Electron density height profiles from GPS receiver data

Size: px
Start display at page:

Download "Electron density height profiles from GPS receiver data"

Transcription

1 RADIO SCIENCE, VOL. 39,, doi: /2002rs002830, 2004 Electron density height profiles from GPS receiver data Michael H. Reilly and Malkiat Singh Geoloc Corporation, Springfield, Virginia, USA Received 15 November 2002; revised 2 April 2003; accepted 23 May 2003; published 17 January [1] A successful ionospheric electron density model assimilates relevant data for determination of its driving parameters. We process about two hours worth of twofrequency GPS ground-receiver data from five satellites in order to separate the least squares solution of up to four driving parameters of the electron density profile (EDP) model from the solution of four relative (between satellites) differential hardware biases. The EDP model we use is part of the Ionosphere and Troposphere Raytrace Model (ITRAY), which is our upgrade of the Raytrace/Ionospheric Conductivity and Electron Density model (ICED)-Bent-Gallagher (RIBG) model. We use the Westford GPS receiver in Massachusetts to update the EDP model, which we then use to predict EDP distributions at nearby Millstone Hill for comparison with ground truth incoherent-scatter radar and Digisonde data. We find that a simple procedure often works well when the model time dependence is correct, but we find that forcing the ionospheric model to more closely fit GPS data actually degrades ionospheric specification in the F layer region. We suggest a data diversification remedy. INDEX TERMS: 2447 Ionosphere: Modeling and forecasting; 6969 Radio Science: Remote sensing; 6974 Radio Science: Signal processing; 0629 Electromagnetics: Inverse scattering; KEYWORDS: ionospheric model, GPS, data assimilation, RIBG Citation: Reilly, M. H., and M. Singh (2004), Electron density height profiles from GPS receiver data, Radio Sci., 39,, doi: /2002rs Introduction [2] This paper investigates the capability of a system for determining ionospheric specification from twofrequency GPS receivers on the ground. Specification consists of the distribution of electron density in latitude, longitude, and height. Satisfactory system performance requires accuracy and timely distribution of the specification. We previously developed a method of processing GPS receiver data [Reilly and Singh, 2001] that uses the electron density model in the Ionosphere and Troposphere Raytrace Model (ITRAY), our upgrade of the Raytrace/ICED-Bent-Gallagher (RIBG) model [Reilly, 1993]. In this method, least squares analysis provides both a single effective sunspot number driver of the height profile model and hardware differential biases. The data consist of 2 hours of shifted differential phase pseudorange (SDPP) (L1 L2) data in total electron content units (TECU) (one TECU = electrons per cubic meter) on 5 satellite receiver paths. The data interval is 30 s. Two hours of data provide enough ionospheric variation to obtain ionospheric Copyright 2004 by the American Geophysical Union /04/2002RS model driving parameter and relative hardware differential bias (RDB) solutions. SDPP data traditionally serve as a proxy for group path length without the effects of multipath and without the free space range contribution. We showed evidence from sounder measurements that ITRAY, updated by this method, could predict f o F 2 within a few MHz. In this paper, we attempt to exploit the flexibility of the EDP model in ITRAY by varying four of its driving parameters independently in order to obtain a better fit of the GPS data. The four driving parameters are: (1) SF2, which determines the value of the maximum plasma frequency f o F 2 ; (2) SM3, which determines the value of M3000 (multiplying factor of f o F 2 that gives the maximum usable frequency (MUF) on a 3000 km path), which determines h m F 2 (height at maximum plasma frequency) in the ionospheric model; (3) SWDTH, which determines the width of the F2 Chapman layer in the model; and (4) CFAC, which affects how fast the EDP drops off with height above h m F 2. A fifth driving parameter of the model is K p, the 3-hourly planetary magnetic activity index, which we determine separately from external geomagnetic data. The conditions SF2 = SM3 = SWDTH and CFAC = 0.86 were previously used to constrain these parameters. 1of7

2 [3] The theory for fitting the model to the data is similar to before [Reilly and Singh, 2001] except that we now work with differences of SDDP data between the satellites, or relative SDDP data, in order to remove the influence of receiver clock drift. In our previous paper, we assumed that hardware differential biases between each satellite and the receiver would remain constant over the 2-hour period. Now that we work with relative SDDP data between satellites, the assumption of constant RDBs is substantially more reliable. Hence the number of unknown model parameters for five satellites is now eight: four driving parameters of the ionospheric model and four RDBs. We obtained nearly identical answers from this and the previous method for many cases, thus confirming the method. A discrepancy found in a few cases was apparently due to receiver clock drift. [4] The method we choose to obtain the multiparameter fit of relative SDDP data is the Levenberg-Marquardt (LM) method, as implemented and explained in the work of Press et al. [1992]. We adapt this implementation to our problem as follows. First, obtain the solution for the single sunspot number driver in the above default condition. We later refer to this as the F solution. This takes less than 1 min on a typical personal computer (PC) for a wide range of initial guesses of starting sunspot number. The F solution could be the starting guess for the LM method, which finds model parameter solutions that minimize the value of a chisquare merit function (chisq), given by c 2 ðaþ ¼ XN i¼1 ½y i yx ð i ; aþš 2 ; ð1þ where x i is an index parameter that runs over the satellite pairs and the time, y i represents a particular one of N relative SDDP data points, and y(x i, a) represents the model calculation of this datum as a function of the 8-element model parameter vector a. We assume the data to have equal weights. Unfortunately, the F solution guess sometimes converges to a local minimum of chisq, which is different from the global minimum. We need the starting guess close enough to the global minimum solution in order to avoid this. Hence we start with a grid of driving parameters centered on the preceding F solution guess. This grid presently consists of a range of values for each of SF2, SM3, SWDTH, and CFAC. For each value in this grid we calculate RDB values that minimize chisq. The overall minimum chisq grid point is used as the new starting guess for the LM method. We refer to this later as the LMG solution. Convergence of LMG takes about times longer than F since several tens of iterations and many more ionospheric model driving parameter interpolations are involved. [5] The next section calculates the results of analysis of Westford GPS data for 6 dates in 2000 and The Westford receiver is located at N E. We compare updated ITRAY model predictions of EDPs with available EDP data from the Millstone Hill incoherent scatter radar data and Digisonde data over the 2-hour GPS data processing period. Millstone Hill is located at N, E. This is a severe test of the ionospheric model since available incoherent scatter radar (ISR) data concentrate in the late afternoon to evening hours, when the ionosphere varies rapidly. We use a single set of driving parameter solutions for the predictions, thus relying only on the time dependence within the ionospheric model. 2. GPS-Updated ITRAY Comparisons With Ground Truth Data [6] The first cases considered are for 25 September and 24 October 2000, when GPS data were processed in the intervals UT and UT, respectively, in order to update (find driving parameters of) ITRAY. ITRAY was then used to generate EDPs for comparison with Millstone Hill data. Results are shown in Figure 1 for the indicated times. LMG, which denotes the multiparameter method discussed previously, denotes the first update method. F denotes the simpler solution method in Figure 1, also discussed above. We find that, although LMG gives a better fit to GPS data (smaller chisq; see Table 1 below) than F does, Figure 1 indicates that the F update method gives a better ITRAY prediction of Millstone Hill ISR and Digisonde data, at least near the peak density. This is a recurring theme and we will discuss it later. The Digisonde parameter available to us from the Internet is f o F 2 and the corresponding density appears as the small square on the horizontal axis. For 25 September we see that the F update predictions do not vary as rapidly as the data in the 2-hour period for GPS data processing. Hence the slower ITRAY model time dependence underpredicts ISR at the beginning of the 2-hour interval and overpredicts it at the end of the interval. However, the data and model time dependencies agree quite well for the case of 24 October. [7] Figure 2 shows the results of a similar analysis for 17 and 18 April For these cases, Digisonde parameters are not available, and so we rely on the ISR data as ground truth. For 17 April, F again predicts the ISR data better than LMG, but the agreement again suffers from the much greater time variation of the ISR EDP, as compared to the model time dependence. The ITRAY model, which is based on the International Union of Radio Science (URSI) climatological map data, consequently underpredicts the ISR data in the first half of the GPS processing interval and overpredicts the ISR data in the second half of the GPS processing interval. However, the F-updated ITRAY results for 18 April 2of7

