How Clear Are Your Channels? Careful planning can mitigate the numerous sources and types of interference.

Size: px
Start display at page:

Download "How Clear Are Your Channels? Careful planning can mitigate the numerous sources and types of interference."

Transcription

1 How Clear Are Your Channels? Careful planning can mitigate the numerous sources and types of By Dr. Perry L. Schwartz Achief of police couldn t communicate with his local officers because of interference on his channels. After troubleshooting with help from his radio engineer, the chief discovered the source of interference: a 300-foot tower, 100 miles away in a different state sitting on a 1,300-foot mountaintop. The tower atop the mountain was transmitting at the same frequency and in direct line of sight with the chief s local tower. The chief s only solution was to change frequency, because whenever state police in the neighboring state used their radios, the chief couldn t communicate with his officers. In another city, police officers were becoming frustrated. With portables in hand, they could see but not hear each other due to adjacent-channel Public safety professionals often use analog radios that can be heard easily by others but fail to work properly or at all on their own networks. Again, the best solution was to carve out a new band of frequencies; the officers moved from VHF to UHF. Recently, it seems any discussion on interference has focused on 800 issues, but what about other sources of interference? A multitude of environmental and man-made conditions, such as lightning, sun spots, weather, terrain, urban landscapes, and even shrubs and trees can cause Broadband and Mesh Networking At a recent public safety regional conference, one-third of the presentations focused on broadband wireless and mesh networking. Everyone seems to be moving toward Wi-Fi networks, but as network engineers know, Wi-Fi still follows the rules of physics. Any agency considering the use of unlicensed spectrum of 2.4 GHz, 5.2 GHz, and 5.8 GHz without the benefit of regulated power requirements is playing Russian roulette with An example, of course, is the interference issue that has afflicted so many agencies as a result of the Sprint Nextel development of legally licensed systems in the 800 band. The emerging use of other bands, especially unlicensed ones, does not preclude similar problems. Based on past experience, Wi-Fi and WiMAX may end up introducing interference potential from a whole new set of sources. Public safety organizations are rightfully leery of technologies that operate in unlicensed spectrum. The main way to protect yourself, as in any wireless implementation, is with a properly designed network. By measuring in-band interference, you can design around potential sources. If you encounter interference in your broadband mesh networks, changing to an alternate channel may be a viable solution. Installing more access points minimizes the risk of inband

2 Interference Figure 1: Co-Channel, Adjacent Interference, and Thermal Noise (all signals are referenced to zero-power level) Power Thermal noise Figure 2: Cases of Potential Base Station Interference Sources F H G Desired signal Out-of-channel interferer Fixed antenna site C E Receiver filter characteristic Out-of-channel interferer D B A Frequency This figure shows the three typical types of interference scenarios: co-channel, adjacent channel, and thermal noise. Target unit Target unit This figure summarizes interference sources to a base station. The interference victim is the antenna site shown as the black triangle on the left, with its radiation pattern represented as ellipses, both primary (in front) and sidelobe and backlobe as shown. The letters represent potential cases of Textbook Definition Radio waves propagate in an unbounded medium. Interference occurs when undesired signals affect reception of a desired signal. Interference among wireless systems operating in the same frequency band is inevitable. The three typical types of interference scenarios are co-channel, adjacent channel, and thermal noise. Prevalent in any system, these produce a background condition that must be overcome. In the co-channel (in-band) scenario, two operators are either in adjacent territories or territories within radio line of sight and have the same spectrum allocation. The co-channel interference bandwidth may be wider or narrower than the desired signal. With a wider cochannel interferer, only a portion of its power will fall within the receive filter bandwidth. The rest is The most problematic co-channel interference occurs between base stations over the same frequencies. Careful deployment reduces interference between licensed systems within 37 miles of each other. Obviously, increasing the distance between transmitter and receiver decreases You can accomplish the same effect by lowering transmitter power. An alternative method is to retain and use spare frequencies if you detect Licensed territories may overlap and be assigned adjacent frequency bands. In this case, interference comes from a channel near your own. The interferer s sidelobes or transmitter output noise floor may fall next to your desired signal in the receiver filter s passband. You need to conduct simulations to identify the proper guard frequency to prevent this from occurring. Intermodulation is another common type of Detecting intermodulation can be challenging. Your own transmitter or receiver may be part of the problem, combining with an unknown signal. Other radiated intermodulation sources may include rusty bolts on a tower or other dissimilar metallic junctions. Finally, harmonic interference occurs due to unplanned sums and differences of the receive frequency. Harmonics are always fundamental frequency multiples. Sometimes when you locate and filter the offending source, you may only be moving it to another harmonic. Only after you have passed the fifth harmonic does the level of impact become minimal. Software programs are available to help you calculate interference through the many combinations of

