u-2 INVENTOR Dec. 3, P. J. KIBLER 2,412,090 Filed Feb. 14, 1944 PAUL. J. KBLER ATTORNEY TURNSTILE ANTENNA TO TRANSMTTER OR RECEIVER

Size: px
Start display at page:

Download "u-2 INVENTOR Dec. 3, P. J. KIBLER 2,412,090 Filed Feb. 14, 1944 PAUL. J. KBLER ATTORNEY TURNSTILE ANTENNA TO TRANSMTTER OR RECEIVER"

Transcription

1 Dec. 3, P. J. KIBLER TURNSTILE ANTENNA Filed Feb. 14, 1944 N TO TRANSMTTER T OR RECEIVER - u-2 TO TRANSMTTER OR RECEIVER INVENTOR PAUL. J. KBLER ATTORNEY

2 Patented Dec. 3, 1946 UNITED STATES PATENT OFFICE TURNSTLE ANTENNA This invention relates to turnstile antennas and particularly to impedance matching and phasing means used in connection. With antennas of this type. According to conventional practice turnstile antennas comprising a plurality of radiator ele ments Symmetrically disposed with respect to one another in the same plane are employed for radi ating a rotating radio frequency field having a predetermined pattern. In order to establish such a field of substantially uniform intensity it is necessary to supply substantially equal currents to the respective radiator elements in a prede termined phase relation to one another. In the case of a turnstile antenna, comprising four radi ator elements, the elements are disposed at 90 angles with respect to one another and the ex citing currents are supplied thereto in time Paul J. Kibler, Fort Wayne, Ind., assignor to Farnsworth Television and Radio Corporation, a corporation of Delaware Application February 14, 1944, Serial No. 22,323 Claims. (C. -33) quadrature. In order to equalize the exciting currents it is necessary to match the impedances of the radiator elements to the transmission medium by Which the currents are impressed upon the radiators. It also is necessary to couple the current feeding transmission medium to the radiator elements in Such a manner that the ex citing currents are impressed. Successively upon the respective radiator elements in proper phase. In antennas of this character previously em ployed the impedance matching and phasing means have been of Such characters that it has not been possible to effect the required adjust ments for each radiator element individually. It, therefore, has been necessary to make these ad justments only after complete assembly of the antenna, array. Then, because of the mutual : interdependence of the antenna, components, the adjustments are relatively difficult to make. It is an object of this invention, therefore, to provide a novel impedance matching and phasing means for a turnstile antenna Which Will facili tate the preliminary adjustment of the imped ance matching and phasing means. In accordance with the invention there is pro vided a turnstile antenna, having four equal plane and disposed at 90 angles With respect to one another. Associated With each of the radi ator elements is an adjustable reactance device by means of which the radiator elements each may be tuned for parallel resonance at the oper atting frequency. Adjacent tuned radiator ele ments are connected to the respective ends of two quarter Wavelength concentric transmission lines. The extreme terminals of a full Wave concentric transmission line are connected respectively to O two Oppositely disposed radiator elements and a third terminal of the full wave concentric line located three-quarters of a wave length distant from one of the extreme terminals and a quarter Wave length distant from the other extreme ter minal is connected to the apparatus to be used With the antenna. For a better understanding of the invention, together with other and further objects thereof, reference is had to the following description, taken in connection with the accompanying draw ing, and its scope will be pointed out in the appended claims. In the drawing: Fig. 1 is a diagrammatic illustration of a four element turnstile antenna, embodying the pres ent invention; Fig. 2 is a diagrammatic representation of a concentric transmission line for use with the an tenna, array of Fig. 1; and, Fig. 3 is a schematic illustration of a network of lumped circuit elements also for use with the antenna, array of Fig. 1. Having reference now particularly to Fig. 1 of the drawing, there is shown a four-element turn stile antenna, comprising a north radiator element N, an east radiator element E, a south radiator element S, and a West radiator element W. These radiator elements are all disposed in the same plane and are located at 90 angles with respect to one another. The elements are of equal lengths. In the illustrated embodiment of the invention the radiator elements are each approxi mately equal to a quarter wave length which is related to the radio frequency at which it is de sired to establish the rotating field. Connected between the inner ends of each of the radiator elements N, E, S and W are adjustable condensers l?, 2, 3 and 4, respectively. The opposite ter minals of each of these condensers are connected to ground. There also is connected between the inner ends of the radiator elements N and W a concentric transmission line, the effective length of which is substantially equal to a quarter wave length. Similarly, there is connected be tween the inner ends of the Opposite pair of radir ator elements E and S a quarter Wave length concentric transmission line f6. The inner ends of any two oppositely disposed radiator elements Such as W and E constitute terminals A and B to which there may be connected apparatus for sup plying exciting currents of opposite phase to the antenna array. The outer conductors of the transmission lines and 6 are grounded, pref -

3 3 erably, adjacent the terminals A and B, respec tively. In Fig. 2 there is illustrated one type of trans mission medium Suitable for connection to the antenna, terminals A and B of Fig., as indicated by corresponding characters of reference in the two figures. This transmission medium coin prises a concentric transmission line of full Wave length between the terminals A and B. This concentric line is divided into a darter O Wave length. Section 8 and a three-quarter Wave length. Section 9. At the junction point of. these two line sections there is connected a concentric transmission line 2 of whatever length is required to couple the phasing trans mission line to a circuit C such as a trans mitter for use in connection with the antenna, array. Ihe Outer conductor of the transmis sion line 2 is grounded and also connected to the transmission line 7 as shown. Considering now the manner in which a turn Stile antenna in accordance with the present in vention is adjusted to operate in the desired manner, reference will be made to Figs. 1 and 2. Inasmuch as each of the radiator elements, such 2 as the north radiator N, has a physical length equal to a quarter Wave, the radiator element Will exhibit a reactance at the related fre quency Which is slightly inductive. Consequent. ly, the condenser is adjusted suitably to pro vide the necessary capacitative reactance. So that the radiator element is tuned for parallel reso nance at the radio frequency related to the length of the radiator element. Thus, the in pedance represented by the radiator element N and the condenser may be made purely re sistive. Also, by Suitable adjustment of the ef fective length of the radiator element, together With a compensating adjustment of the tuning condenser, the effective impedance of the radia tor may be made equal to the characteristic.in pedance of a concentric transmission line. Similarly to the described adjustment of con denser, the condensers 2, 3 and 4 are ad justed. So that the respective associated radiator elements E, S and W have impedances, each equal to the characteristic impedance of a con centric transmission line. Thus, when the radi ator elements N and W. are coupled by the con centric line and the radiator elements E and S are coupled by the concentric line 6, these concentric lines are terminated at each end in their characteristic impedances. In such a case then the radiators N and W are effectively con nected in parallel by the quarter wave length line. Similarly, the radiators E and S are effectively connected in parallel by the quarter wave length line 6. In such a case the in pedance of the pair of radiators N and W at the point A and also the impedance of the pair of radiators E and S at the point B is equal to one-half of the impedance of one of the tuned radiator elements. The in pedance of the pair of radiators N and W at the point A comprises the load for the quarter wave length section 8 of the phasing transmission line fl. Since it is characteristic of the quarter Wave length line to invert impedances, the impedance looking into the quarter wave length section 8 of the phas ing line T from the point D, therefore, is equal to twice the impedance of one of the radiator elements. In like manner, the impedance at the point B looking into the parallel arrangement of the radiator elements E and S is one-half of the impedance of One of the radiator elements. This impedance comprises the load connected to the B terminal of the three-quarter Wave length line Section 9 of the phasing line 7. Inasmuch as it is characteristic of a three quarter Wave length concentric transmission line to invert impedances at the terminals thereof, the impedance looking into the three-quarter wave length. Section 9 from the point D also is equal to twice the impedance of One of the tuned radiator elements. By connecting the phasing line sections 8 and 9 in parallel at the point D the impedance of the complete System looking toward the point D. from the connecting transmission line 2 is equal to the impedance of one of the tuned radiator elements, Inasmuch as originally this impedance was adjusted to correspond to the characteristic impedance of a concentric trans mission line, a line of this character such as 2 may be connected at the point D and there by will be terminated in its characteristic in pedance. Thus, by means of the described impedance matching arrangement the individual radiator elements may be excited by currents of equal magnitude. Also, by reason of the quarter wave length concentric line coupling between ad jacent radiator elements such as N and W, and E and S, the exciting currents for the two radia tors of each pair are in phase quadrature. Fin ally, by means of the quarter Wave length Section 8 and the three-quarter Wave length section 9 of the phasing transmission line, exciting currents are supplied to the points A and B, respectively, of the two pairs of radiator ele ments in phase opposition. In this manner the four radiator elements of the turnstile antenna, are excited by currents of equal magnitude in phase quadrature. Fig. 3 illustrates an alternative form of a phas ing transmission medium for supplying exciting currents of opposite phase to the two pairs of ra diator elements at the points A and B of Fig. 1. This medium comprises a balancing network formed of condensers 22 and 23 between which there is connected in series an inductor 24. The reactances of the condenser 22 and the inductor 24 are made numerically equal to twice the react ance of the condenser 23. The values of these re actances will determine the effective impedance of the network as seen from C. By suitably choosing the values of these reactances, the network in pedance may be matched properly to a transmis sion medium connected thereto. The condenser 22 is connected to the terminal A of the antenna array of Fig. 1 and the junction point between the inductor 24 and the condenser 23 is connected to the terminal B Of the antenna, array. The condenser 23 is connected to ground, as shown, and the junction point between the con denser 22 and the inductor 24 is connected to the apparatus With Which the antenna, array is to Op erate, A network in accordance with that illustrated in Fig. 3 is similar to one described by S. Frankel, in the Proceedings of the I.R. E. of September, Such a network functions to impress currents de rived from the utilization circuit C upon the ter minal points A and B in phase opposition and bal anced with respect to ground. The antenna array as shown in Fig. 1 then functions in a nanner similar to that described to produce a rotating radio frequency field of a substantially circular pattern, -