3 Figure 1. Updated ITRAY predictions (LMG and F) of ISR and Digisonde data: 25 September and 24 October of7

4 Table 1. Summary of Westford GPS Data Analysis Start Time Method SF2 SM3 SWDTH CFAC Kp GPS Fit Error, TECU ISR Predicted Error, 10 6 /cm 3 25 Sep. 2000, UT LMG F Oct. 2000, UT LMG F Apr. 2001, UT LMG F Apr. 2001, UT LMG F Apr. 2000, UT LMG F Apr. 2000, UT LMG F exhibit satisfactory agreement with the ISR data, where the rates of change of model and data are about the same. These results are thus similar to Figure 1. [8] Figure 3 shows the results of a similar analysis for 11 and 12 April 2000, for which we have both Digisonde and ISR data at Millstone Hill. For 11 April, the agreement of F-updated or LMG-updated ITRAY predictions with ISR data is only fair. The ISR EDP changes rapidly between the first and second times, much more so than either the ITRAY predictions or the Digisonde data. The F predictions are more in agreement with the Digisonde data and adequately agree with the maximum height and shape of the ISR profile, although not with its maximum density. For 12 April, we again note rather anomalous time variation of the ISR profiles, thus guaranteeing that the F- or LMG-updated ITRAY prediction will not impressively fit ISR for every one of the times. The prediction of Digisonde data is better. [9] Table 1 summarizes our results for driving parameters of the ionospheric model of ITRAY obtained by fitting it to about 2 hours worth of data from 5 GPS satellites, as measured by the Westford GPS receiver. The first column gives the start time and date of the approximately 2-hour interval. The second column cites the methods that we have already discussed. Columns 3 6 give the driving parameter solutions for the ionospheric model. Column 7 gives the appropriate value of the magnetic activity pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi index, available from the Internet. Column 8 gives chisq=n (see equation (1)) and is thus the RMS error of the ITRAY fit to each GPS data point (relative SDPP in TECU). The last column gives the RMS error of the ISR electron density prediction by ITRAY, averaged over the three times for a given date. Not shown are the four RDB values or the standard deviation errors of the model parameter solutions. We obtain these from our use of the LM method. They depend on chisq. For example, in the case of a good fit, such as the 24 October entry, the errors in SF2, SM3, SWDTH, and CFAC are about 2.5, 6.3, 222, and 0.02, 4of7 respectively, and the four RDB errors are around 0.06 TECU. For a poor fit, such as the last 12 April entry, the corresponding errors in the ionospheric model driving parameters are about 13, 29, 3723, and 0.05, respectively, and the four RDB errors are around 0.2 TECU. The large errors in SWDTH indicate only a weak dependence of chisq on this parameter in our model. Some of the parameters are confined within certain limits, reflecting the underlying validity and limitations of the model, which is why, for example, values of the upper and lower limits of SWDTH, 10.0, and show up quite frequently. The LM method allows these constraints to be incorporated in the fitting process. 3. Discussion and Conclusions [10] It surprised us that F-updated ITRAY predictions were more effective than LMG-updated ITRAY predictions of Millstone Hill data, despite the fact that LMG analysis of GPS data enabled us to vary more model parameters for a clearly better fit of GPS data. We have observed this not only with the present data sets but also with Digisonde data from previous work. The LMG fitting process apparently deforms the EDP in height regions of the model height versus density profile that are far above the F2 peak height, with a corresponding effect in the F layer. The F procedure does better in the F region of the ionosphere by not allowing the deformation of the profile in the upper height regions. Hence our model apparently does not relate the F region to these upper height regions properly. In lieu of having a perfect model, we may compensate for this by assimilating additional data types that more specifically constrain the F region parameters. Digisonde data does this. So does GPS occultation data. [11] F-updated ITRAY predictions often do quite well, certainly better than LMG in the F layer, despite the fact that LMG gives a better fit of GPS data. F updates take much less PC time. For example, with our moderately