3 harmonics. You will need a complete listing of all transmit and receive frequencies and their users within a reasonable distance of a site (1.24 miles). Unfortunately, most computations and filtering systems address up to only the third harmonic. Interference Sources Interference typically results in a loss of signal. Although signal loss is often straightforward, sometimes it can be random or sporadic, especially in trunked operations. Interference symptoms commonly include hissing sounds, garbled messages (unintelligible, but you know someone is saying something), and nothing (you don t even know you have an incoming message). Many factors, such as separation between antennas, extent of data traffic, power levels, and modulation types, can affect the degree of interference between two wireless systems. Figure 2 summarizes interference sources. With base-station-to-basestation interference, the best solution is to prevent transmitting on frequencies used for reception at a nearby base station. Case A: Base station antenna is in the main beam of one or more base stations. This can be significant, because base station antennas tend to be elevated with a high probability of line of sight like a mountaintop. Case H: Interference is from another base station s sidelobe or backlobe. Case F: Two base stations are interfering backlobe to backlobe or sidelobe to sidelobe. This typically occurs when systems are deployed on the same rooftop, and you can eliminate it with a coordinated frequency plan. Several examples represent basestation-to-target-unit Case B: The base station s highpower antenna is in the main beam of the target unit s low-power antenna. If the two signals are on frequency, interference occurs. Case C: Interference is due to Snapshot Survey Snapshot Survey: Interference This issue we asked our readers about interference and whether they think it s a serious problem. Seventy percent said interference is as much or more of a problem than it was a year ago, with less than 20 percent of respondents saying it is not a problem. Fifty percent favor regulatory fixes for interference, while 30 percent say users should tackle the problem themselves (Page 42). Most users said they still operate in the VHF and UHF bands. rain or other weather conditions (sleet, fog, etc.). Case D: Interference is from a repeater s sidelobe. Because it sees rain in its main path, it does not turn down its power. Case G: Interference comes from a satellite system. Case E: Interference is due to foliage. Field-intensity coverage maps are useful for determining the strength of an interfering signal from a given transmitter compared with the desired signal from another transmitter. Desensitized antennas. One form of interference occurs when the output antenna of the transmitter and the receive antenna on a different frequency are too close to each other. The transmit power will desensitize the receive antenna, even though they are not at the same frequency, and prevent reception. Equipment-related spurious emissions. Interference from spurious emissions can be attributed to many factors in a transmitter. Equipment with short circuits or improperly Is interference a problem for your communications systems? I don t have a problem with interference 19.2% It s improved from a year ago 5.8% It s a bigger problem than it was a year ago 30.8% It s about the same as it was a year ago 44.2% tuned systems can generate spurious emissions. Other sources include power lines and fluorescent lighting. Spurious frequencies can be due to nonlinear characteristics in a transmitter or physical placement of components and unwanted coupling. Mechanical parameters of antennas also affect interference: wind and ice loading, water, temperature and humidity, and vibration. Antenna parameters can also be mitigation techniques: antenna-to-antenna isolation, orientation, tilting, directivity, and polarization. Weather-related emissions. Atmospheric noise is the main cause of radio interference on low frequencies. Lightning discharges in thunderstorms cause atmospheric noise, which has interference potential dependent on frequency, time of day, weather, season, and geographical location. At frequencies above 30 megacycles, the noise falls to levels generally lower than receiver noise. Rain can cause fading in radio communications. Parameters such as frequency of operation, desired link

4 Interference Snapshot Survey What is the best solution for interference? Other 19.1% User resolution change frequencies or bands of operation 31.9% availability, and bit error rates (BERs) dictate the maximum radius of operation. The extent of rain attenuation, which can impact system performance, is different for the desired signal and the interfering signal. Other natural causes. Spurious signals can also be produced by sun spots, trees, and terrain. Pine needles can cause one-quarter wavelength of interference at certain frequencies, absorbing radio transmission. Cyclical sun spots cause significant interference every seven years by generating spurious emissions through a magnetic field. Digital transmission may be less impacted than analog systems. Digital radios propagate a more robust signal and maintain higher quality transmission than analog radios under adverse conditions such as heavy rainfall because they use smaller antennas and automated power control. If an interfering signal blocks a digital signal, the radio s message will still be affected, however. Multipath reflections. Buildings, especially ones coated in metal, produce Regulatory mandates like the 800 reconfiguration 14.9% Improved FCC rules for new/modified transmitters to prevent interference 34% significant reflection and multipath In this case, two or more signals of the same origin arrive at the receive antenna delayed in time because they traveled different path lengths or reflections and scattered in the environment. The signal may be severely degraded, and a strong reflection may cancel the transmitted signal. Increasing power is not an option because both the direct and reflected interfering signal will increase; a redirection of the antenna may solve the problem. Bidirectional amplifiers (BDAs). BDAs are designed to extend radio coverage into enclosed spaces experiencing coverage deficiencies, such as buildings, tunnels, garages, and other underground facilities. BDAs amplify in both directions; for example, two antennas, one outside a building and one inside, transmit a signal into the building, where it is amplified with a BDA and reradiated inside the structure. This process can produce interference because the BDA is a broadband device, which provides power gain across a wide range of frequencies. Unfortunately, if an interfering frequency is in the band, it will be amplified the same as all others and may become even more magnified. To minimize this effect, filtering technologies narrow, sharp filters can block or attenuate the interfering frequency so it cannot mix with the desired signal frequency. Calculating A number of techniques are available for calculating interference: worst-case analysis, Monte Carlo simulations, or interference area. The best method depends on the interference source. Worst-case analysis is appropriate when you experience one dominant source. Many times, worst-case analysis is of limited value, because if there could be several potential sources of interference, the worst case may be severe but unlikely. Monte Carlo simulations provide a means of assessing the probability of a range of interference levels to determine the most likely cause. Interference Protection What can a frustrated, overwhelmed engineer do to mitigate potential causes of interference? The response takes us back to physics. Carefully plan in advance: collaborate in good faith with other known operators before initial deployment and before every system modification; conduct analyses to evaluate potential interference sources and identify mitigation options; and develop a formal channel plan. Carefully design new systems or changes/upgrades to existing systems: Properly position antennas so they are not too close. Ensure sufficient horizontal displacement between antennas (not too close to prevent desensitization). Follow FCC rules regarding channel spacing and distance before reusing a frequency. Ensure receivers have high intermodulation specifications (sharp filter skirts). Increase signal strength above local noise levels (carefully calculate them).