4 In the foregoing description reference has been made to feeding or Supplying currents to an an tenna, array in accordance with this invention. This is the case where the antenna is to be used in conjunction with radiant energy transmitting apparatus. It is obvious, however, to those skilled in the art that such an antenna also is susceptible of use with receiving apparatus, in which case the radio frequency currents collected by the antenna, are transferred to the receiving apparatus. Ac cordingly, it is contemplated that the structures defined in the appended claims are suitable for use either with transmitting or receiving apparatus. Therefore, the term utilization circuit' used in this specification and in certain of the claims is intended to define a circuit associated with either transmitting or receiving apparatus. It also will be obvious to those skilled in the art that the invention is not limited to use with radiator elements Substantially of quarter wave lengths. It is contemplated that the invention may be embodied in antennas having radiator ele ments of substantially any desired lengths, pro Wided that in any one antenna, array all radiators are of the same length. In the case where the radiator lengths are such that the radiator re actances at the operating frequency are capacita tive rather than inductive, as in the case de scribed, the matching reactances required for tuning will of necessity have to be inductive. Hence, in place of the condensers, 2, 3 and 4, corresponding adjustable inductors will be required. From the foregoing description of one embodi ment of this invention, it follows that there is provided an antenna, System, each radiator ele ment of which is susceptible of individual pread justment of its effective impedance, whereby after complete assembly of the antenna array no fur ther adjustments are required. While there has been described what, at pres ent, is considered the preferred embodiment of the invention, it will be obvious to those skilled in the art that various changes and rinodifications may be made therein without departing from the invention, and therefore, it is aimed in the ap pended claims to cover all such changes and modi fications as fall Within the true Spirit and scope Of the in Vention. What is claimed is:. A turnstile antenna. Comprising, four equal One another, a pair of quarter Wave length trans mission lines connected respectively between ad jacent radiator elements, individual means asso ciated with each of said radiator elements to natch the impedance of each element to the characteristic impedance of one of said trans mission lines separately and independently of the other radiator elements, and means for coupling two oppositely disposed radiator elements in phase opposition to a utilization circuit for said antenna. 2. A turnstile antenna comprising, four equal between adjacent radiator elements, a reactance element associated with each of said radiator ele ments and adjustable to match the impedance of each eleinent to the characteristic impedance of One of Said transmission lines, and opposed phase coupling means for said antenna connect ed to two oppositely disposed radiator elements.. 3. A turnstile antenna, comprising, four equal between adjacent radiator elements, a tuning condenser connected to each of Said radiator ele inents to match the impedance of each element to the characteristic impedance of One of said transmission lines, and an opposed-phase coul pling medium for said antenna, including a pair of transmission lines of different lengths connect ed respectively to two oppositely disposed radiator elements. 4. A turnstile antenna, comprising, four equal plane and disposed at 90 angles With respect to One another, a pair of quarter Wave length con between adjacent radiator elements, a variable tuning condenser connected to each of Said ra diator elements to match the impedance of each element to the characteristic impedance of one of said transmission lines, and a coupling medium for said antenna, including a pair of concentric transmission lines differing in length by a half wave length connected respectively to two oppo sitely disposed radiator elements.. A turnstile antenna comprising, four equal plane and disposed at 90 angles with respect to one another, a pair of quarter wave length concentric transmission lines connected respec tively between adjacent radiator elements, a vari able condenser connected to each of said radi ator elements to tune each element for parallel resonance at the operating frequency and to natch the impedance of each element to the characteristic impedance of one of said trans mission lines, and a full wave concentric trans mission line having its two extreme terminals connected to two oppositely disposed radiator elements and having a third terminal three quar ters of a Wave length distant from one of said extreme terminals, and a quarter wave length distant from the other of said extreme terminals, Whereby currents of opposite phase may be ap plied to said opposed radiator elements from a Source connected to said third terminal. 6. A turnstile antenna comprising, four equal one another, a pair of quarter wave length trans mission lines connected respectively between ad jacent radiator elements, a tuning condenser con nected to each of said radiator elements to match the impedance of each element to the character istic impedance of one of said transmission lines, and an Opposed-phase coupling medium for said antenna, including a balancing network connect ed to two Oppositely disposed radiator elements and having an intermediate terminal connected to a utilization circuit for said antenna. 7. A turnstile antenna comprising, four equal between adjacent radiator elements, a variable Condenser connected to each of said radiator ele ments to tune each element for parallel resonance and to match the impedance of each element to the characteristic impedance of one of said trans

5 7 mission lines, and a coupling medium for said antenna, including a network comprising an in ductor connected in series between a first con denser having a reactance numerically equal to that of Said inductor and a second condenser having a reactance numerically equal to one-half that of Said inductor, Said first condenser and the junction point of said inductor and said sec s 8 Ond condenser being connected to two Oppositely disposed radiator elements, and Said second Con denser being connected to ground and the junc tion point of said inductor and said first cons denser being connected to a utilization circuit for said antenna. PAUL J, KBER,

United States Patent (19) (11) 4,130,822

United States Patent (19) (11) 4,130,822 34.3a700 MS AU 26 EX l9/78 OR 4 gl30,822 United States Patent (19) (11) 4,130,822 Conroy Dec. 19, 1978 l2/ - (4) S A FOREIGN PATENT DOCUMENTS (7 Inventor: Peter J. Conroy, Scottsdale, Ariz. 10083 9/193

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Kowalewski (54) RADIO FREQUENCY SWITCH EMPLOYING REED SWITCHES AND A QUARTER WAVE LINE 75) inventor: Rolf E. Kowalewski, Palatine, Ill. (73) Assignee: Motorola, Inc., Franklin

More information

l O00000 G. B BY ) 7s.6-- 7taurold 0. Aeterson June 22, 1948, H, O, PETERSON 2,443,746 TUBE REACTANCE AND MODULATOR Filed Dec. l. l943 3.