5 Figure 2. Updated ITRAY predictions (LMG and F) of ISR data: 17 and 18 April powerful desktop PC, it takes a few seconds to load data from a GPS receiver and about 10 s to get a converged F solution for SF2 and the RDBs if the ionospheric grids have been preloaded. An ionospheric grid in our case is a complete specification of electron density versus height profile parameters in ITRAY, for given time and driving 5of7 parameters, at each point of a global latitude-longitude grid. The grid latitude spacing is 3, and the longitude spacing is 5. Otherwise, the additional time to generate ionospheric grids, about 20 of them for a 2-hour period, is about 20 s. These times can be reduced with further computer power and additional software efficiency, but it

6 Figure 3. Updated ITRAYpredictions(LMG and F) of ISR and Digisonde data: 11 and 12 April is already reasonable to think of this as a component of a practical system for regional and even global ionospheric electron density specification in near-real time, utilizing data from a network of GPS sounders. 6of7 [12] Convergence in the LMG method started from lowest chisq member of a grid of results centered on the F solution. We also attempted to start the LM calculation from the F solution without the grid. This often reached

7 the same solution as the LMG solution, but sometimes it reached a different solution, associated with a local minimum of chisq as a function of the eight model driving parameters that is from the global minimum. For example, this happened in the first and fifth entries of Table 1. [13] The issue of having to process 2 hours of GPS data, in order to separate the ionospheric variation from the constant contributions of RDBs, can be mitigated somewhat. One can find RDB solutions in this manner and then proceed to use them in future calculations for a substantial period of time since they are associated only with the more stable satellite clocks. We have indicated a method for this in our previous paper. Once the known RDB contributions are subtracted from the data, the driving parameters of the ionospheric model should be able to be determined in a smaller GPS data time interval. This would enable more frequent updates of the ionospheric model and thus make it more capable of responding to actual time variations of the ionosphere. [14] As we have mentioned, one may obtain greater precision with the LMG method by assimilating more data types and/or by using a better ionospheric model. For example, when both GPS and Digisonde data are present, it may be possible to determine one or both of f o F 2 and h m F 2 from Digisonde data, thereby determining SF2 and SM3 in our model, and then use the remaining driving parameters to determine EDP shape parameters. Other data sets ultimately may be used with GPS data for regional or global ionospheric electron density specification besides Digisonde data. Satellite UV airglow data, satellite Earth-occultation GPS data, and over-the-horizon (OTH) radar data are examples that come to mind because of their global coverage characteristics. [15] Acknowledgments. Thanks to ONR for its support and to J. P. Keady for useful discussions. References Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992), Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge Univ. Press, New York. Reilly, M. H. (1993), A transionospheric radio propagation model, in Proceedings of the Seventh International Ionospheric Effects Symposium, editedbyj.m.goodman, pp , Off. of Nav. Res., Arlington, Va. (Available as ITAD-730-MS from Reilly, M. H., and M. Singh (2001), GPS data analysis near Puerto Rico for World Day campaigns, Radio Sci., 36(2), M. H. Reilly and M. Singh, Geoloc Corporation, 1601 N. Kent Street, Suite 1102, Springfield, VA 22151, USA. (reilly@geoloccorp.com) 7of7

THE USE OF GPS/MET DATA FOR IONOSPHERIC STUDIES

THE USE OF GPS/MET DATA FOR IONOSPHERIC STUDIES THE USE OF GPS/MET DATA FOR IONOSPHERIC STUDIES Christian Rocken GPS/MET Program Office University Corporation for Atmospheric Research Boulder, CO 80301 phone: (303) 497 8012, fax: (303) 449 7857, e-mail:

More information

Assimilation Ionosphere Model

Assimilation Ionosphere Model Assimilation Ionosphere Model Robert W. Schunk Space Environment Corporation 399 North Main, Suite 325 Logan, UT 84321 phone: (435) 752-6567 fax: (435) 752-6687 email: schunk@spacenv.com Award #: N00014-98-C-0085

More information

ELECTROMAGNETIC PROPAGATION (ALT, TEC)

ELECTROMAGNETIC PROPAGATION (ALT, TEC) ELECTROMAGNETIC PROPAGATION (ALT, TEC) N. Picot CNES, 18 Av Ed Belin, 31401 Toulouse, France Email : Nicolas.Picot@cnes.fr ABSTRACT For electromagnetic propagation, the ionosphere plays a key role. This

More information

GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe

GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe RADIO SCIENCE, VOL. 41,, doi:10.1029/2005rs003269, 2006 GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe Richard M. Dear 1 and Cathryn N. Mitchell 1 Received

More information

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan Takayuki Yoshihara, Electronic Navigation Research Institute (ENRI) Naoki Fujii,

More information

Database of electron density profiles from Arecibo Radar Observatory for the assessment of ionospheric models

Database of electron density profiles from Arecibo Radar Observatory for the assessment of ionospheric models SPACE WEATHER, VOL. 9,, doi:10.1029/2010sw000591, 2011 Database of electron density profiles from Arecibo Radar Observatory for the assessment of ionospheric models Vince Eccles, 1 Hien Vo, 2 Jonathan

More information

A PIM-aided Kalman Filter for GPS Tomography of the Ionospheric Electron Content

A PIM-aided Kalman Filter for GPS Tomography of the Ionospheric Electron Content A PIM-aided Kalman Filter for GPS Tomography of the Ionospheric Electron Content G. Ruffini, L. Cucurull, A. Flores, and A. Rius Institut d Estudis Espacials de Catalunya, CSIC Research Unit, Edif. Nexus-204,

More information

An accurate and efficient algorithm for Faraday rotation corrections for spaceborne microwave radiometers

An accurate and efficient algorithm for Faraday rotation corrections for spaceborne microwave radiometers RADIO SCIENCE, VOL. 46,, doi:10.1029/2010rs004509, 2011 An accurate and efficient algorithm for Faraday rotation corrections for spaceborne microwave radiometers Malkiat Singh 1 and Michael H. Bettenhausen

More information

Assimilation Ionosphere Model

Assimilation Ionosphere Model Assimilation Ionosphere Model Robert W. Schunk Space Environment Corporation 221 North Spring Creek Parkway, Suite A Providence, UT 84332 phone: (435) 752-6567 fax: (435) 752-6687 email: schunk@spacenv.com

More information

Ground Based GPS Phase Measurements for Atmospheric Sounding

Ground Based GPS Phase Measurements for Atmospheric Sounding Ground Based GPS Phase Measurements for Atmospheric Sounding Principal Investigator: Randolph Ware Co-Principal Investigator Christian Rocken UNAVCO GPS Science and Technology Program University Corporation