5 Analyze antenna radiation patterns relative to footprint and use two polarization orientations, horizontal and vertical, to mitigate interference between adjacent systems. With existing systems you need to identify potential system modifications: retune channels, power levels/ antenna height, and antenna characteristics. Ensure that base station equipment operates to improve signal strength. Incorporate filters into the equipment. You must also segregate public safety and other spectrum assignments. Interference has many sources. Although careful system design is critical, you must also thoroughly know and understand your local environment. Choose bands suited to your terrain, and check frequencies being used in your area. Refer to the universal licensing site (ULS) on the Web site of the FCC: Dr. Perry L. Schwartz, P.E., is a Freehold, N.J.-based public safety consulting engineer and chief technology officer of Intertech Associates. Contact him at ps@intertechassociates.com. Percentage of users in frequency band In which frequency band(s) does your system operate? 69.2% 63.5% 0% VHF UHF % 800 Frequency band 13.5% % 7.7% 4.9 GHz Other RadioResource MissionCritical Communications delivers wireless voice and data solutions for mobile and remote mission-critical operations. The magazine covers business, public safety, and regulatory news; case studies; in-depth features; innovative applications; product information and comparisons; emerging technologies; industry reports and trends; and technical tips. In addition, each issue contains Public Safety Report, a special section devoted solely to the needs of the public safety community. Editorial content targets organizations in the United States and Canada with mobile and remote communications needs, including public safety, government, transportation, manufacturing, utility/energy, business, and industrial entities. To request a FREE subscription or get more information, go to RadioResource MissionCritical Communications is published by the RadioResource Media Group. Pandata Corp., 7108 S. Alton Way, Building H, Centennial, CO 80112, Tel: , Fax: , Copyright 2005 Pandata Corp. All rights reserved. Reprinted from the July 2006 issue of RadioResource MissionCritical Communications. For more information about MissionCritical Communications and the RadioResource Media Group please call or visit

FM Transmission Systems Course

FM Transmission Systems Course FM Transmission Systems Course Course Description An FM transmission system, at its most basic level, consists of the transmitter, the transmission line and antenna. There are many variables within these

More information

MINIMIZING SITE INTERFERENCE

MINIMIZING SITE INTERFERENCE MINIMIZING SITE INTERFERENCE CHAPTER 8 This chapter provides information on preventing radio frequency (RF) interference at a communications site. The following topics are included: Interference Protection

More information

Glossary of Terms Black Sky Event: Blue Sky Operations: Federal Communications Commission (FCC): Grey Sky Operations:

Glossary of Terms Black Sky Event: Blue Sky Operations: Federal Communications Commission (FCC): Grey Sky Operations: Glossary of Terms The following is a list of terms commonly used in the electric utility industry regarding utility communications systems and emergency response. The purpose of this document is to provide

More information

Section 1 Wireless Transmission

Section 1 Wireless Transmission Part : Wireless Communication! section : Wireless Transmission! Section : Digital modulation! Section : Multiplexing/Medium Access Control (MAC) Section Wireless Transmission Intro. to Wireless Transmission

More information

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE MITIGATING INTERFERENCE ON AN OUTDOOR RANGE Roger Dygert MI Technologies Suwanee, GA 30024 rdygert@mi-technologies.com ABSTRACT Making measurements on an outdoor range can be challenging for many reasons,

More information

UNDER STANDING RADIO FREQUENCY Badger Meter, Inc.

UNDER STANDING RADIO FREQUENCY Badger Meter, Inc. UNDER STANDING RADIO FREQUENCY UNDERSTANDING RADIO FREQUENCY Regional Sales Meeting March 1-2, 2011 Brian Fiut Sr. Product Manager Itron Inc. Liberty Lake, WA August 25, 2010 RADIO PROPAGATION Radio consists

More information

Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests

Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests Issue 1 May 2013 Spectrum Management and Telecommunications Technical Bulletin Information on the Evaluation of VHF and UHF Terrestrial Cross-Border Frequency Coordination Requests Aussi disponible en

More information

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert

Planning Your Wireless Transportation Infrastructure. Presented By: Jeremy Hiebert Planning Your Wireless Transportation Infrastructure Presented By: Jeremy Hiebert Agenda Agenda o Basic RF Theory o Wireless Technology Options o Antennas 101 o Designing a Wireless Network o Questions

More information

Optimizing 16 db Capture Effect to Overcome Class A 'Channelized' Signal Booster Group Delay problems within Public Safety Communications Systems

Optimizing 16 db Capture Effect to Overcome Class A 'Channelized' Signal Booster Group Delay problems within Public Safety Communications Systems Optimizing 16 db Capture Effect to Overcome Class A 'Channelized' Signal Booster Group Delay problems within Public Safety Communications Systems July 30, 2008 2008 Jack Daniel Company 2008 Jack Daniel

More information

Propagation Modelling White Paper

Propagation Modelling White Paper Propagation Modelling White Paper Propagation Modelling White Paper Abstract: One of the key determinants of a radio link s received signal strength, whether wanted or interfering, is how the radio waves

More information

StarPlus Hybrid Approach to Avoid and Reduce the Impact of Interference in Congested Unlicensed Radio Bands

StarPlus Hybrid Approach to Avoid and Reduce the Impact of Interference in Congested Unlicensed Radio Bands WHITEPAPER StarPlus Hybrid Approach to Avoid and Reduce the Impact of Interference in Congested Unlicensed Radio Bands EION Wireless Engineering: D.J. Reid, Professional Engineer, Senior Systems Architect

More information

The Engineering Behind 800 MHz Interference

The Engineering Behind 800 MHz Interference The Engineering Behind 800 MHz Interference Jay M. Jacobsmeyer, P.E. Pericle Communications Company 7222 Commerce Center Drive, Suite 180 Colorado Springs, CO 80919 jacobsmeyer@pericle.com Tuesday, August