l O00000 G. B BY ) 7s.6-- 7taurold 0. Aeterson June 22, 1948, H, O, PETERSON 2,443,746 TUBE REACTANCE AND MODULATOR Filed Dec. l. l943 3. June 22, 1948, H, O, PETERSON 2,443,746 TUBE REACTANCE AND MODULATOR Filed Dec. l. l943 3. Sheets-Sheet l O00000 s G. B s S. Q 00000000000 h 00000 Q o-r w INVENTOR. 7taurold 0. Aeterson BY ) 7s.6-- a 77Oema1

More information

Oct. 30, 1956 A. L. MUNZG 2,769,169 DIPOLE IMPEDANCE MATCHING DEVICE. 7W/-AAMMa. 7aawaaaaaay NSNNNN. r 2. a ava/7 Arroa Me

Oct. 30, 1956 A. L. MUNZG 2,769,169 DIPOLE IMPEDANCE MATCHING DEVICE. 7W/-AAMMa. 7aawaaaaaay NSNNNN. r 2. a ava/7 Arroa Me Oct. 30, 1956 A. L. MUNZG DIPOLE IMPEDANCE MATCHING DEVICE Filed March 22, 1952 3. Sheets-Sheet l 7W/-AAMMa. 7aawaaaaaay NSNNNN r 2 a ava/7 Arroa Me Oct. 30, 1956 A. L. MUNZIG DIPOLE IMPEDANCE MATCHING

More information

Feb. 27, 1951 E. O. WILLOUGHBY 2,543,085 WIDE FREQUENCY BAND ANTENNA Filed April 13, Sheets-Sheet l'

Feb. 27, 1951 E. O. WILLOUGHBY 2,543,085 WIDE FREQUENCY BAND ANTENNA Filed April 13, Sheets-Sheet l' Feb. 27, 191 E. O. WILLOUGHBY 2,43,08 Filed April 13, 194 2. Sheets-Sheet l' Feb. 27, 191 Filed April 13, 194 E. O. WILLOUGHBY 2,43,08 2. Sheets-Sheet 2 cannon SSSSS, Inventor & 44(orce weaply B y Attorn

More information

(Gp) 3SNOdS3d. (so noosh W) May 7, 1963 B. B. BAUER 3,088,997 MVT)3O. p 3. NVENTOR BENJAMEN B. BAUER STEREOPHONIC TO BINAURAL CONVERSION APPARATUS

(Gp) 3SNOdS3d. (so noosh W) May 7, 1963 B. B. BAUER 3,088,997 MVT)3O. p 3. NVENTOR BENJAMEN B. BAUER STEREOPHONIC TO BINAURAL CONVERSION APPARATUS May 7, 1963 B. B. BAUER STEREPHNIC T BINAURAL CNVERSIN APPARATUS Filed Dec. 29, 1960 2. Sheets-Sheet (so noosh W) MVT)3 Cl > - 2 (D p 3. l Li Ll d (Gp) 3SNdS3d & & NVENTR BENJAMEN B. BAUER HIS AT TRNEYS

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 (19) United States US 2011 0043209A1 (12) Patent Application Publication (10) Pub. No.: US 2011/0043209 A1 Zhu (43) Pub. Date: (54) COIL DECOUPLING FORAN RF COIL (52) U.S. Cl.... 324/322 ARRAY (57) ABSTRACT

More information

HII. United States Patent (19) 11 Patent Number: 5,087,922. Tang et al. "Experimental Results of a Multifrequency Array An

HII. United States Patent (19) 11 Patent Number: 5,087,922. Tang et al. Experimental Results of a Multifrequency Array An United States Patent (19) Tang et al. 54 MULTI-FREQUENCY BAND PHASED ARRAY ANTENNA USNG COPLANAR DIPOLE ARRAY WITH MULTIPLE FEED PORTS 75 Inventors: Raymond Tang, Fullerton; Kuan M. Lee, Brea; Ruey S.

More information

2,957,143. Oct. 18, 1960 LOUIS H. ENLOE. ATTORNEYs. Filed Sept. ll, Sheets-Sheet l L. H. ENLOE WIDEBAND TRANSISTOR AMPLIFIER INVENTOR

2,957,143. Oct. 18, 1960 LOUIS H. ENLOE. ATTORNEYs. Filed Sept. ll, Sheets-Sheet l L. H. ENLOE WIDEBAND TRANSISTOR AMPLIFIER INVENTOR Oct. 18, 19 Filed Sept. ll, 1959 L. H. ENLOE WIDEBAND TRANSISTOR AMPLIFIER 2 Sheets-Sheet l s INVENTOR LOUIS H. ENLOE ATTORNEYs Oct. 18, 19 L. H. ENLOE WIDEBAND TRANSISTOR AMPLIFIER Filed Sept. 1, 1959

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1. T (43) Pub. Date: Dec. 27, 2012

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1. T (43) Pub. Date: Dec. 27, 2012 US 20120326936A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0326936A1 T (43) Pub. Date: Dec. 27, 2012 (54) MONOPOLE SLOT ANTENNASTRUCTURE Publication Classification (75)

More information

United States Patent (19) Rannou et al.

United States Patent (19) Rannou et al. United States Patent (19) Rannou et al. (54) (75) 73 22) (21) 30) 52 (51) (58) (56) WIDE-BAND OMNIDIRECTIONAL ANTENNA Inventors: Jean Rannou; William Luther, both of Paris, France Assignee: Thomson-CSF,

More information

l F-6 Ay, 1 ")-6-6-val Aty, 3. April 23, F. H. SHEPARD, JR 2,198, A. A. SAAAAA WA2. OSC///A/OA A(24A DISTORTION REDUCING CIRCUIT AORNEY

l F-6 Ay, 1 )-6-6-val Aty, 3. April 23, F. H. SHEPARD, JR 2,198, A. A. SAAAAA WA2. OSC///A/OA A(24A DISTORTION REDUCING CIRCUIT AORNEY April 23, 19. F. H. SHEPARD, JR 2,198,464 DISTORTION REDUCING CIRCUIT Filed March 31, 1936 Ay, 1 Sheets-Sheet -71 OSC///A/OA A(24A Aty, 3. -- l F-6 NVENOR A. A. SAAAAA WA2. ")-6-6-val AORNEY April 23,

More information

United States Patent (19)

United States Patent (19) 1 / 24 A 84 OR 4 427 912 United States Patent (19) Bui et al. 54 (75) (73) 21 22 (51) (52) 58) 56) ULTRASOUNDTRANSDUCERFOR ENHANCNG SIGNAL RECEPTION IN ULTRASOUND EQUIPMENT Inventors: Tuan S. Bui, Rydalmere;

More information

United States Patent (19) Nilssen

United States Patent (19) Nilssen United States Patent (19) Nilssen (4) HIGH-EFFICIENCY SINGLE-ENDED INVERTER CRCUIT 76) Inventor: Ole K. Nilssen, Caesar Dr. Rte. 4, Barrington, Ill. 60010 21 Appl. No.: 33,33 (22) Filed: Apr. 2, 1979 (1)

More information

Dec. 17, WOLFF 2,412,703 RADIO LOCATOR DEVICE. Fillied Aug. 29, 194l 2 Sheets-Sheet l. rena

Dec. 17, WOLFF 2,412,703 RADIO LOCATOR DEVICE. Fillied Aug. 29, 194l 2 Sheets-Sheet l. rena Dec. 17, 1946.... WOLFF RADIO LOCATOR DEVICE Fillied Aug. 29, 194l 2 Sheets-Sheet l rena f A Dec. 17, 1946.... WOLFF RADIO LOCATOR DEVICE Filed Aug. 29, 1941 2 Sheets-Sheet 2 Patented Dec. 7, 1946 UNITED

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005O134516A1 (12) Patent Application Publication (10) Pub. No.: Du (43) Pub. Date: Jun. 23, 2005 (54) DUAL BAND SLEEVE ANTENNA (52) U.S. Cl.... 3437790 (75) Inventor: Xin Du, Schaumburg,

More information

USOO A. United States Patent (19) 11 Patent Number: 5,272,450 Wisherd (45) Date of Patent: Dec. 21, 1993

USOO A. United States Patent (19) 11 Patent Number: 5,272,450 Wisherd (45) Date of Patent: Dec. 21, 1993 O HIHHHHHHHHHHHHIII USOO5272450A United States Patent (19) 11 Patent Number: 5,272,450 Wisherd (45) Date of Patent: Dec. 21, 1993 (54) DCFEED NETWORK FOR WIDEBANDRF POWER AMPLIFIER FOREIGN PATENT DOCUMENTS

More information

F I 4. aw NVENTOR: IMPULSE GENERATOR FOR ELECTRIC FISHING Filed March 24, Sheets-Sheet 1. May 27, 1958 C. O, KREUTZER.

