCRIMINATION AND ASSESSMENT OF VOLTAGE SAG IN DISTRIBUTION NETWORKS 23 rd International Conference on Electricity Distribution Lyon, 5-8 June 25 Paper 58 DISCRIMINATION AND ASSESSMENT OF VOLTAGE SAG IN DISTRIBUTION NETWORKS Emad eldeen A. Alashaal, Sabah I. Mohammed North

More information

AGN 034 Alternator Reactance

AGN 034 Alternator Reactance Application Guidance Notes: Technical Information from Cummins Generator Technologies AGN 034 Alternator Reactance DEFINITION Reactance Periods Inherent to the design of an alternator are certain internal

More information

Volume I Issue VI 2012 September-2012 ISSN

Volume I Issue VI 2012 September-2012 ISSN A 24-pulse STATCOM Simulation model to improve voltage sag due to starting of 1 HP Induction-Motor Mr. Ajay Kumar Bansal 1 Mr. Govind Lal Suthar 2 Mr. Rohan Sharma 3 1 Associate Professor, Department of

More information

Initial Application Form for Connection of Distributed Generation (>10kW)

Initial Application Form for Connection of Distributed Generation (>10kW) Please complete the following information and forward to Vector Contact Details Primary Contact (who we should contact for additional information) Contact person Company name Contact numbers Daytime: Cell

More information

The Effect of Various Types of DG Interconnection Transformer on Ferroresonance

The Effect of Various Types of DG Interconnection Transformer on Ferroresonance The Effect of Various Types of DG Interconnection Transformer on Ferroresonance M. Esmaeili *, M. Rostami **, and G.B. Gharehpetian *** * MSc Student, Member, IEEE, Shahed University, Tehran, Iran, E mail:

More information

Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System

Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System Design Requirements for a Dynamic Voltage Restorer for Voltage Sags Mitigation in Low Voltage Distribution System Rosli Omar, 1 N.A Rahim 2 1 aculty of Electrical Engineering, Universiti Teknikal Malaysia

More information

Simulation and Analysis of Voltage Sag During Transformer Energization on an Offshore Platform

Simulation and Analysis of Voltage Sag During Transformer Energization on an Offshore Platform Simulation and Analysis of Voltage Sag During Transformer Energization on an Offshore Platform Srinath Raghavan and Rekha T. Jagaduri Schweitzer Engineering Laboratories, Inc. Bruce J. Hall Marathon Oil

More information

The Effect of Transformer s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults

The Effect of Transformer s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults The Effect of Transformer s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults M. N. Moschakis, V. V. Dafopoulos, I. G. Andritsos, E. S. Karapidakis, and J.

More information

Prepared By Pierre Archambault, PEng Power Survey International Inc Trans Canada Hwy. St-Laurent, QC H4S 1S4 CANADA

Prepared By Pierre Archambault, PEng Power Survey International Inc Trans Canada Hwy. St-Laurent, QC H4S 1S4 CANADA ATCO Electric Hangingstone Substation HARMONIC STUDY Prepared By Pierre Archambault, PEng Power Survey International Inc. 8025 Trans Canada Hwy. St-Laurent, QC H4S 1S4 CANADA Rev.: 6 March 2007 TABLE OF

More information

Compensation of Different Types of Voltage Sags in Low Voltage Distribution System Using Dynamic Voltage Restorer

Compensation of Different Types of Voltage Sags in Low Voltage Distribution System Using Dynamic Voltage Restorer Australian Journal of Basic and Applied Sciences, 4(8): 3959-3969, 2010 ISSN 1991-8178 Compensation of Different Types of Voltage Sags in Low Voltage Distribution System Using Dynamic Voltage Restorer

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control Spring 2014 Instructor: Kai Sun 1 References Saadat s Chapters 12.6 ~12.7 Kundur s Sections

More information

Development of New Algorithm for Voltage Sag Source Location

Development of New Algorithm for Voltage Sag Source Location Proceedings o the International MultiConerence o Engineers and Computer Scientists 2009 Vol II IMECS 2009, March 8-20, 2009, Hong Kong Development o New Algorithm or Voltage Sag Source Location N. Hamzah,