More information

Motorola Wireless Broadband Technical Brief OFDM & NLOS

Motorola Wireless Broadband Technical Brief OFDM & NLOS technical BRIEF TECHNICAL BRIEF Motorola Wireless Broadband Technical Brief OFDM & NLOS Splitting the Data Stream Exploring the Benefits of the Canopy 400 Series & OFDM Technology in Reaching Difficult

More information

Characteristics of and protection criteria for systems operating in the mobile service in the frequency range GHz

Characteristics of and protection criteria for systems operating in the mobile service in the frequency range GHz Recommendation ITU-R M.2068-0 (02/2015) Characteristics of and protection criteria for systems operating in the mobile service in the frequency range 14.5-15.35 GHz M Series Mobile, radiodetermination,

More information

Digi-Wave Technology Williams Sound Digi-Wave White Paper

Digi-Wave Technology Williams Sound Digi-Wave White Paper Digi-Wave Technology Williams Sound Digi-Wave White Paper TECHNICAL DESCRIPTION Operating Frequency: The Digi-Wave System operates on the 2.4 GHz Industrial, Scientific, and Medical (ISM) Band, which is

More information

IEEE C a-01/09. IEEE Broadband Wireless Access Working Group <

IEEE C a-01/09. IEEE Broadband Wireless Access Working Group < Project IEEE 82.16 Broadband Wireless Access Working Group Title Coexistence between point to point links and PMP systems (revision 1) Date Submitted Source(s) Re: Abstract Purpose

More information

techtip How to Configure Miracast Wireless Display Implementations for Maximum Performance

techtip How to Configure Miracast Wireless Display Implementations for Maximum Performance How to Configure Miracast Wireless Display Implementations for Maximum Performance Are wireless interference and excessive channel use causing frustration and down time for your wireless users? Do you

More information

Technical characteristics and protection criteria for aeronautical mobile service systems in the frequency range GHz

Technical characteristics and protection criteria for aeronautical mobile service systems in the frequency range GHz ITU-R M.2089-0 (10/2015) Technical characteristics and protection criteria for aeronautical mobile service systems in the frequency range 14.5-15.35 GHz M Series Mobile, radiodetermination, amateur and

More information

IEEE c-00/11. IEEE Broadband Wireless Access Working Group <

IEEE c-00/11. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Co-ordination Criteria for BWA Systems 2000-04-28 Source Philip Whitehead Radiant Networks PLC London

More information

Contents. Telecom Service Chae Y. Lee. Data Signal Transmission Transmission Impairments Channel Capacity

Contents. Telecom Service Chae Y. Lee. Data Signal Transmission Transmission Impairments Channel Capacity Data Transmission Contents Data Signal Transmission Transmission Impairments Channel Capacity 2 Data/Signal/Transmission Data: entities that convey meaning or information Signal: electric or electromagnetic

More information

IEEE c-01/39. IEEE Broadband Wireless Access Working Group <

IEEE c-01/39. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Analysis and calculations of re-use factors and ranges for OFDMA in comparison to TDMA systems 2001-03-08

More information

BreezeACCESS VL. Beyond the Non Line of Sight

BreezeACCESS VL. Beyond the Non Line of Sight BreezeACCESS VL Beyond the Non Line of Sight July 2003 Introduction One of the key challenges of Access deployments is the coverage. Operators providing last mile Broadband Wireless Access (BWA) solution

More information

RF Engineering Training

RF Engineering Training RF Engineering Training RF Engineering Training Boot Camp, RF Engineering Bootcamp is the unique answer to your RF planning, design and engineering in any wireless networks needs. RF Engineering Training,

More information

COMPATIBILITY BETWEEN NARROWBAND DIGITAL PMR/PAMR AND TACTICAL RADIO RELAY IN THE 900 MHz BAND. Cavtat, May 2003

COMPATIBILITY BETWEEN NARROWBAND DIGITAL PMR/PAMR AND TACTICAL RADIO RELAY IN THE 900 MHz BAND. Cavtat, May 2003 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY BETWEEN NARROWBAND DIGITAL PMR/PAMR AND TACTICAL RADIO RELAY

More information

New spread spectrum radios for today's technology

New spread spectrum radios for today's technology Gas Well Deliquification Workshop Sheraton Hotel, February 19 22, 2012 New spread spectrum radios for today's technology Dan Steele Regional Manager FreeWave Technologies Spread Spectrum Radio Concerns

More information

Antenna Performance. Antenna Performance... 3 Gain... 4 Radio Power and the FCC... 6 Link Margin Calculations... 7 The Banner Way... 8 Glossary...

Antenna Performance. Antenna Performance... 3 Gain... 4 Radio Power and the FCC... 6 Link Margin Calculations... 7 The Banner Way... 8 Glossary... Antenna Performance Antenna Performance... 3 Gain... 4 Radio Power and the FCC... 6 Link Margin Calculations... 7 The Banner Way... 8 Glossary... 9 06/15/07 135765 Introduction In this new age of wireless

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - Prentice Hall, 2013 Wireless Transmission

More information

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective Co-existence DECT/CAT-iq vs. other wireless technologies from a HW perspective Abstract: This White Paper addresses three different co-existence issues (blocking, sideband interference, and inter-modulation)

More information

TDD and FDD Wireless Access Systems

TDD and FDD Wireless Access Systems WHITE PAPER WHITE PAPER Coexistence of TDD and FDD Wireless Access Systems In the 3.5GHz Band We Make WiMAX Easy TDD and FDD Wireless Access Systems Coexistence of TDD and FDD Wireless Access Systems In

More information

Multi-Way Diversity Reception for Digital Microwave Systems

Multi-Way Diversity Reception for Digital Microwave Systems Multi-Way Diversity Reception for Digital Microwave Systems White paper Table of Contents 1. GENERAL INFORMATION 3 1.1 About this document 3 1.2 Acknowledgements 3 2. THE NEED FOR DIVERSITY RECEPTION 3

More information

University of Bristol - Explore Bristol Research. Link to published version (if available): /VTCF

University of Bristol - Explore Bristol Research. Link to published version (if available): /VTCF Bian, Y. Q., & Nix, A. R. (2006). Throughput and coverage analysis of a multi-element broadband fixed wireless access (BFWA) system in the presence of co-channel interference. In IEEE 64th Vehicular Technology

More information

This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples.