F I 4. aw NVENTOR: IMPULSE GENERATOR FOR ELECTRIC FISHING Filed March 24, Sheets-Sheet 1. May 27, 1958 C. O, KREUTZER. May 27, 1958 C. O, KREUTZER. IMPULSE GENERATOR FOR ELECTRIC FISHING Filed March 24, 1954 2 Sheets-Sheet 1 F I 4. aw NVENTOR: Ca2M/AAA//v Oy 72 MAA//7ZA a by ATORNEYS. May 27, 1958 C, O, KREUTZER IMPULSE

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States US 2015O108945A1 (12) Patent Application Publication (10) Pub. No.: US 2015/0108945 A1 YAN et al. (43) Pub. Date: Apr. 23, 2015 (54) DEVICE FOR WIRELESS CHARGING (52) U.S. Cl. CIRCUIT

More information

BY?lo 13%fe. April 14, 1964 J. T. COLEMAN 3,129,393 BALUN TRANSFORMER WITH WARIABLE TRANSFORMATION RATIO JAMES 7. COZAAM INVENTOR.

BY?lo 13%fe. April 14, 1964 J. T. COLEMAN 3,129,393 BALUN TRANSFORMER WITH WARIABLE TRANSFORMATION RATIO JAMES 7. COZAAM INVENTOR. April 14, 1964 J. T. COLEMAN 3,129,393 BALUN TRANSFORMER WITH WARIABLE TRANSFORMATION RATIO Filed March 30, 96. 2. Sheets-Sheet l INVENTOR. JAMES 7. COZAAM BY?lo 13%fe. April 14, 1964 J. T. COLEMAN 3,129,393

More information

United States Patent (19) Theriault

United States Patent (19) Theriault United States Patent (19) Theriault 54 DIPLEXER FOR TELEVISION TUNING SYSTEMS 75) Inventor: Gerald E. Theriault, Hopewell, N.J. 73) Assignee: RCA Corporation, New York, N.Y. 21) Appi. No.: 294,131 22 Filed:

More information

4,695,748 Sep. 22, 1987

4,695,748 Sep. 22, 1987 United States Patent [19] Kumamoto [11] Patent Number: [45] Date of Patent: Sep. 22, 1987 [54] COMPARING DEVICE [75] Inventor: Toshio Kumamoto, Itami, Japan [73] Assignee: Mitsubishi Denki Kabushiki Kaisha,

More information

72 4/6-4-7 AGENT. Sept. 10, 1963 R. P. SCHNEIDER ETAL 3,103,617. Filed May 6, 1958 PHLP E. SHAFER WOLTAGE REGULATION WITH TEMPERATURE COMPENSATION

72 4/6-4-7 AGENT. Sept. 10, 1963 R. P. SCHNEIDER ETAL 3,103,617. Filed May 6, 1958 PHLP E. SHAFER WOLTAGE REGULATION WITH TEMPERATURE COMPENSATION Sept. 10, 1963 R. P. SCHNEIDER ETAL 3,103,617 WOLTAGE REGULATION WITH TEMPERATURE COMPENSATION Filed May 6, 198 BY INVENTORS. ROBERT R SCHNEDER ALBERT.J. MEYERHOFF PHLP E. SHAFER 72 4/6-4-7 AGENT United

More information

United States Patent (19) Davis

United States Patent (19) Davis United States Patent (19) Davis 54 ACTIVE TERMINATION FOR A TRANSMISSION LINE 75 Inventor: 73 Assignee: Thomas T. Davis, Bartlesville, Okla. Phillips Petroleum Company, Bartlesville, Okla. 21 Appl. No.:

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Kelley et al. 54 (75) 73 21) 22 INDUCTIVE COUPLED POWER SYSTEM Inventors: Arthur W. Kelley; William R. Owens, both of Rockford, Ill. Assignee: Sundstrand Corporation, Rockford,

More information

(12) Patent Application Publication

(12) Patent Application Publication (19) United States (12) Patent Application Publication Ryken et al. US 2003.0076261A1 (10) Pub. No.: US 2003/0076261 A1 (43) Pub. Date: (54) MULTIPURPOSE MICROSTRIPANTENNA FOR USE ON MISSILE (76) Inventors:

More information

11) Patent Number: 5,323,091 Morris (45) Date of Patent: Jun. 21, STARTING SOURCE FOR ARC DISCHARGE 4,041,352 8/1977 McNeill et al...

11) Patent Number: 5,323,091 Morris (45) Date of Patent: Jun. 21, STARTING SOURCE FOR ARC DISCHARGE 4,041,352 8/1977 McNeill et al... IIIHIIII USOO5323091A United States Patent (19) 11) Patent Number: 5,323,091 Morris (45) Date of Patent: Jun. 21, 1994 54 STARTING SOURCE FOR ARC DISCHARGE 4,041,352 8/1977 McNeill et al.... 315/248 LAMPS

More information

FILTER. United States Patent (19) Schumacher. 45) Date of Patent: May 18, 1993 ISOLATOR. 11 Patent Number: 5,212,815 BANDPASS FILTER RECEIVER CONTROL

FILTER. United States Patent (19) Schumacher. 45) Date of Patent: May 18, 1993 ISOLATOR. 11 Patent Number: 5,212,815 BANDPASS FILTER RECEIVER CONTROL United States Patent (19) Schumacher 54 RADIO EQUIPMENT DIRECTIONAL COUPLER 75) 73) Inventor: Assignee: Lawrence R. Schumacher, Hoffman Estates, Ill. Motorola, Inc., Schaumburg, Ill. (21) Appl. No.: 753,530

More information

BY -i (14.1% Oct. 28, 1958 A. P. stern ETAL 2,858,424 JOHN A.RAPER TRANSISTOR AMPLIFIER WITH AUTOMATIC COLLECTOR BIAS MEANS THER AT TORNEY.

BY -i (14.1% Oct. 28, 1958 A. P. stern ETAL 2,858,424 JOHN A.RAPER TRANSISTOR AMPLIFIER WITH AUTOMATIC COLLECTOR BIAS MEANS THER AT TORNEY. Oct. 28, 198 A. P. stern ETAL 2,88,424 TRANSISTOR AMPLIFIER WITH AUTOMATIC COLLECTOR BIAS MEANS RESPONSIVE TO SIGNAL LEVEL FOR GAIN CONTROL Filed Oct. 1, 194 2 Sheets-Sheet l is y i g w f s c mi '9 a)

More information

United States Patent (19) Price, Jr.

United States Patent (19) Price, Jr. United States Patent (19) Price, Jr. 11 4) Patent Number: Date of Patent: Dec. 2, 1986 4) (7) (73) 21) 22 1) 2 8) NPN BAND GAP VOLTAGE REFERENCE Inventor: John J. Price, Jr., Mesa, Ariz. Assignee: Motorola,

More information

14 torney. Jan. 30, 1968 D. C. CONNOR 3,366,871. Azza CCWoe idwolds had S BY. Filed March 29, 1965 OWERLOAD AND SHORT-CIRCUIT PROTECTION FOR WOLTAGE

14 torney. Jan. 30, 1968 D. C. CONNOR 3,366,871. Azza CCWoe idwolds had S BY. Filed March 29, 1965 OWERLOAD AND SHORT-CIRCUIT PROTECTION FOR WOLTAGE Jan., 1968 D. C. CNNR WERLAD AND SHRT-CIRCUIT PRTECTIN FR WLTAGE REGULATED PWER SUPPLY Filed March 29, 196 S N S BY INVENTR. Azza CCWoe idwolds had 14 torney United States Patent ffice WERELAD AND SHRT-CRCUT

More information

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1 US 2001 004.8356A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2001/0048356A1 Owen (43) Pub. Date: Dec. 6, 2001 (54) METHOD AND APPARATUS FOR Related U.S. Application Data

More information

Nov. 28, 1967 P. E. MAYES 3,355,740 LOG PERIODIC ZIG ZAG ANTENNA. Filed April 4, Sheets-Sheet l. 17-7; -- on EcELL" (AAAA AAAW A/ V.