More information

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India

Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Mitigation of voltage sag by using AC-AC PWM converter Shalini Bajpai Jabalpur Engineering College, M.P., India Abstract: The objective of this research is to develop a novel voltage control scheme that

More information

OVERVIEW OF IEEE STD GUIDE FOR VOLTAGE SAG INDICES

OVERVIEW OF IEEE STD GUIDE FOR VOLTAGE SAG INDICES OVERVIEW OF IEEE STD 1564-2014 GUIDE FOR VOLTAGE SAG INDICES ABSTRACT Daniel SABIN Electrotek Concepts USA d.sabin@ieee.org IEEE Std 1564-2014 Guide for Voltage Sag Indices is a new standard that identifies

More information

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N. COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.Booma 2 Electrical and Electronics engineering, M.E., Power and

More information

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD A. F. Huweg, S. M. Bashi MIEEE, N. Mariun SMIEEE Universiti Putra Malaysia - Malaysia norman@eng.upm.edu.my

More information

CHAPTER 2 ELECTRICAL POWER SYSTEM OVERCURRENTS

CHAPTER 2 ELECTRICAL POWER SYSTEM OVERCURRENTS CHAPTER 2 ELECTRICAL POWER SYSTEM OVERCURRENTS 2-1. General but less than locked-rotor amperes and flows only Electrical power systems must be designed to serve in the normal circuit path. a variety of

More information

VOLTAGE sag and interruption are the most important

VOLTAGE sag and interruption are the most important 806 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 2, MAY 2005 Voltage Sag State Estimation for Power Distribution Systems Bin Wang, Wilsun Xu, Senior Member, IEEE, and Zhencun Pan Abstract The increased

More information

Minimizing Plant Interruption Caused by Line Disturbances Using Active Voltage Conditioners

Minimizing Plant Interruption Caused by Line Disturbances Using Active Voltage Conditioners Minimizing Plant Interruption Caused by Line Disturbances Using Active Voltage Conditioners IEEE Canada Webinar Presentation May 21, 2008 Bob Hanna, FIEEE, P.Eng. RPM Engineering Ltd. www.rpm-eng.com David

More information

Voltage Sag Effects on the Process Continuity of a Refinery with Induction Motors Loads

Voltage Sag Effects on the Process Continuity of a Refinery with Induction Motors Loads American Journal of Applied Sciences 6 (8): 1626-1632, 2009 ISSN 1546-9239 2009 Science Publications Voltage Sag Effects on the Process Continuity of a Refinery with Induction Motors Loads 1 Tarek I. ElShennawy,

More information

Performance Analysis of Passive Filter for Harmonics Due to Non-Linear Load in Power System

Performance Analysis of Passive Filter for Harmonics Due to Non-Linear Load in Power System Performance Analysis of Passive Filter for Harmonics Due to Non-Linear Load in Power System Engr.Kavitha Vasantha 1 Lecturer, BSIE, College of Engineering, Salmabad, Kingdom of Bahrain 1 Abstract: As end

More information

Effects of Harmonic Distortion I

Effects of Harmonic Distortion I Effects of Harmonic Distortion I Harmonic currents produced by nonlinear loads are injected back into the supply systems. These currents can interact adversely with a wide range of power system equipment,

More information

Appendix D Fault Levels

Appendix D Fault Levels Appendix D Fault Levels Page 1 Electricity Ten Year Statement November 2013 D.1 Short Circuit Currents Short Circuit Currents Three phase to earth and single phase to earth short circuit current analyses

More information

Power Quality Improvement in Fourteen Bus System using UPQC

Power Quality Improvement in Fourteen Bus System using UPQC International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 4 (2015), pp. 419-431 International Research Publication House http://www.irphouse.com Power Quality Improvement in Fourteen

More information

Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines

Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines Dhanashree Kotkar 1, N. B. Wagh 2 1 M.Tech.Research Scholar, PEPS, SDCOE, Wardha(M.S.),India

More information

Electric Power Quality: Voltage Sags Momentary Interruptions

Electric Power Quality: Voltage Sags Momentary Interruptions Slide 1 Electric Power Quality: Voltage Sags Momentary Interruptions Ward Jewell Wichita State University ward.jewell@wichita.edu Slide 2 Power Quality Events Voltage sags Outages/interruptions Voltage