This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples. Antenna Basics This Antenna Basics reference guide includes basic information about antenna types, how antennas work, gain, and some installation examples. What Do Antennas Do? Antennas transmit radio

More information

SOLUTIONS Paper Wi4 Fixed: Point-to-Point Wireless Broadband Solutions. Point-to-Point Connectivity in the 4.9 GHz Public Safety Band

SOLUTIONS Paper Wi4 Fixed: Point-to-Point Wireless Broadband Solutions. Point-to-Point Connectivity in the 4.9 GHz Public Safety Band SOLUTIONS Paper Wi4 Fixed: Point-to-Point Wireless Broadband Solutions Point-to-Point Connectivity in the 4.9 GHz Public Safety Band Contents pg Section 3 FCC and the Public Safety RF Band 3 Qualified

More information

WiFi Installations : Frequently Asked Questions

WiFi Installations : Frequently Asked Questions Thank you for downloading our WiFi FAQ, we constructed this guide in order to aid you choosing and selecting the best solution to your WiFi range issues or for setting up a between building or a point

More information

Deployment scenarios and interference analysis using V-band beam-steering antennas

Deployment scenarios and interference analysis using V-band beam-steering antennas Deployment scenarios and interference analysis using V-band beam-steering antennas 07/2017 Siklu 2017 Table of Contents 1. V-band P2P/P2MP beam-steering motivation and use-case... 2 2. Beam-steering antenna

More information

Millimeter Wave Mobile Communication for 5G Cellular

Millimeter Wave Mobile Communication for 5G Cellular Millimeter Wave Mobile Communication for 5G Cellular Lujain Dabouba and Ali Ganoun University of Tripoli Faculty of Engineering - Electrical and Electronic Engineering Department 1. Introduction During

More information

Sharing Considerations Between Small Cells and Geostationary Satellite Networks in the Fixed-Satellite Service in the GHz Frequency Band

Sharing Considerations Between Small Cells and Geostationary Satellite Networks in the Fixed-Satellite Service in the GHz Frequency Band Sharing Considerations Between Small Cells and Geostationary Satellite Networks in the Fixed-Satellite Service in the 3.4-4.2 GHz Frequency Band Executive Summary The Satellite Industry Association ( SIA

More information

CHAPTER 9 HIGH FREQUENCY RADIO OPERATION CHAPTER

CHAPTER 9 HIGH FREQUENCY RADIO OPERATION CHAPTER SECTION 2 ESTABLISHMENT, MAINTENANCE AND OPERATION OF COMMUNICATION SYSTEMS AND EQUIPMENT CHAPTER 9 HIGH FREQUENCY RADIO OPERATION CHAPTER 9 9.1 COMPLEXITIES AND VARIABLES The operation of High Frequency

More information

CLARK COUNTY FIRE CODE AMENDMENTS

CLARK COUNTY FIRE CODE AMENDMENTS CLARK COUNTY FIRE CODE AMENDMENTS SECTION 510 EMERGENCY RESPONDER RADIO COVERAGE SYSTEM is amended to read as follows: SECTION 510 EMERGENCY RESPONDER RADIO COVERAGE SYSTEM 510.1 Emergency responder radio

More information

2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU

2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU 2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU 2.4 GHZ AND 900 MHZ UNLICENSED SPECTRUM COMPARISON Wireless connectivity providers have to make many choices when designing their

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

Developing the Model

Developing the Model Team # 9866 Page 1 of 10 Radio Riot Introduction In this paper we present our solution to the 2011 MCM problem B. The problem pertains to finding the minimum number of very high frequency (VHF) radio repeaters

More information

ADJACENT BAND COMPATIBILITY OF 400 MHZ TETRA AND ANALOGUE FM PMR AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL

ADJACENT BAND COMPATIBILITY OF 400 MHZ TETRA AND ANALOGUE FM PMR AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ADJACENT BAND COMPATIBILITY OF 400 MHZ AND ANALOGUE FM PMR AN ANALYSIS

More information

Wireless Communication Technologies (16:332:546)

Wireless Communication Technologies (16:332:546) Wireless Communication Technologies (16:332:546) Taught by Professor Narayan Mandayam Lecture 7 : Co-Channel Interference Slides prepared by : Shuangyu Luo Outline Co-channel interference 4 Examples of

More information

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman

Antennas & Propagation. CSG 250 Fall 2007 Rajmohan Rajaraman Antennas & Propagation CSG 250 Fall 2007 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Combiner Space Diversity in Long Haul Microwave Radio Networks

Combiner Space Diversity in Long Haul Microwave Radio Networks Combiner Space Diversity in Long Haul Microwave Radio Networks Abstract Long-haul and short-haul microwave radio systems deployed by telecommunication carriers must meet extremely high availability and

More information

EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals

EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals EEG473 Mobile Communications Module 2 : Week # (6) The Cellular Concept System Design Fundamentals Interference and System Capacity Interference is the major limiting factor in the performance of cellular

More information

P25 and Interoperability. RadioResource. User Benefits, Cautions and Case Studies. October 2013 MCCmag.com TM