Nov. 28, 1967 P. E. MAYES 3,355,740 LOG PERIODIC ZIG ZAG ANTENNA. Filed April 4, Sheets-Sheet l. 17-7; -- on EcELL (AAAA AAAW A/ V. Nov. 28, 1967 P. E. MAYES LOG PERIODIC ZIG ZAG ANTENNA Filed April 4, 1966 2. Sheets-Sheet l 2ea -r-w?u. 24a. 24 A 7, / ------ -- -3 z7. z3 V1A, 17-7; -- on EcELL" (AAAA AAAW A/ V 99Wyyyyyy 27 23 a. as

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005OO17592A1 (12) Patent Application Publication (10) Pub. No.: Fukushima (43) Pub. Date: Jan. 27, 2005 (54) ROTARY ELECTRIC MACHINE HAVING ARMATURE WINDING CONNECTED IN DELTA-STAR

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Mongoven et al. (54) 75 73) 21 22 (51) (52) 58) 56 POWER CRCUT FOR SERIES CONNECTED LOADS Inventors: Michael A. Mongoven, Oak Park; James P. McGee, Chicago, both of 1. Assignee:

More information

2Witv.cscs s t S3. 4, I/lat/lon Z.Studible/dev Uc.11 tot. ažice- &ltrotic

2Witv.cscs s t S3. 4, I/lat/lon Z.Studible/dev Uc.11 tot. ažice- &ltrotic No. 887,357. PATENTED MAY 12, 1908, N, B, STUBBLEFIELD, WIRELESS TELEPHONE, APPLICATION FILED APR, 5, 1907. 3 SBEETS-SBEE. M. i. t " 4, I/lat/lon Z.Studible/dev Uc.11 tot 2Witv.cscs s t S3 ažice- &ltrotic

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 US 2003.01225O2A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0122502 A1 Clauberg et al. (43) Pub. Date: Jul. 3, 2003 (54) LIGHT EMITTING DIODE DRIVER (52) U.S. Cl....

More information

July 4, 1967 J. G. D. MANWARNG 3,329,796 RADIO FREQUENCY APPARATUS FIG 2 FIG 3

July 4, 1967 J. G. D. MANWARNG 3,329,796 RADIO FREQUENCY APPARATUS FIG 2 FIG 3 July 4, 1967 J. G. D. MANWARNG 3,329,796 RADIO FREQUENCY APPARATUS Filed July 28, 1966 4 Sheets-Sheet 3 3. 42 FIG 2 7 5 45 7 FIG 3 46 July 4, 1967 J. G. D. MANWARNG 3,329,796 RADIO FREQUENCY APPARATUS

More information

United States Patent Patent Number: 5,683,539 Qian et al. 45 Date of Patent: Nov. 4, 1997

United States Patent Patent Number: 5,683,539 Qian et al. 45 Date of Patent: Nov. 4, 1997 USOO5683539A United States Patent 19 11 Patent Number: Qian et al. 45 Date of Patent: Nov. 4, 1997 54 NDUCTIVELY COUPLED RF PLASMA 5,458,732 10/1995 Butler et al.... 216/61 REACTORWTH FLOATING COL 5,525,159

More information

United States Patent (11) 3,626,240

United States Patent (11) 3,626,240 United States Patent (11) 72) 21 ) 22) () 73 (54) (52) (51) Inventor Alfred J. MacIntyre Nashua, N.H. Appl. No. 884,530 Filed Dec. 12, 1969 Patented Dec. 7, 1971 Assignee Sanders Associates, Inc. Nashua,

More information

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/ A1 Kittel (43) Pub. Date: Jan.

US A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/ A1 Kittel (43) Pub. Date: Jan. US 20100013731A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0013731 A1 Kittel (43) Pub. Date: Jan. 21, 2010 (54) COAXIAL CABLE DIPOLE ANTENNA FOR Publication Classi?cation

More information

Jail, 24, 1950 G. HEPP 2,495,634. WARIABLE REACTANCE MEANS FOR FREQUENCY NODULATING AN OSCILLATOR. Filed July 20, EPAPD HEPP INVENTOR BY 2-2%-6

Jail, 24, 1950 G. HEPP 2,495,634. WARIABLE REACTANCE MEANS FOR FREQUENCY NODULATING AN OSCILLATOR. Filed July 20, EPAPD HEPP INVENTOR BY 2-2%-6 Jail, 24, 1950 G. HEPP 2,495,634. WARIABLE REACTANCE MEANS FOR FREQUENCY NODULATING AN OSCILLATOR Filed July 20, 1946 6EPAPD HEPP INVENTOR BY 2-2%-6 Patented Jan. 24, 1950 2,495,634 UNITED STATES PATENT

More information

April 27, J. P. KAVANAUGH 2,317,773 CONTAINER SEALING. Filed Feb. 26, 1942 '4. NSSSN. ZR al. 22z &Z

April 27, J. P. KAVANAUGH 2,317,773 CONTAINER SEALING. Filed Feb. 26, 1942 '4. NSSSN. ZR al. 22z &Z April 27, 1943. J. P. KAVANAUGH 2,317,773 CONTAINER SEALING Filed Feb. 26, 1942 '4. 2. NSSSN ZR al 22z422 22 &Z Patented Apr. 27, 1943 2,317,773 UNITED STATES PATENT OFFICE 2,317,773 CON ANER SEANG 0.

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Pfeffer et al. 11 (45 Oct. 5, 1976 54) (75) 73) 22) 21 (52) 51) 58) ALTERNATOR-RECTFER UNIT WITH PHASE WINDING AND RECTIFIER SETS SUBJECT TO SERIES-PARALLEL SWITCHING Inventors:

More information

2,163,572. June 27, Filed Nov. 16, 1937 A. B. CROSBY ENVELOPE-STUFFING MACHINE. 3. Sheets-Sheet l

2,163,572. June 27, Filed Nov. 16, 1937 A. B. CROSBY ENVELOPE-STUFFING MACHINE. 3. Sheets-Sheet l June 27, 1939. A. B. CROSBY EVELOPE-STUFFIG MACHIE Filed ov. 16, 1937 3. Sheets-Sheet l June 27, 1939. A. B. CROSBY EVELOPE-STUFFIG MACHIE Filed ov. 16, 1937 3. Sheets-Sheet 2 03% 9% o.iiiiiij?????.??ttii

More information

(12) United States Patent

(12) United States Patent USOO9304615B2 (12) United States Patent Katsurahira (54) CAPACITIVE STYLUS PEN HAVING A TRANSFORMER FOR BOOSTING ASIGNAL (71) Applicant: Wacom Co., Ltd., Saitama (JP) (72) Inventor: Yuji Katsurahira, Saitama

More information

Dec. 17, 1963 G. A. ALLARD 3,114,872 CONSTANT CURRENT SOURCE. Filed Dec. 29, 1961 INVENTOR. 67ae4ezo (1424aea. 2.4%-

Dec. 17, 1963 G. A. ALLARD 3,114,872 CONSTANT CURRENT SOURCE. Filed Dec. 29, 1961 INVENTOR. 67ae4ezo (1424aea. 2.4%- Dec. 17, 1963 G. A. ALLARD CONSTANT CURRENT SOURCE Filed Dec. 29, 1961 INVENTOR. 67ae4ezo (1424aea. 2.4%- United States Patent Office 3,214,872 4. (CONSTANT (CURRENT SOURCE Gerard A. Aarai, Phoenix, Ariz.