More information

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives

Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 18, NO. 3, MAY 2003 873 Modeling and Analysis of Common-Mode Voltages Generated in Medium Voltage PWM-CSI Drives José Rodríguez, Senior Member, IEEE, Luis Morán,

More information

PHASE locked loops (PLL) with all ac/dc converters take

PHASE locked loops (PLL) with all ac/dc converters take 1116 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 18, NO. 3, AUGUST 2003 Phase Locked Loop System for FACTS Dragan Jovcic, Member, IEEE Abstract This research addresses the special requirements of phase locked

More information

Fault Analysis. EE 340 Spring 2012

Fault Analysis. EE 340 Spring 2012 Fault Analysis EE 340 Spring 2012 Introduction A fault in a circuit is any failure that interferes with the normal system operation. Lighting strokes cause most faults on highvoltage transmission lines

More information

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 09, 2015 ISSN (online): 2321-0613 Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai

More information

Ferroresonance Experience in UK: Simulations and Measurements

Ferroresonance Experience in UK: Simulations and Measurements Ferroresonance Experience in UK: Simulations and Measurements Zia Emin BSc MSc PhD AMIEE zia.emin@uk.ngrid.com Yu Kwong Tong PhD CEng MIEE kwong.tong@uk.ngrid.com National Grid Company Kelvin Avenue, Surrey

More information

Modeling and Simulation of SRF and P-Q based Control DSTATCOM

Modeling and Simulation of SRF and P-Q based Control DSTATCOM International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 10 (June 2012), PP.65-71 www.ijerd.com Modeling and Simulation of SRF and P-Q based Control DSTATCOM Kasimvali.

More information

Frequency Converter Influence on Induction Motor Rotor Faults Detection Using Motor Current Signature Analysis Experimental Research

Frequency Converter Influence on Induction Motor Rotor Faults Detection Using Motor Current Signature Analysis Experimental Research SDEMPED 03 Symposium on Diagnostics for Electric Machines, Power Electronics and Drives Atlanta, GA, USA, 24-26 August 03 Frequency Converter Influence on Induction Motor Rotor Faults Detection Using Motor

More information

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM)

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM) ABHIYANTRIKI Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM) An International Journal of Engineering & Technology (A Peer Reviewed & Indexed Journal) Vol.

More information

PARTIAL DISCHARGE MEASUREMENTS ON GENERATORS USING A NOISE GATING SYSTEM

PARTIAL DISCHARGE MEASUREMENTS ON GENERATORS USING A NOISE GATING SYSTEM Abstract PARTIAL DISCHARGE MEASUREMENTS ON GENERATORS USING A NOISE GATING SYSTEM Q. SU Department of Electrical & Computer Systems Engineering Monash University, Clayton VIC 3168 Email: qi.su@eng.monash.edu.au

More information

PQ for Industrial Benchmarking with various methods to improve. Tushar Mogre.

PQ for Industrial Benchmarking with various methods to improve. Tushar Mogre. General PQ: Power Quality has multiple issues involved. Thus, need to have some benchmarking standards. Very little is spoken about the LT supply installation within an industry. There is need to understand

More information

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 26, NO. 2, APRIL

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 26, NO. 2, APRIL IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 26, NO. 2, APRIL 2011 799 Practical Power Quality Charts for Motor Starting Assessment Xiaoyu Wang, Member, IEEE, Jing Yong, Member, IEEE, Wilsun Xu, Fellow, IEEE,

More information

An Introduction to Power Quality

An Introduction to Power Quality 1 An Introduction to Power Quality Moderator n Ron Spataro AVO Training Institute Marketing Manager 2 Q&A n Send us your questions and comments during the presentation 3 Today s Presenter n Andy Sagl Megger

More information

A Power Control Scheme for UPQC for Power Quality Improvement

A Power Control Scheme for UPQC for Power Quality Improvement A Power Control Scheme for UPQC for Power Quality Improvement 1 Rimpi Rani, 2 Sanjeev Kumar, 3 Kusum Choudhary 1 Student (M.Tech), 23 Assistant Professor 12 Department of Electrical Engineering, 12 Yamuna