P25 and Interoperability. RadioResource. User Benefits, Cautions and Case Studies. October 2013 MCCmag.com TM SPECS SURVEY: Spectrum Analyzers RadioResource WHAT S NEW: Radio Accessories October 2013 MCCmag.com TM C O M M U N I C A T I O N S P25 and Interoperability User Benefits, Cautions and Case Studies PUBLIC

More information

OFDMA and MIMO Notes

OFDMA and MIMO Notes OFDMA and MIMO Notes EE 442 Spring Semester Lecture 14 Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique extending the concept of single subcarrier modulation

More information

2.4 OPERATION OF CELLULAR SYSTEMS

2.4 OPERATION OF CELLULAR SYSTEMS INTRODUCTION TO CELLULAR SYSTEMS 41 a no-traffic spot in a city. In this case, no automotive ignition noise is involved, and no cochannel operation is in the proximity of the idle-channel receiver. We

More information

Radar System Impacts on Spectrum Management

Radar System Impacts on Spectrum Management Radar System Impacts on Spectrum Management National Spectrum Management Association Mitchell Lazarus 703-812-0440 0440 lazarus@fhhlaw.com May 13, 2014 Radar: Basic Principle Radio signal reflects from

More information

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH).

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). Smart Antenna K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH). ABSTRACT:- One of the most rapidly developing areas of communications is Smart Antenna systems. This paper

More information

Cell Extender Antenna System Design Guide Lines

Cell Extender Antenna System Design Guide Lines Cell Extender Antenna System Design Guide Lines 1. General The design of an Antenna system for a Cell Extender site needs to take into account the following specific factors: a) The systems input and output

More information

RECOMMENDATION ITU-R S.1341*

RECOMMENDATION ITU-R S.1341* Rec. ITU-R S.1341 1 RECOMMENDATION ITU-R S.1341* SHARING BETWEEN FEEDER LINKS FOR THE MOBILE-SATELLITE SERVICE AND THE AERONAUTICAL RADIONAVIGATION SERVICE IN THE SPACE-TO-EARTH DIRECTION IN THE BAND 15.4-15.7

More information

4/18/2012. Supplement T3. 3 Exam Questions, 3 Groups. Amateur Radio Technician Class

4/18/2012. Supplement T3. 3 Exam Questions, 3 Groups. Amateur Radio Technician Class Amateur Radio Technician Class Element 2 Course Presentation ti ELEMENT 2 SUB-ELEMENTS Technician Licensing Class Supplement T3 Radio Wave Characteristics 3 Exam Questions, 3 Groups T1 - FCC Rules, descriptions

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

Amateur Radio License. Propagation and Antennas

Amateur Radio License. Propagation and Antennas Amateur Radio License Propagation and Antennas Todays Topics Propagation Antennas Propagation Modes Ground wave Low HF and below, ground acts as waveguide Line-of-Sight (LOS) VHF and above, radio waves

More information

(Refer Slide Time: 2:45)

(Refer Slide Time: 2:45) Millimeter Wave Technology. Professor Minal Kanti Mandal. Department of Electronics and Electrical Communication Engineering. Indian Institute of Technology, Kharagpur. Lecture-01. Introduction to Millimeter-Wave

More information

ECC Recommendation (14)01

ECC Recommendation (14)01 ECC Recommendation (14)01 Radio frequency channel arrangements for fixed service systems operating in the band 92-95 GHz Approved 31 January 2014 Amended 8 May 2015 Updated 14 September 2018 ECC/REC/(14)01

More information

ANTENNAS FEED POINTS. An antenna is a mechanical structure by which electromagnetic waves are sent out or received.

ANTENNAS FEED POINTS. An antenna is a mechanical structure by which electromagnetic waves are sent out or received. ANTENNAS An antenna is a mechanical structure by which electromagnetic waves are sent out or received. An antenna accomplishes this by being made so that its structure will be resonant at the frequency

More information

Wind Power GeoPlanner. Land Mobile Report - UPDATE

Wind Power GeoPlanner. Land Mobile Report - UPDATE Prepared on Behalf of Iberdrola Renewables, LLC December 13, 2012 Table of Contents 1. Introduction - 1-2. Summary of Results - 1-3. Impact Assessment - 3-4. Conclusions - 4-5. Recommendations & Mitigation

More information

Technical Requirements for Fixed Radio Systems Operating in the Bands GHz and GHz

Technical Requirements for Fixed Radio Systems Operating in the Bands GHz and GHz SRSP-324.25 Issue 1 January 1, 2000 Spectrum Management and Telecommunications Policy Standard Radio System Plan Technical Requirements for Fixed Radio Systems Operating in the Bands 24.25-24.45 GHz and

More information

White Paper. 850 MHz & 900 MHz Co-Existence. 850 MHz Out-Of-Band Emissions Problem xxxx-xxxreva

White Paper. 850 MHz & 900 MHz Co-Existence. 850 MHz Out-Of-Band Emissions Problem xxxx-xxxreva White Paper 850 MHz & 900 MHz Co-Existence 850 MHz Out-Of-Band Emissions Problem 2016 xxxx-xxxreva White Paper 850 MHz & 900 MHz Coexistence - 850 MHz Out-of-Band Emissions Problem Table of Contents Introduction

More information

Moline Illinois CODE OF ORDINANCES. Art. IX. Miscellaneous DIVISION 3. IN-BUILDING EMERGENCY RADIO SYSTEM COVERAGE

Moline Illinois CODE OF ORDINANCES. Art. IX. Miscellaneous DIVISION 3. IN-BUILDING EMERGENCY RADIO SYSTEM COVERAGE Moline Illinois CODE OF ORDINANCES Art. IX. Miscellaneous DIVISION 3. IN-BUILDING EMERGENCY RADIO SYSTEM COVERAGE SEC. 8-9300. TITLE. The title of this division shall be the Emergency Radio System Coverage