More information

HHHHHH. United States Patent (19) 11 Patent Number: 5,079,455. McCafferty et al. tor to provide a negative feedback path for charging the

HHHHHH. United States Patent (19) 11 Patent Number: 5,079,455. McCafferty et al. tor to provide a negative feedback path for charging the United States Patent (19) McCafferty et al. (54. SURGE CURRENT-LIMITING CIRCUIT FOR A LARGE-CAPACITANCE LOAD 75 Inventors: Lory N. McCafferty; Raymond K. Orr, both of Kanata, Canada 73) Assignee: Northern

More information

May 4, W. H. NEWBOLD 2,318,516

May 4, W. H. NEWBOLD 2,318,516 May 4, 1943. W. H. NEWBOLD 2,318,516 HIGH FREQUENCY ANTENNA SYSTEM Filed Dec. 4, 1940 4. Sheets-Sheet A25 May 4, 1943. W. H. NEWBOLD. HIGH FREQUENCY ANTENNA SYSTEM Filed Dec. 14, 1940 2,318,516 4. Sheets-Sheet

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 US 2004004 1734A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0041734 A1 Shiotsu et al. (43) Pub. Date: Mar. 4, 2004 (54) ANTENNA APPARATUS INCLUDING (22) Filed: Aug.

More information

øee March 15, ,464,276 Are/ssazz. A 21a/4/V RADIANT ENERGY DIRECTIVITY PATTERN SCANNER Filed Aug. 3, 1943 R. H. VARIAN 3.

øee March 15, ,464,276 Are/ssazz. A 21a/4/V RADIANT ENERGY DIRECTIVITY PATTERN SCANNER Filed Aug. 3, 1943 R. H. VARIAN 3. March 15, 1949. R. H. VARIAN RADIANT ENERGY DIRECTIVITY PATTERN SCANNER Filed Aug. 3, 1943 3. Sheets-Sheet l øee INVENTOR Are/ssazz. A 21a/4/V March 15, 1949. Filed Aug. 3, 1943 R. H. VARIAN RADIANT ENERGY

More information

(12) United States Patent (10) Patent No.: US 7,639,203 B2

(12) United States Patent (10) Patent No.: US 7,639,203 B2 USOO7639203B2 (12) United States Patent () Patent No.: US 7,639,203 B2 HaO (45) Date of Patent: Dec. 29, 2009 (54) SPIRAL COIL LOADED SHORT WIRE (52) U.S. Cl.... 343/895; 343/719; 343/745 ANTENNA (58)

More information

June 19, E. L. GREENSFELDER 1,963,438 METHOD AND APPARATUS FOR PRODUCING FILM FOR

June 19, E. L. GREENSFELDER 1,963,438 METHOD AND APPARATUS FOR PRODUCING FILM FOR June 19, 1934. E. L. GREENSFELDER 1,963,438 METHOD AND APPARATUS FOR PRODUCING FILM FOR PROJECTING STEREOSCOPIC MOTION PICTURES Original Filled Sept. 21, 1929 2. Sheets-Sheet l. Aity. 1. W is Pallallall

More information

United States Patent (19) (11) 4,359,742 Smith 45 Nov. 16, 1982

United States Patent (19) (11) 4,359,742 Smith 45 Nov. 16, 1982 United States Patent (19) (11) 4,359,742 Smith 45 Nov. 16, 1982 54 DUAL SWITCH MULTIMODE ARRAY Primary Examiner-Eli Lieberman ANTENNA Attorney, Agent, or Firm-Richard P. Lange 75) Inventor: Peter W. Smith,

More information

2,271,265. Jan. 27, JOHNS.KIRBY. Filed May 22, 1939 J. S. KIRBY ATTORNEY. INVENTOR. PROTECTOR. 4. Sheets-Sheet l

2,271,265. Jan. 27, JOHNS.KIRBY. Filed May 22, 1939 J. S. KIRBY ATTORNEY. INVENTOR. PROTECTOR. 4. Sheets-Sheet l Jan. 27, 1942. J. S. KIRBY PROTECTOR Filed May 22, 1939 4. Sheets-Sheet l 3. 3 INVENTOR. JOHNS.KIRBY ATTORNEY. Jan. 27, 1942. J. S. KIRBY PROTECTOR Filed May 22, 1939 4. Sheets-Sheet 2 et??? Y/fé. 58 i

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 20060270.380A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0270380 A1 Matsushima et al. (43) Pub. Date: Nov.30, 2006 (54) LOW NOISE AMPLIFICATION CIRCUIT (30) Foreign

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1. Yamamoto et al. (43) Pub. Date: Mar. 25, 2004

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1. Yamamoto et al. (43) Pub. Date: Mar. 25, 2004 (19) United States US 2004.0058664A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0058664 A1 Yamamoto et al. (43) Pub. Date: Mar. 25, 2004 (54) SAW FILTER (30) Foreign Application Priority

More information

United States Patent (19) Fries

United States Patent (19) Fries 4, 297 0 () () United States Patent (19) Fries 4). SOLAR LIGHTING SYSTEM 76) Inventor: James E. Fries, 7860 Valley View, Apt. 242, Buena Park, Calif. 90620 (21) Appl. No.: 2,620 22 Filed: Jan. 11, 1979

More information

2. s 8 N. J. A. JOHNSON, WRENCH, application FILED MAR, 23, 92 Patented Apr. 18, s 9 A.L. 2 she ETS-SHEET 2. 8 S8.

2. s 8 N. J. A. JOHNSON, WRENCH, application FILED MAR, 23, 92 Patented Apr. 18, s 9 A.L. 2 she ETS-SHEET 2. 8 S8. J. A. JOHNSON, WRENCH, 1. 413 121 application FILED MAR, 23, 92 Patented Apr. 1, 1922. s 9 A.L. 2 she ETS-SHEET 2. exxx: XXXXXXX) XX XXXXX. (XXXX) XXXXXXX) XXX XXXXXXXX (X -XXXXXXX). XX) WX XXXX) N S.

More information

Waited States Patent [191 Ditullio et a1.

Waited States Patent [191 Ditullio et a1. Waited States Patent [191 Ditullio et a1. [54] DUAL POLARllZED DHPLEXER [75] Inventors: Joseph G. Ditullio, Woburn; Leonard l. Parad, Framingham; Kenneth E. Story, North Reading, all of Mass. [73] Assignee:

More information

(12) United States Patent (10) Patent No.: US 6, 177,908 B1

(12) United States Patent (10) Patent No.: US 6, 177,908 B1 USOO6177908B1 (12) United States Patent (10) Patent No.: US 6, 177,908 B1 Kawahata et al. (45) Date of Patent: Jan. 23, 2001 (54) SURFACE-MOUNTING TYPE ANTENNA, 5,861,854 * 1/1999 Kawahate et al.... 343/700

More information

Feb. 7, R. DOPYERA 1896,484

Feb. 7, R. DOPYERA 1896,484 Feb. 7, 1933. R. DPYERA 1896,484 MUSICAL ISTRUMET Filed Feb. 1, 1932 2 Sheets-Sheet l Z2ZZZZZZZZZz7 SAVera S as - SSA; S S. S s IVETR. Rudolph Dopyera. 5 ATTREY. Feb. 7, 1933. R. DPYERA MUSICAL ISTRUMET

More information

United States Patent (19) Lee

United States Patent (19) Lee United States Patent (19) Lee (54) POWER SUPPLY CIRCUIT FOR DRIVING MAGNETRON 75 Inventor: Kyong-Keun Lee, Suwon, Rep. of Korea 73) Assignee: Samsung Electronics Co., Ltd., Suweon City, Rep. of Korea (21)

More information

(12) United States Patent (10) Patent No.: US 6,337,722 B1

(12) United States Patent (10) Patent No.: US 6,337,722 B1 USOO6337722B1 (12) United States Patent (10) Patent No.: US 6,337,722 B1 Ha () Date of Patent: *Jan. 8, 2002 (54) LIQUID CRYSTAL DISPLAY PANEL HAVING ELECTROSTATIC DISCHARGE 5,195,010 A 5,220,443 A * 3/1993

More information

May 26, 1994 GB United Kingdom (51) Int. Cl... H01O 13/ U.S. Cl /770; 343/ Field of Search...