More information

An ionospheric error model for time difference of arrival applications

An ionospheric error model for time difference of arrival applications RADIO SCIENCE, VOL. 37, NO. 3, 1038, 10.1029/2000RS002624, 2002 An ionospheric error model for time difference of arrival applications A. B. Prag and D. G. Brinkman Space Sciences Application Laboratory,

More information

Comparison of the first long-duration IS experiment measurements over Millstone Hill and EISCAT Svalbard radar with IRI2001

Comparison of the first long-duration IS experiment measurements over Millstone Hill and EISCAT Svalbard radar with IRI2001 Advances in Space Research 37 (6) 1102 1107 www.elsevier.com/locate/asr Comparison of the first long-duration IS experiment measurements over Millstone Hill and EISCAT Svalbard radar with 1 Jiuhou Lei

More information

Examination of Three Empirical Atmospheric Models

Examination of Three Empirical Atmospheric Models Examination of Three Empirical Atmospheric Models A Presentation Given to The Department of Physics Utah State University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Study of small scale plasma irregularities. Đorđe Stevanović

Study of small scale plasma irregularities. Đorđe Stevanović Study of small scale plasma irregularities in the ionosphere Đorđe Stevanović Overview 1. Global Navigation Satellite Systems 2. Space weather 3. Ionosphere and its effects 4. Case study a. Instruments

More information

Continued Development and Validation of the USU GAIM Models

Continued Development and Validation of the USU GAIM Models Continued Development and Validation of the USU GAIM Models Robert W. Schunk Center for Atmospheric and Space Sciences Utah State University Logan, Utah 84322-4405 phone: (435) 797-2978 fax: (435) 797-2992

More information

Ionogram inversion F1-layer treatment effect in raytracing

Ionogram inversion F1-layer treatment effect in raytracing ANNALS OF GEOPHYSICS, VOL. 48, N. 3, June 2005 Ionogram inversion F1-layer treatment effect in raytracing Gloria Miró Amarante ( 1 ), Man-Lian Zhang ( 2 ) and Sandro M. Radicella ( 1 ) ( 1 ) The Abdus

More information

Operational Space Environment Network Display (OpSEND)

Operational Space Environment Network Display (OpSEND) RADIO SCIENCE, VOL. 39,, doi:10.1029/2002rs002836, 2004 Operational Space Environment Network Display (OpSEND) Gregory Bishop, 1 Terence Bullett, 1 Keith Groves, 1 Stephen Quigley, 1 Patricia Doherty,

More information

IDA3D: An Ionospheric Data Assimilative Three Dimensional Tomography Processor

IDA3D: An Ionospheric Data Assimilative Three Dimensional Tomography Processor IDA3D: An Ionospheric Data Assimilative Three Dimensional Tomography Processor Dr. Gary S. Bust Applied Research Laboratories, The University of Texas at Austin 10000 Burnet Austin Texas 78758 phone: 512-835-3623

More information

Ionospheric Raytracing in a Time-dependent Mesoscale Ionospheric Model

Ionospheric Raytracing in a Time-dependent Mesoscale Ionospheric Model Ionospheric Raytracing in a Time-dependent Mesoscale Ionospheric Model Katherine A. Zawdie 1, Douglas P. Drob 1 and Joseph D. Huba 2 1 Space Science Division, Naval Research Laboratory 4555 Overlook Ave.,

More information

CRITICAL FREQUENCY By Marcel H. De Canck, ON5AU

CRITICAL FREQUENCY By Marcel H. De Canck, ON5AU CRITICAL FREQUENCY By Marcel H. De Canck, ON5AU Before reading onward, it would be good to refresh your knowledge about refraction rules in the section on Refraction of the earlier "Wave Propagation Direction

More information

Space Weather and the Ionosphere

Space Weather and the Ionosphere Dynamic Positioning Conference October 17-18, 2000 Sensors Space Weather and the Ionosphere Grant Marshall Trimble Navigation, Inc. Note: Use the Page Down key to view this presentation correctly Space

More information

Detection of Abnormal Ionospheric Activity from the EPN and Impact on Kinematic GPS positioning

Detection of Abnormal Ionospheric Activity from the EPN and Impact on Kinematic GPS positioning Detection of Abnormal Ionospheric Activity from the EPN and Impact on Kinematic GPS positioning N. Bergeot, C. Bruyninx, E. Pottiaux, S. Pireaux, P. Defraigne, J. Legrand Royal Observatory of Belgium Introduction

More information

GAIM: Ionospheric Modeling

GAIM: Ionospheric Modeling GAIM: Ionospheric Modeling J.J.Sojka, R.W. Schunk, L. Scherliess, D.C. Thompson, & L. Zhu Center for Atmospheric & Space Sciences Utah State University Logan, Utah Presented at: SDO EVE 2008 Workshop Virginia

More information

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS G. Wautelet, S. Lejeune, R. Warnant Royal Meteorological Institute of Belgium, Avenue Circulaire 3 B-8 Brussels (Belgium) e-mail: gilles.wautelet@oma.be

More information

A PIM-aided Kalman Filter for GPS Tomography of the Ionospheric Electron Content

A PIM-aided Kalman Filter for GPS Tomography of the Ionospheric Electron Content A PIM-aided Kalman Filter for GPS Tomography of the Ionospheric Electron Content arxiv:physics/9807026v1 [physics.geo-ph] 17 Jul 1998 G. Ruffini, L. Cucurull, A. Flores, A. Rius November 29, 2017 Institut

More information

Topside Ionospheric Model Based On the Electron Density Profile Data of Cosmic Mission

Topside Ionospheric Model Based On the Electron Density Profile Data of Cosmic Mission Topside Ionospheric Model Based On the Electron Density Profile Data of Cosmic Mission PING Jingsong, SHI Xian, GUO Peng, YAN Haojian Shanghai Astronomical Observatory, Chinese Academy of Sciences, Nandan

More information

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation

More information

CDAAC Ionospheric Products

CDAAC Ionospheric Products CDAAC Ionospheric Products Stig Syndergaard COSMIC Project Office COSMIC retreat, Oct 13 14, 5 COSMIC Ionospheric Measurements GPS receiver: { Total Electron Content (TEC) to all GPS satellites in view