More information

Chapter 15: Radio-Wave Propagation

Chapter 15: Radio-Wave Propagation Chapter 15: Radio-Wave Propagation MULTIPLE CHOICE 1. Radio waves were first predicted mathematically by: a. Armstrong c. Maxwell b. Hertz d. Marconi 2. Radio waves were first demonstrated experimentally

More information

ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE MHZ FREQUENCY RANGE, AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL

ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE MHZ FREQUENCY RANGE, AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE 380-400 MHZ

More information

Suggested reading for this discussion includes the following SEL technical papers:

Suggested reading for this discussion includes the following SEL technical papers: Communications schemes for protection and control applications are essential to the efficient and reliable operation of modern electric power systems. Communications systems for power system protection

More information

Selecting the Optimal 700MHz LTE Antenna for Public Safety Communications. By Jerry Posluszny, Director of Engineering, Mobile Mark

Selecting the Optimal 700MHz LTE Antenna for Public Safety Communications. By Jerry Posluszny, Director of Engineering, Mobile Mark Selecting the Optimal 700MHz LTE Antenna for Public Safety Communications By Jerry Posluszny, Director of Engineering, Mobile Mark Public safety industry communications methods are rapidly evolving as

More information

RECOMMENDATION ITU-R F.1097 * (Question ITU-R 159/9)

RECOMMENDATION ITU-R F.1097 * (Question ITU-R 159/9) Rec. ITU-R F.1097 1 RECOMMENDATION ITU-R F.1097 * INTERFERENCE MITIGATION OPTIONS TO ENHANCE COMPATIBILITY BETWEEN RADAR SYSTEMS AND DIGITAL RADIO-RELAY SYSTEMS (Question ITU-R 159/9) Rec. ITU-R F.1097

More information

RAPTORXR. Broadband TV White Space (TVWS) Backhaul Digital Radio System

RAPTORXR. Broadband TV White Space (TVWS) Backhaul Digital Radio System RAPTORXR Broadband TV White Space (TVWS) Backhaul Digital Radio System TECHNICAL OVERVIEW AND DEPLOYMENT GUIDE CONTACT: BBROWN@METRICSYSTEMS.COM Broadband White Space Mesh Infrastructure LONG REACH - FAST

More information

RECOMMENDATION ITU-R P Guide to the application of the propagation methods of Radiocommunication Study Group 3

RECOMMENDATION ITU-R P Guide to the application of the propagation methods of Radiocommunication Study Group 3 Rec. ITU-R P.1144-2 1 RECOMMENDATION ITU-R P.1144-2 Guide to the application of the propagation methods of Radiocommunication Study Group 3 (1995-1999-2001) The ITU Radiocommunication Assembly, considering

More information

Using the epmp Link Budget Tool

Using the epmp Link Budget Tool Using the epmp Link Budget Tool The epmp Series Link Budget Tool can offer a help to determine the expected performances in terms of distances of a epmp Series system operating in line-of-sight (LOS) propagation

More information

Technical Requirements for Fixed Radio Systems Operating in the Bands GHz and GHz

Technical Requirements for Fixed Radio Systems Operating in the Bands GHz and GHz Issue 1 September 2013 Spectrum Management and Telecommunications Standard Radio System Plan Technical Requirements for Fixed Radio Systems Operating in the Bands 25.25-26.5 GHz and 27.5-28.35 GHz Aussi

More information

Broad Principles of Propagation 4C4

Broad Principles of Propagation 4C4 Broad Principles of Propagation ledoyle@tcd.ie 4C4 Starting at the start All wireless systems use spectrum, radiowaves, electromagnetic waves to function It is the fundamental and basic ingredient of

More information

Wireless Point to Point Frequently Asked Questions

Wireless Point to Point Frequently Asked Questions Wireless Point to Point Frequently Asked Questions Document ID: 9217 Contents Introduction What type(s) of antennas can I use with my system? Do the antennas for both ends of my link need to be the same

More information

Simulcasting Project 25

Simulcasting Project 25 ATLAS Simulcasting Project 25 2013 April Copyright 2012-2013 by EFJohnson Technologies, Inc. The EFJohnson Technologies logo, ATLAS, and StarGate are trademarks of EFJohnson Technologies, Inc. All other

More information

Recommendation ITU-R F (05/2011)

Recommendation ITU-R F (05/2011) Recommendation ITU-R F.1764-1 (05/011) Methodology to evaluate interference from user links in fixed service systems using high altitude platform stations to fixed wireless systems in the bands above 3

More information

Francis J. Smith CTO Finesse Wireless Inc.

Francis J. Smith CTO Finesse Wireless Inc. Impact of the Interference from Intermodulation Products on the Load Factor and Capacity of Cellular CDMA2000 and WCDMA Systems & Mitigation with Interference Suppression White Paper Francis J. Smith CTO

More information

Data and Computer Communications. Chapter 10 Cellular Wireless Networks

Data and Computer Communications. Chapter 10 Cellular Wireless Networks Data and Computer Communications Chapter 10 Cellular Wireless Networks Cellular Wireless Networks 5 PSTN Switch Mobile Telecomm Switching Office (MTSO) 3 4 2 1 Base Station 0 2016-08-30 2 Cellular Wireless

More information

Radio Frequency Engineering Report. Proposed Raymond, ME Cellular Facility

Radio Frequency Engineering Report. Proposed Raymond, ME Cellular Facility Radio Frequency Engineering Report Proposed, ME Cellular Facility (Site No.: 3462 ) May 12, 2010 C Squared Systems, LLC 920 Candia Road Manchester, NH 03109 Phone: (603) 657-9702 Fax: (603) 657-9707 Support@csquaredsystems.com