May 26, 1994 GB United Kingdom (51) Int. Cl... H01O 13/ U.S. Cl /770; 343/ Field of Search... United States Patent (19) Meek et al. 54). CIRCULAR SLOT ANTENNA 75) Inventors: Thomas R. Meek, Felixstowe; Ian J. Dilworth, Capel St. Mary, both of England 73) Assignee: Schlumberger Industries Limited,

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 US 20120312936A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0312936A1 HUANG (43) Pub. Date: Dec. 13, 2012 (54) HOLDING DEVICE OF TABLET ELECTRONIC DEVICE (52) U.S. Cl....

More information

July 18, 1967 T. W. MOORE 3,331,967 TIME DELAY CIRCUIT EMPLOYING SCR CONTROLLED BY TIMING-CAPACITOR HAVING PLURAL CURRENT

July 18, 1967 T. W. MOORE 3,331,967 TIME DELAY CIRCUIT EMPLOYING SCR CONTROLLED BY TIMING-CAPACITOR HAVING PLURAL CURRENT July 18, 1967 T. W. MOORE TIME DELAY CIRCUIT EMPLOYING SCR CONTROLLED BY TIMING-CAPACITOR HAVING PLURAL CURRENT PATHS FOR TOTAL DISCHARGING THEREOF Filed May 31, l963 1.7 d 8 M 23 s 24 Š5 22 7 s 9 wastin

More information

United States Patent (19) Minowa

United States Patent (19) Minowa United States Patent (19) Minowa 54 ANALOG DISPLAY ELECTRONIC STOPWATCH (75) Inventor: 73 Assignee: Yoshiki Minowa, Suwa, Japan Kubushiki Kaisha Suwa Seikosha, Tokyo, Japan 21) Appl. No.: 30,963 22 Filed:

More information

Alexander (45) Date of Patent: Mar. 17, 1992

Alexander (45) Date of Patent: Mar. 17, 1992 United States Patent (19) 11 USOO5097223A Patent Number: 5,097,223 Alexander (45) Date of Patent: Mar. 17, 1992 RR CKAUDIO (54) EEEEDBA O POWER FOREIGN PATENT DOCUMENTS 75) Inventor: Mark A. J. Alexander,

More information

United States Patent (19) Barman

United States Patent (19) Barman United States Patent (19) Barman 54 METHOD OF MANUFACTURING TooTHPICKs 76 Inventor: Rolf Barman, Olav Kyrresgk 45, Bergen, Norway 22 Filed: Sept. 25, 1970 (21) Appl. No.: 75,479 Related U.S. Application

More information

(12) United States Patent

(12) United States Patent USOO7123644B2 (12) United States Patent Park et al. (10) Patent No.: (45) Date of Patent: Oct. 17, 2006 (54) PEAK CANCELLATION APPARATUS OF BASE STATION TRANSMISSION UNIT (75) Inventors: Won-Hyoung Park,

More information

United States Patent (19) Shahan

United States Patent (19) Shahan United States Patent (19) Shahan 54, HEAVY DUTY SHACKLE 75 Inventor: James B. Shahan, Tulsa, Okla. (73) Assignee: American Hoist & Derrick Company, Tulsa, Okla. (21) Appl. No.: 739,056 22 Filed: Nov. 5,

More information

Hsu (45) Date of Patent: Jul. 27, PICTURE FRAME Primary Examiner-Kenneth J. Dorner. Assistant Examiner-Brian K. Green

Hsu (45) Date of Patent: Jul. 27, PICTURE FRAME Primary Examiner-Kenneth J. Dorner. Assistant Examiner-Brian K. Green III United States Patent (19) 11) US005230172A Patent Number: 5,230,172 Hsu (45) Date of Patent: Jul. 27, 1993 54 PICTURE FRAME Primary Examiner-Kenneth J. Dorner o Assistant Examiner-Brian K. Green 76)

More information

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1 (19) United tates (12) Patent Application Publication (10) Pub. o.: U 2013/0285765 A1 UBED U 20130285765A1 (43) Pub. Date: Oct. 31, 2013 (54) (71) (72) (21) (22) (60) BROAD BAD DIPLEXER UIG UPEDED TRIP-LIE

More information

United States Patent (19) Lin

United States Patent (19) Lin United States Patent (19) Lin 11) 45) Dec. 22, 1981 54) (76) (21) 22 (51) (52) (58) (56) BUILDING BLOCK SET Inventor: Wen-Ping Lin, 30, Chien-Yung St., Taichung, Taiwan Appl. No.: 187,618 Filed: Sep. 15,

More information

Vmod (12) United States Patent US 7.411,469 B2. *Aug. 12, Perry et al. (45) Date of Patent: (10) Patent No.:

Vmod (12) United States Patent US 7.411,469 B2. *Aug. 12, Perry et al. (45) Date of Patent: (10) Patent No.: USOO741 1469B2 (12) United States Patent Perry et al. (10) Patent No.: (45) Date of Patent: US 7.411,469 B2 *Aug. 12, 2008 (54) CIRCUIT ARRANGEMENT (75) Inventors: Colin Leslie Perry, Swindon (GB); Stephen

More information

aururu '12-k- ka-tsa United States Patent (19) Gronson [11] 3,983,416 (45) Sept. 28, 1976 (54) SHORT PULSE SEQUENTIAL WAVEFORM

aururu '12-k- ka-tsa United States Patent (19) Gronson [11] 3,983,416 (45) Sept. 28, 1976 (54) SHORT PULSE SEQUENTIAL WAVEFORM United States Patent (19) Gronson (54) SHORT PULSE SEQUENTIAL WAVEFORM GENERATOR (75 Inventor: Harry M. Cronson, Lexington, Mass. 73) Assignee: Sperry Rand Corporation, New York, N.Y. 22 Filed: Dec., 1974

More information

III. I. United States Patent (19) 11 Patent Number: 5,121,014. Huang

III. I. United States Patent (19) 11 Patent Number: 5,121,014. Huang United States Patent (19) Huang (54) CMOS DELAY CIRCUIT WITH LABLE DELAY 75 Inventor: Eddy C. Huang, San Jose, Calif. 73) Assignee: VLSI Technology, Inc., San Jose, Calif. (21) Appl. o.: 6,377 22 Filed:

More information

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1

(12) Patent Application Publication (10) Pub. No.: US 2011/ A1 (19) United States US 2011 O155810A1 (12) Patent Application Publication (10) Pub. No.: US 2011/0155810 A1 TANGUCH et al. (43) Pub. Date: Jun. 30, 2011 (54) ANTENNA DEVICE AND RADIO (30) Foreign Application

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Essig (54) KNITTED FABRIC AND METHOD OF PRODUCING THE SAME 75 Inventor: Karl Essig, Reutlingen, Fed. Rep. of Germany 73) Assignee: H. Stoll GmbH & Co., Reutlingen, Fed. Rep. of

More information

(12) United States Patent (10) Patent No.: US 6,762,730 B2

(12) United States Patent (10) Patent No.: US 6,762,730 B2 USOO676273OB2 (12) United States Patent (10) Patent No.: Schadler (45) Date of Patent: Jul. 13, 2004 (54) CROSSED BOW TIE SLOT ANTENNA 3,623,162 A * 11/1971 Whitty... 343/767 6,424,309 B1 7/2002 Johnston

More information

United States Patent (19) Morita et al.

United States Patent (19) Morita et al. United States Patent (19) Morita et al. - - - - - 54. TEMPLATE 75 Inventors: Shiro Morita, Sakura; Kazuo Yoshitake, Tokyo, both of Japan 73 Assignee: Yoshitake Seisakujo Co., Inc., Tokyo, Japan (21) Appl.