More information

Reading 28 PROPAGATION THE IONOSPHERE

Reading 28 PROPAGATION THE IONOSPHERE Reading 28 Ron Bertrand VK2DQ http://www.radioelectronicschool.com PROPAGATION THE IONOSPHERE The ionosphere is a region of the upper atmosphere extending from a height of about 60 km to greater than 500

More information

Plasma effects on transionospheric propagation of radio waves II

Plasma effects on transionospheric propagation of radio waves II Plasma effects on transionospheric propagation of radio waves II R. Leitinger General remarks Reminder on (transionospheric) wave propagation Reminder of propagation effects GPS as a data source Some electron

More information

Estimation Method of Ionospheric TEC Distribution using Single Frequency Measurements of GPS Signals

Estimation Method of Ionospheric TEC Distribution using Single Frequency Measurements of GPS Signals Estimation Method of Ionospheric TEC Distribution using Single Frequency Measurements of GPS Signals Win Zaw Hein #, Yoshitaka Goto #, Yoshiya Kasahara # # Division of Electrical Engineering and Computer

More information

Three-dimensional and numerical ray tracing on a phenomenological ionospheric model

Three-dimensional and numerical ray tracing on a phenomenological ionospheric model Three-dimensional and numerical ray tracing on a phenomenological ionospheric model Lung-Chih Tsai 1, 2, C. H. Liu 3, T. Y. Hsiao 4, and J. Y. Huang 1 (1) Center for Space and Remote Sensing research,

More information

Terry G. Glagowski W1TR / AFA1DI

Terry G. Glagowski W1TR / AFA1DI The Ionogram and Radio Propagation By Terry G. Glagowski / W1TR / AFA1DI - 9/29/2017 9:46 AM Excerpts from a presentation by Tom Carrigan / NE1R / AFA1ID by Terry G. Glagowski W1TR / AFA1DI Knowledge of

More information

ESTIMATION OF IONOSPHERIC DELAY FOR SINGLE AND DUAL FREQUENCY GPS RECEIVERS: A COMPARISON

ESTIMATION OF IONOSPHERIC DELAY FOR SINGLE AND DUAL FREQUENCY GPS RECEIVERS: A COMPARISON ESTMATON OF ONOSPHERC DELAY FOR SNGLE AND DUAL FREQUENCY GPS RECEVERS: A COMPARSON K. Durga Rao, Dr. V B S Srilatha ndira Dutt Dept. of ECE, GTAM UNVERSTY Abstract: Global Positioning System is the emerging

More information

Variations of topside ionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment

Variations of topside ionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment Ann. Geophys., 25, 2019 2027, 2007 European Geosciences Union 2007 Annales Geophysicae Variations of topside ionospheric scale heights over Millstone Hill during the 30-day incoherent scatter radar experiment

More information

4 Ionosphere and Thermosphere

4 Ionosphere and Thermosphere 4 Ionosphere and Thermosphere 4-1 Derivation of TEC and Estimation of Instrumental Biases from GEONET in Japan This paper presents a method to derive the ionospheric total electron content (TEC) and to

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT)

GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT) GPS STATIC-PPP POSITIONING ACCURACY VARIATION WITH OBSERVATION RECORDING INTERVAL FOR HYDROGRAPHIC APPLICATIONS (ASWAN, EGYPT) Ashraf Farah Associate Professor,College of Engineering, Aswan University,

More information

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model Susumu Saito and Naoki Fujii Communication, Navigation, and Surveillance Department, Electronic

More information

First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM)

First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM) Ann. Geophys., 26, 353 359, 2008 European Geosciences Union 2008 Annales Geophysicae First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM) M. J. Angling

More information

Assimilative Modeling of Ionospheric Dynamics for Now-casting of HF Propagation Channels in the Presence of TIDs 1

Assimilative Modeling of Ionospheric Dynamics for Now-casting of HF Propagation Channels in the Presence of TIDs 1 Assimilative Modeling of Ionospheric Dynamics for Now-casting of HF Propagation Channels in the Presence of TIDs L. J. Nickisch, Sergey Fridman, Mark Hausman, Shawn Kraut, George Zunich* NorthWest Research

More information

ECE 174 Computer Assignment #2 Due Thursday 12/6/2012 GLOBAL POSITIONING SYSTEM (GPS) ALGORITHM

ECE 174 Computer Assignment #2 Due Thursday 12/6/2012 GLOBAL POSITIONING SYSTEM (GPS) ALGORITHM ECE 174 Computer Assignment #2 Due Thursday 12/6/2012 GLOBAL POSITIONING SYSTEM (GPS) ALGORITHM Overview By utilizing measurements of the so-called pseudorange between an object and each of several earth

More information

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya

THE ELECTROMAGNETIC FIELD THEORY. Dr. A. Bhattacharya 1 THE ELECTROMAGNETIC FIELD THEORY Dr. A. Bhattacharya The Underlying EM Fields The development of radar as an imaging modality has been based on power and power density It is important to understand some

More information

Generation of Klobuchar Coefficients for Ionospheric Error Simulation

Generation of Klobuchar Coefficients for Ionospheric Error Simulation Research Paper J. Astron. Space Sci. 27(2), 11722 () DOI:.14/JASS..27.2.117 Generation of Klobuchar Coefficients for Ionospheric Error Simulation Chang-Moon Lee 1, Kwan-Dong Park 1, Jihyun Ha 2, and Sanguk

More information

Chapter 7 HF Propagation. Ionosphere Solar Effects Scatter and NVIS

Chapter 7 HF Propagation. Ionosphere Solar Effects Scatter and NVIS Chapter 7 HF Propagation Ionosphere Solar Effects Scatter and NVIS Ionosphere and Layers Radio Waves Bent by the Ionosphere Daily variation of Ionosphere Layers Ionospheric Reflection Conduction by electrons

More information

RELATIONS BETWEEN THE EQUATORIAL VERTICAL DRIFTS, ELECTROJET, GPS-TEC AND SCINTILLATION DURING THE SOLAR MINIMUM

RELATIONS BETWEEN THE EQUATORIAL VERTICAL DRIFTS, ELECTROJET, GPS-TEC AND SCINTILLATION DURING THE SOLAR MINIMUM RELATIONS BETWEEN THE EQUATORIAL VERTICAL DRIFTS, ELECTROJET, GPS-TEC AND SCINTILLATION DURING THE 2008-09 SOLAR MINIMUM Sovit Khadka 1, 2, Cesar Valladares 2, Rezy Pradipta 2, Edgardo Pacheco 3, and Percy