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem

White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem White Paper 850 MHz & 900 MHz Co-Existence 900 MHz Receiver Blocking Problem Table of Contents Introduction and Background 3 Assumptions 3 Receiver Blocking Problem 6 Conclusion 8 2 1. Introduction and

More information

RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7)

RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7) Rec. ITU-R SA.364-5 1 RECOMMENDATION ITU-R SA.364-5* PREFERRED FREQUENCIES AND BANDWIDTHS FOR MANNED AND UNMANNED NEAR-EARTH RESEARCH SATELLITES (Question 132/7) Rec. ITU-R SA.364-5 (1963-1966-1970-1978-1986-1992)

More information

SELFSAT-H10D. What is SELFSAT-H10D? Warning!!! Safety Instructions

SELFSAT-H10D. What is SELFSAT-H10D? Warning!!! Safety Instructions SELFSAT-H0D What is SELFSAT-H0D? SELFSAT-H0D is a Horn Array Type Satellite Antenna with Dual Linear Polarization, it can receive signal from major Satellites and would replace a normal former Parabolic

More information

UNIT-II 1. Explain the concept of frequency reuse channels. Answer:

UNIT-II 1. Explain the concept of frequency reuse channels. Answer: UNIT-II 1. Explain the concept of frequency reuse channels. Concept of Frequency Reuse Channels: A radio channel consists of a pair of frequencies one for each direction of transmission that is used for

More information

Introduction to Basic Reflective Multipath In Short-Path Wireless Systems

Introduction to Basic Reflective Multipath In Short-Path Wireless Systems 140 Knowles Drive, Los Gatos, CA 95032 Tel: 408-399-7771 Fax: 408-317-1777 http://www.firetide.com Introduction to Basic Reflective Multipath In Short-Path Wireless Systems DISCLAIMER - This document provides

More information

FCC Technician License Course

FCC Technician License Course FCC Technician License Course 2014-2018 FCC Element 2 Technician Class Question Pool Presented by: Tamiami Amateur Radio Club (TARC) WELCOME To the third of 4, 3-hour classes presented by TARC to prepare

More information

European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ASSESSMENT OF INTERFERENCE FROM UNWANTED EMISSIONS OF NGSO MSS SATELLITE

More information

Section 6 Remote Telemetry

Section 6 Remote Telemetry Pribusin Inc. Section 6 Remote Telemetry All Material contained in this manual is Copyright Pribusin Inc. 1996. No part of this manual may be used for any other purpose except for the sale of Pribusin

More information

Advanced Microwave Antenna Designs Address Growing Capacity and Cost Challenges

Advanced Microwave Antenna Designs Address Growing Capacity and Cost Challenges White Paper Advanced Microwave Antenna Designs Address Growing Capacity and Cost Challenges This paper focuses on a Microwave point-to-point backhaul antenna solution that addresses the multiple and simultaneous

More information

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010

ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 2 Today: (1) Frequency Reuse, (2) Handoff Reading for today s lecture: 3.2-3.5 Reading for next lecture: Rap 3.6 HW 1 will

More information

Chapter 1 Introduction

Chapter 1 Introduction Wireless Information Transmission System Lab. Chapter 1 Introduction National Sun Yat-sen University Table of Contents Elements of a Digital Communication System Communication Channels and Their Wire-line

More information

Multipath Analysis of the QuikSCAT Calibration Ground Station

Multipath Analysis of the QuikSCAT Calibration Ground Station Brigham Young University Department of Electrical and Computer Engineering 459 Clyde Building Provo, Utah 8462 Multipath Analysis of the QuikSCAT Calibration Ground Station Arden Anderson 16 April 21 MERS

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (8 th Week) Cellular Wireless Network 8.Outline Principles of Cellular Networks Cellular Network Generations LTE-Advanced

More information

PSDs, RFs, NFDs, & Interference: The Challenges of Frequency Reallocation and Narrowbanding in Non-Homogenous Bands MARTIN RAIS.

PSDs, RFs, NFDs, & Interference: The Challenges of Frequency Reallocation and Narrowbanding in Non-Homogenous Bands MARTIN RAIS. PSDs, RFs, NFDs, & Interference: The Challenges of Frequency Reallocation and Narrowbanding in Non-Homogenous Bands July 2011 MARTIN RAIS Software Solutions in Radio Communications 1 1 Current Issues:

More information

Technical Requirements for Land Mobile and Fixed Radio Services Operating in the Bands / MHz and / MHz

Technical Requirements for Land Mobile and Fixed Radio Services Operating in the Bands / MHz and / MHz Issue 5 November 2013 Spectrum Management and Telecommunications Standard Radio System Plan Technical Requirements for Land Mobile and Fixed Radio Services Operating in the Bands 806-821/851-866 MHz and

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

Antennas and Propagation. Chapter 5

Antennas and Propagation. Chapter 5 Antennas and Propagation Chapter 5 Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

Vodafone Response to Ofcom Consultation: Mobile Coverage Enhancers and their use in licensed spectrum

Vodafone Response to Ofcom Consultation: Mobile Coverage Enhancers and their use in licensed spectrum Vodafone Response to Ofcom Consultation: Mobile Coverage Enhancers and their use in licensed spectrum SUMMARY Vodafone is all too aware of the issues of mobile not-spots, and we work with our customers

More information

REPORT ITU-R M

REPORT ITU-R M Rep. ITU-R M.2113-1 1 REPORT ITU-R M.2113-1 Sharing studies in the 2 500-2 690 band between IMT-2000 and fixed broadband wireless access systems including nomadic applications in the same geographical

More information