More information

United States Patent (19) Perkins

United States Patent (19) Perkins United States Patent (19) Perkins 54 TRANSFORMER ARRANGEMENT FOR COUPLING A COMMUNICATION SIGNAL TO A THREE-PHASE POWER LINE 75 Inventor: William C. Perkins, Garland, Tex. 73) Assignee: Rockwell International

More information

United States Patent (19)

United States Patent (19) United States Patent (19) McKinney et al. (11 Patent Number: () Date of Patent: Oct. 23, 1990 54 CHANNEL FREQUENCY GENERATOR FOR USE WITH A MULTI-FREQUENCY OUTP GENERATOR - (75) Inventors: Larry S. McKinney,

More information

United States Patent (19) (11) 4,121,220 Scillieri et al. 45) Oct. 17, (54) FLAT RADAR ANTENNA EMPLOYING (56) References Cited

United States Patent (19) (11) 4,121,220 Scillieri et al. 45) Oct. 17, (54) FLAT RADAR ANTENNA EMPLOYING (56) References Cited United States Patent (19) (11) 4,121,220 Scillieri et al. 45) Oct. 17, 1978 (54) FLAT RADAR ANTENNA EMPLOYING (56) References Cited CIRCULAR ARRAY OF SLOTTED WAVEGUIDES U.S. PATENT DOCUMENTS 2,981,948

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003009 1220A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0091220 A1 Sato et al. (43) Pub. Date: May 15, 2003 (54) CAPACITIVE SENSOR DEVICE (75) Inventors: Hideaki

More information

( 19 ) United States ( 12 ) Patent Application Publication ( 10 ) Pub. No. : US 2017 / A1 ( 52 ) U. S. CI. CPC... HO2P 9 / 48 ( 2013.

( 19 ) United States ( 12 ) Patent Application Publication ( 10 ) Pub. No. : US 2017 / A1 ( 52 ) U. S. CI. CPC... HO2P 9 / 48 ( 2013. THE MAIN TEA ETA AITOA MA EI TA HA US 20170317630A1 ( 19 ) United States ( 12 ) Patent Application Publication ( 10 ) Pub No : US 2017 / 0317630 A1 Said et al ( 43 ) Pub Date : Nov 2, 2017 ( 54 ) PMG BASED

More information

(12) United States Patent (10) Patent No.: US B2. Chokkalingam et al. (45) Date of Patent: Dec. 1, 2009

(12) United States Patent (10) Patent No.: US B2. Chokkalingam et al. (45) Date of Patent: Dec. 1, 2009 USOO7626469B2 (12) United States Patent (10) Patent No.: US 7.626.469 B2 Chokkalingam et al. (45) Date of Patent: Dec. 1, 2009 (54) ELECTRONIC CIRCUIT (58) Field of Classification Search... 33 1/8, 331/16-18,

More information

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0141447 A1 Ramzan et al. US 201701 41447A1 (43) Pub. Date: May 18, 2017 (54) (71) (72) (73) (21) (22) PRINTED CIRCUIT BOARD

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Gripshover et al. (54 (75) (73) 21 22) 51 (52) (58) 56) FROZEN WAVE GENERATOR JAMMER Inventors: Ronald J. Gripshover; Larry F. Rinehart, both of King George, Va. Assignee: The

More information

(12) United States Patent

(12) United States Patent USOO9673499B2 (12) United States Patent Shaman et al. (10) Patent No.: (45) Date of Patent: US 9,673.499 B2 Jun. 6, 2017 (54) (71) (72) (73) (*) (21) (22) (65) (51) (52) (58) NOTCH FILTER WITH ARROW-SHAPED

More information

USOO A United States Patent (19) 11 Patent Number: 5,889,643 Elms (45) Date of Patent: Mar. 30, 1999

USOO A United States Patent (19) 11 Patent Number: 5,889,643 Elms (45) Date of Patent: Mar. 30, 1999 USOO5889643A United States Patent (19) 11 Patent Number: 5,889,643 Elms (45) Date of Patent: Mar. 30, 1999 54). APPARATUS FOR DETECTING ARCING Primary Examiner Jeffrey Gaffin FAULTS AND GROUND FAULTS IN

More information

Br 46.4%g- INTEGRATOR OUTPUT. Feb. 23, 1971 C. A. WALTON 3,566,397. oend CONVERT CHANNEL SELEC +REF. SEL ZERO CORRECT UNKNOWN SCNAL INT.

Br 46.4%g- INTEGRATOR OUTPUT. Feb. 23, 1971 C. A. WALTON 3,566,397. oend CONVERT CHANNEL SELEC +REF. SEL ZERO CORRECT UNKNOWN SCNAL INT. Feb. 23, 1971 C. A. WALTON DUAL, SLOPE ANALOG TO DIGITAL CONVERTER Filed Jan. 1, 1969 2. Sheets-Sheet 2n 2b9 24n CHANNEL SELEC 23 oend CONVERT +REF. SEL ZERO CORRECT UNKNOWN SCNAL INT. REFERENCE SIGNAL

More information

(12) United States Patent

(12) United States Patent (12) United States Patent USOO9577348B2 (10) Patent No.: Gomme et al. (45) Date of Patent: Feb. 21, 2017 (54) COMBINATION ANTENNA USPC... 343/718, 702 (71) 1 dh (NL) 71) Applicant: NXP B.V., Eindhoven

More information

United States Patent (19) Cacciatore

United States Patent (19) Cacciatore United States Patent (19) Cacciatore 11 Patent Number: 45 Date of Patent: Aug. 14, 1990 (54 ELECTRONICDIGITAL THERMOSTAT HAVING AN IMPROVED POWER SUPPLY 75 Inventor: Joseph J. Cacciatore, Westmont, Ill.

More information

United States Patent (19) Curcio

United States Patent (19) Curcio United States Patent (19) Curcio (54) (75) (73) (21) 22 (51) (52) (58) (56) ELECTRONICFLTER WITH ACTIVE ELEMENTS Inventor: Assignee: Joseph John Curcio, Boalsburg, Pa. Paoli High Fidelity Consultants Inc.,

More information

United States Patent (19) Munk

United States Patent (19) Munk United States Patent (19) Munk 54) PERIODIC SURFACE FOR LARGE SCAN ANGLES 75 Inventor: Benedikt A. Munk, Columbus, Ohio 73 Assignee: The Ohio State University Research Foundation, Columbus, Ohio * Notice:

More information

Jan. 20, 1970 J. CHASS 3,491,321

Jan. 20, 1970 J. CHASS 3,491,321 ROTARY WARIABLE DIFFERENTIAL TRANSFORMER USED Filed Nov. 26, 1968 3. Sheets-Sheet apy SaMa 32. 4762 a 76. 5

More information

March 8, 1966 F. F. STUBBS 3,238,939 WRIST SUPPORT. Zas ZZ INVENTOR aa/a 277, S7 eveas " R attoane Y

March 8, 1966 F. F. STUBBS 3,238,939 WRIST SUPPORT. Zas ZZ INVENTOR aa/a 277, S7 eveas  R attoane Y March 8, 1966 F. F. STUBBS 3,238,939 WRIST SUPPORT Filed Feb. 23, 1965 3 Sheets-Sheet l 2 Zas ZZ 17.1- INVENTOR. 3. 27 30 22 2 22aa/a 277, S7 eveas " R. 8-7. attoane Y March 8, 1966 F. F. SUBBS 3,238,939

More information

(12) United States Patent (10) Patent No.: US 7436,371 B1

(12) United States Patent (10) Patent No.: US 7436,371 B1 USOO7436.371 B1 (12) United States Patent (10) Patent No.: US 7436,371 B1 Paulsen (45) Date of Patent: Oct. 14, 2008 (54) WAVEGUIDE CRESCENTSLOT ARRAY FOR 7,061444 B2 * 6/2006 Pintos et al.... 343,771

More information