More information

Chapter 6 Propagation

Chapter 6 Propagation Chapter 6 Propagation Al Penney VO1NO Objectives To become familiar with: Classification of waves wrt propagation; Factors that affect radio wave propagation; and Propagation characteristics of Amateur

More information

Observations of Ionosphere/Troposphere Coupling as Observed by COSMIC

Observations of Ionosphere/Troposphere Coupling as Observed by COSMIC Observations of Ionosphere/Troposphere Coupling as Observed by COSMIC K. F. Dymond, C. Coker, D. E. Siskind, A. C. Nicholas, S. A. Budzien, S. E. McDonald, and C. E. Dymond * Space Science Division, Naval

More information

Real-time HF ray tracing through a tilted ionosphere

Real-time HF ray tracing through a tilted ionosphere RADIO SCIENCE, VOL. 41,, doi:10.1029/2005rs003378, 2006 Real-time HF ray tracing through a tilted ionosphere Xueqin Huang 1 and Bodo W. Reinisch 1 Received 14 September 2005; revised 30 January 2006; accepted

More information

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes Brenton Watkins Geophysical Institute University of Alaska Fairbanks USA watkins@gi.alaska.edu Sergei Maurits and Anton Kulchitsky

More information

Spatial and temporal extent of ionospheric anomalies during sudden stratospheric warmings in the daytime ionosphere

Spatial and temporal extent of ionospheric anomalies during sudden stratospheric warmings in the daytime ionosphere Spatial and temporal extent of ionospheric anomalies during sudden stratospheric warmings in the daytime ionosphere Larisa Goncharenko, Shunrong Zhang, Anthea Coster, Leonid Benkevitch, Massachusetts Institute

More information

Developing systems for ionospheric data assimilation

Developing systems for ionospheric data assimilation Developing systems for ionospheric data assimilation Making a quantitative comparison between observations and models A.C. Bushell, 5 th European Space Weather Week, Brussels, 20 th November 2008 Collaborators

More information

RADIO SCIENCE, VOL. 42, RS4005, doi: /2006rs003611, 2007

RADIO SCIENCE, VOL. 42, RS4005, doi: /2006rs003611, 2007 Click Here for Full Article RADIO SCIENCE, VOL. 42,, doi:10.1029/2006rs003611, 2007 Effect of geomagnetic activity on the channel scattering functions of HF signals propagating in the region of the midlatitude

More information

An Investigation of Local-Scale Spatial Gradient of Ionospheric Delay Using the Nation-Wide GPS Network Data in Japan

An Investigation of Local-Scale Spatial Gradient of Ionospheric Delay Using the Nation-Wide GPS Network Data in Japan An Investigation of Local-Scale Spatial Gradient of Ionospheric Delay Using the Nation-Wide GPS Network Data in Japan Takayuki Yoshihara, Takeyasu Sakai and Naoki Fujii, Electronic Navigation Research

More information

Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation

Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation Zhaonian Zhang, Department of Geomatics Engineering, The University of Calgary BIOGRAPHY Zhaonian Zhang is a MSc student

More information

OPAC-1 International Workshop Graz, Austria, September 16 20, Advancement of GNSS Radio Occultation Retrieval in the Upper Stratosphere

OPAC-1 International Workshop Graz, Austria, September 16 20, Advancement of GNSS Radio Occultation Retrieval in the Upper Stratosphere OPAC-1 International Workshop Graz, Austria, September 16 0, 00 00 by IGAM/UG Email: andreas.gobiet@uni-graz.at Advancement of GNSS Radio Occultation Retrieval in the Upper Stratosphere A. Gobiet and G.

More information

Guide to the application of the propagation methods of Radiocommunication Study Group 3

Guide to the application of the propagation methods of Radiocommunication Study Group 3 Recommendation ITU-R P.1144-6 (02/2012) Guide to the application of the propagation methods of Radiocommunication Study Group 3 P Series Radiowave propagation ii Rec. ITU-R P.1144-6 Foreword The role of

More information

[EN-107] Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model

[EN-107] Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model ENRI Int. Workshop on ATM/CNS. Tokyo, Japan (EIWAC21) [EN-17] Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model + S. Saito N. FUjii Communication

More information

Real-time ionosphere monitoring by three-dimensional tomography over Japan

Real-time ionosphere monitoring by three-dimensional tomography over Japan Real-time ionosphere monitoring by three-dimensional tomography over Japan 1* Susumu Saito, 2, Shota Suzuki, 2 Mamoru Yamamoto, 3 Chia-Hun Chen, and 4 Akinori Saito 1 Electronic Navigation Research Institute,

More information

Global Assimilation of Ionospheric Measurements (GAIM)

Global Assimilation of Ionospheric Measurements (GAIM) Global Assimilation of Ionospheric Measurements (GAIM) Robert W. Schunk Center for Atmospheric and Space Sciences Utah State University Logan, Utah 84322-4405 phone: (435) 797-2978 fax: (435) 797-2992

More information

The Ionosphere and Thermosphere: a Geospace Perspective

The Ionosphere and Thermosphere: a Geospace Perspective The Ionosphere and Thermosphere: a Geospace Perspective John Foster, MIT Haystack Observatory CEDAR Student Workshop June 24, 2018 North America Introduction My Geospace Background (Who is the Lecturer?