More information

FLYWHEEL BASED ENERGY STORAGE SYSTEM FOR VOLTAGE SAG CORRECTION AND DETECTION

FLYWHEEL BASED ENERGY STORAGE SYSTEM FOR VOLTAGE SAG CORRECTION AND DETECTION FLYWHEEL BASED ENERGY STORAGE SYSTEM FOR VOLTAGE SAG CORRECTION AND DETECTION Anuradha 1, Dushyant Narang 2, Karan Khanayat 3 and Kunal Agarwal 4 1-4 Department of Electrical Engineering, College of Engineering

More information

INTERCONNECTION REQUEST FOR A LARGE GENERATING FACILITY

INTERCONNECTION REQUEST FOR A LARGE GENERATING FACILITY INTERCONNECTION REQUEST FOR A LARGE GENERATING FACILITY Internal Use Only Date Received Time Received Received By: 1. The undersigned Interconnection Customer submits this request to interconnect its Large

More information

Manjeet Baniwal 1, U.Venkata Reddy 2, Gaurav Kumar Jha 3

Manjeet Baniwal 1, U.Venkata Reddy 2, Gaurav Kumar Jha 3 Application of to alleviate voltage sag and swell Manjeet Baniwal 1, U.Venkata Reddy 2, Gaurav Kumar Jha 3 123 (Electrical Engineering, AGPCE Nagpur/ RTMNU, INDIA) ABSTRACT : This paper deals with modelling

More information

Application of Distribution Static Synchronous Compensator in Electrical Distribution System

Application of Distribution Static Synchronous Compensator in Electrical Distribution System Application of Distribution Static Synchronous Compensator in Electrical Distribution System Smriti Dey Assistant Professor, Department of Electrical and Electronics Engineering, School of Technology,

More information

PI734F - Winding 07. Technical Data Sheet APPROVED DOCUMENT

PI734F - Winding 07. Technical Data Sheet APPROVED DOCUMENT - Winding 07 Technical Data Sheet SPECIFICATIONS & OPTIONS STANDARDS Stamford industrial generators meet the requirements of BS EN 34 and the relevant sections of other national and international standards

More information

GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW

GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW GENERATOR INTERCONNECTION APPLICATION Category 5 For All Projects with Aggregate Generator Output of More Than 2 MW ELECTRIC UTILITY CONTACT INFORMATION Consumers Energy Interconnection Coordinator 1945

More information

PI734F - Winding 28. Technical Data Sheet APPROVED DOCUMENT

PI734F - Winding 28. Technical Data Sheet APPROVED DOCUMENT - Winding 28 Technical Data Sheet SPECIFICATIONS & OPTIONS STANDARDS Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international standards

More information

Fault Induced Delayed Voltage Recovery (FIDVR) Advisory

Fault Induced Delayed Voltage Recovery (FIDVR) Advisory Fault Induced Delayed Voltage Recovery (FIDVR) Advisory NERC Synchronized Measurement Subcommittee (SMS) NASPI Engineering Analysis Task Team (EATT) July 2015 Why the Advisory? The goal of this advisory

More information

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage 1 New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage B. B. Pimple, V. Y. Vekhande and B. G. Fernandes Department of Electrical Engineering, Indian Institute of Technology Bombay,

More information

Chapter 2: Transformers

Chapter 2: Transformers Chapter 2: Transformers 2-1. The secondary winding of a transformer has a terminal voltage of v s (t) = 282.8 sin 377t V. The turns ratio of the transformer is 100:200 (a = 0.50). If the secondary current

More information

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation

Course ELEC Introduction to electric power and energy systems. Additional exercises with answers December reactive power compensation Course ELEC0014 - Introduction to electric power and energy systems Additional exercises with answers December 2017 Exercise A1 Consider the system represented in the figure below. The four transmission

More information

In Class Examples (ICE)

In Class Examples (ICE) In Class Examples (ICE) 1 1. A 3φ 765kV, 60Hz, 300km, completely transposed line has the following positive-sequence impedance and admittance: z = 0.0165 + j0.3306 = 0.3310 87.14 o Ω/km y = j4.67 410-6

More information