More information

The impact of low-latency DORIS data on near real-time VTEC modeling

The impact of low-latency DORIS data on near real-time VTEC modeling The impact of low-latency DORIS data on near real-time VTEC modeling Eren Erdogan, Denise Dettmering, Michael Schmidt, Andreas Goss 2018 IDS Workshop Ponta Delgada (Azores Archipelago), Portugal, 24-26

More information

Activities of the JPL Ionosphere Group

Activities of the JPL Ionosphere Group Activities of the JPL Ionosphere Group On-going GIM wor Submit rapid and final GIM TEC maps for IGS combined ionosphere products FAA WAAS & SBAS analysis Error bounds for Brazilian sector, increasing availability

More information

Satellite-Induced Multipath Analysis on the Cause of BeiDou Code Pseudorange Bias

Satellite-Induced Multipath Analysis on the Cause of BeiDou Code Pseudorange Bias Satellite-Induced Multipath Analysis on the Cause of BeiDou Code Pseudorange Bias Hailong Xu, Xiaowei Cui and Mingquan Lu Abstract Data from previous observation have shown that the BeiDou satellite navigation

More information

Incoherent Scatter Experiment Parameters

Incoherent Scatter Experiment Parameters Incoherent Scatter Experiment Parameters At a fundamental level, we must select Waveform type Inter-pulse period (IPP) or pulse repetition frequency (PRF) Our choices will be dictated by the desired measurement

More information

Comparison of ion densities measured in the topside

Comparison of ion densities measured in the topside Radio Science, Volume 35, Number 5, Pages 1193-1204, September-October 2000 Comparison of ion densities measured in the topside ionosphere at low latitudes and midlatitudes with calculations of ionospheric

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Precise Positioning with NovAtel CORRECT Including Performance Analysis

Precise Positioning with NovAtel CORRECT Including Performance Analysis Precise Positioning with NovAtel CORRECT Including Performance Analysis NovAtel White Paper April 2015 Overview This article provides an overview of the challenges and techniques of precise GNSS positioning.

More information

Monitoring the 3 Dimensional Ionospheric Electron Distribution based on GPS Measurements

Monitoring the 3 Dimensional Ionospheric Electron Distribution based on GPS Measurements Monitoring the 3 Dimensional Ionospheric Electron Distribution based on GPS Measurements Stefan Schlüter 1, Claudia Stolle 2, Norbert Jakowski 1, and Christoph Jacobi 2 1 DLR Institute of Communications

More information

CONVERGENCE TIME IMPROVEMENT OF PRECISE POINT POSITIONING

CONVERGENCE TIME IMPROVEMENT OF PRECISE POINT POSITIONING CONVERGENCE TIME IMPROVEMENT OF PRECISE POINT POSITIONING Mohamed Elsobeiey and Ahmed El-Rabbany Department of Civil Engineering (Geomatics Option) Ryerson University, CANADA Outline Introduction Impact

More information

Influence of Major Geomagnetic Storms Occurred in the Year 2011 On TEC Over Bangalore Station In India

Influence of Major Geomagnetic Storms Occurred in the Year 2011 On TEC Over Bangalore Station In India International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 105-110 International Research Publication House http://www.irphouse.com Influence of Major

More information

analysis of GPS total electron content Empirical orthogonal function (EOF) storm response 2016 NEROC Symposium M. Ruohoniemi (3)

analysis of GPS total electron content Empirical orthogonal function (EOF) storm response 2016 NEROC Symposium M. Ruohoniemi (3) Empirical orthogonal function (EOF) analysis of GPS total electron content storm response E. G. Thomas (1), A. J. Coster (2), S.-R. Zhang (2), R. M. McGranaghan (1), S. G. Shepherd (1), J. B. H. Baker

More information

A Neural Network tool for the interpolation of fof2 data in the presence of sporadic E layer

A Neural Network tool for the interpolation of fof2 data in the presence of sporadic E layer A Neural Network tool for the interpolation of fof data in the presence of sporadic E layer Haris Haralambous, Antonis Ioannou and Harris Papadopoulos Computer Science and Engineering Department, Frederick

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms

Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms RADIO SCIENCE, VOL. 40,, doi:10.1029/2005rs003279, 2005 Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms Attila Komjathy, Lawrence Sparks,

More information

Performance Evaluation of Global Differential GPS (GDGPS) for Single Frequency C/A Code Receivers

Performance Evaluation of Global Differential GPS (GDGPS) for Single Frequency C/A Code Receivers Performance Evaluation of Global Differential GPS (GDGPS) for Single Frequency C/A Code Receivers Sundar Raman, SiRF Technology, Inc. Lionel Garin, SiRF Technology, Inc. BIOGRAPHY Sundar Raman holds a

More information

April - 1 May, GNSS Derived TEC Data Calibration

April - 1 May, GNSS Derived TEC Data Calibration 2333-44 Workshop on Science Applications of GNSS in Developing Countries (11-27 April), followed by the: Seminar on Development and Use of the Ionospheric NeQuick Model (30 April-1 May) 11 April - 1 May,

More information

SWIPPA Products COMMENTS

SWIPPA Products COMMENTS PRODUCT SWIPPA-DLR-CNF-PRO-DAT-TEC SWIPPA-DLR-RST-PRO-MAP-TEC COMMENTS TEC : Total Electron Content Vertical Source: GNSS measurements; SWIPPA-DLR-CNF-PRO-DAT-TMP SWIPPA-DLR-RST-PRO-MAP-TMP TEC-TMP : Total

More information

An Assessment of Mapping Functions for VTEC Estimation using Measurements of Low Latitude Dual Frequency GPS Receiver

An Assessment of Mapping Functions for VTEC Estimation using Measurements of Low Latitude Dual Frequency GPS Receiver An Assessment of Mapping Functions for VTEC Estimation using Measurements of Low Latitude Dual Frequency GPS Receiver Mrs. K. Durga Rao 1 Asst. Prof. Dr. L.B.College of Engg. for Women, Visakhapatnam,

More information

Some of the proposed GALILEO and modernized GPS frequencies.

Some of the proposed GALILEO and modernized GPS frequencies. On the selection of frequencies for long baseline GALILEO ambiguity resolution P.J.G. Teunissen, P. Joosten, C.D. de Jong Department of Mathematical Geodesy and Positioning, Delft University of Technology,

More information

Altimeter Range Corrections

Altimeter Range Corrections Altimeter Range Corrections Schematic Summary Corrections Altimeters Range Corrections Altimeter range corrections can be grouped as follows: Atmospheric Refraction Corrections Sea-State Bias Corrections

More information

Effects of magnetic storms on GPS signals

Effects of magnetic storms on GPS signals Effects of magnetic storms on GPS signals Andreja Sušnik Supervisor: doc.dr. Biagio Forte Outline 1. Background - GPS system - Ionosphere 2. Ionospheric Scintillations 3. Experimental data 4. Conclusions

More information

General Classs Chapter 7

General Classs Chapter 7 General Classs Chapter 7 Radio Wave Propagation Bob KA9BHD Eric K9VIC Learning Objectives Teach you enough to get all the propagation questions right during the VE Session Learn a few things from you about

More information

Significant of Earth s Magnetic Field and Ionospheric Horizontal Gradient to GPS Signals

Significant of Earth s Magnetic Field and Ionospheric Horizontal Gradient to GPS Signals Proceeding of the 2013 IEEE International Conference on Space Science and Communication (IconSpace), 1-3 July 2013, Melaka, Malaysia Significant of Earth s Magnetic Field and Ionospheric Horizontal Gradient

More information

Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel

Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel Overview Introduction Sequential Best-Integer Equivariant Estimation Multi-frequency code carrier linear combinations Galileo:

More information

The European Server for Ionospheric specification and forecasting: Final results from DIAS project

The European Server for Ionospheric specification and forecasting: Final results from DIAS project The European Server for Ionospheric specification and forecasting: Final results from DIAS project A. Belehaki (1), Lj. Cander (2), B. Zolesi (3), J. Bremer (4), C. Juren (5), I. Stanislawska (6), D. Dialetis

More information

An attempt to validate HF propagation prediction conditions over Sub Saharan Africa

An attempt to validate HF propagation prediction conditions over Sub Saharan Africa SPACE WEATHER, VOL. 9,, doi:10.1029/2010sw000643, 2011 An attempt to validate HF propagation prediction conditions over Sub Saharan Africa Mpho Tshisaphungo, 1,2 Lee Anne McKinnell, 1,2 Lindsay Magnus,

More information

Computerized ionospheric tomography analysis of the Combined Ionospheric Campaign

Computerized ionospheric tomography analysis of the Combined Ionospheric Campaign Radio Science, Volume 36, Number 6, Pages 1599-1605, November-December 2001 Computerized ionospheric tomography analysis of the Combined Ionospheric Campaign G S Bust, D S Coco, and T L Gaussiran II Center

More information

Effiziente Umsetzung der Integration der Elektronendichte innerhalb der Ionosphäre entlang des Signalweges

Effiziente Umsetzung der Integration der Elektronendichte innerhalb der Ionosphäre entlang des Signalweges Effiziente Umsetzung der Integration der Elektronendichte innerhalb der Ionosphäre entlang des Signalweges (DFG-Projekt MuSIK) Marco Limberger 1, Urs Hugentober 1, Michael Schmidt 2, Denise Dettmering

More information

Polar Ionospheric Imaging at Storm Time

Polar Ionospheric Imaging at Storm Time Ms Ping Yin and Dr Cathryn Mitchell Department of Electronic and Electrical Engineering University of Bath BA2 7AY UNITED KINGDOM p.yin@bath.ac.uk / eescnm@bath.ac.uk Dr Gary Bust ARL University of Texas

More information

MUF: Spokane to Cleveland October, 2100 UTC

MUF: Spokane to Cleveland October, 2100 UTC MHz What Mode of Propagation Enables JT65/JT9/FT8? Carl Luetzelschwab K9LA August 2017 Revision 1 (thanks W4TV) The purpose of this article is not to rigorously analyze how much improvement each JT mode

More information

To Estimate The Regional Ionospheric TEC From GEONET Observation

To Estimate The Regional Ionospheric TEC From GEONET Observation To Estimate The Regional Ionospheric TEC From GEONET Observation Jinsong Ping(Email: jsping@miz.nao.ac.jp) 1,2, Nobuyuki Kawano 2,3, Mamoru Sekido 4 1. Dept. Astronomy, Beijing Normal University, Haidian,

More information

Outline. GPS RO Overview. COSMIC Overview. COSMIC-2 Overview. Summary 9/29/16

Outline. GPS RO Overview. COSMIC Overview. COSMIC-2 Overview. Summary 9/29/16 Bill Schreiner and UCAR/COSMIC Team UCAR COSMIC Program Observation and Analysis Opportunities Collaborating with the ICON and GOLD Missions Sept 27, 216 GPS RO Overview Outline COSMIC Overview COSMIC-2

More information

Using Radio Occultation Data for Ionospheric Studies

Using Radio Occultation Data for Ionospheric Studies LONG-TERM GOAL Using Radio Occultation Data for Ionospheric Studies Principal Investigator: Christian Rocken Co-Principal Investigators: William S. Schreiner, Sergey V. Sokolovskiy GPS Science and Technology

More information

Characterizing Atmospheric Turbulence and Instrumental Noise Using Two Simultaneously Operating Microwave Radiometers

Characterizing Atmospheric Turbulence and Instrumental Noise Using Two Simultaneously Operating Microwave Radiometers Characterizing Atmospheric Turbulence and Instrumental Noise Using Two Simultaneously Operating Microwave Radiometers Tobias Nilsson, Gunnar Elgered, and Lubomir Gradinarsky Onsala Space Observatory Chalmers

More information

Space Weather influence on satellite based navigation and precise positioning

Space Weather influence on satellite based navigation and precise positioning Space Weather influence on satellite based navigation and precise positioning R. Warnant, S. Lejeune, M. Bavier Royal Observatory of Belgium Avenue Circulaire, 3 B-1180 Brussels (Belgium) What this talk

More information

Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping

Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping DOI.7/s29-8-7-y ORIGINAL ARTICLE Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping Damien J. Allain Æ Cathryn N. Mitchell Received: July 28 / Accepted:

More information

IRI-Plas Optimization Based Ionospheric Tomography

IRI-Plas Optimization Based Ionospheric Tomography IRI-Plas Optimization Based Ionospheric Tomography Onur Cilibas onurcilibas@gmail.com.tr Umut Sezen usezen@hacettepe.edu.tr Feza Arikan arikan@hacettepe.edu.tr Tamara Gulyaeva IZMIRAN 142190 Troitsk Moscow

More information

Medium-scale 4-D ionospheric tomography using a dense GPS network

Medium-scale 4-D ionospheric tomography using a dense GPS network Ann. Geophys., 31, 75 89, 2013 doi:10.5194/angeo-31-75-2013 Author(s) 2013. CC Attribution 3.0 License. Annales Geophysicae Medium-scale 4-D ionospheric tomography using a dense GPS network M. M. J. L.

More information

Global Maps with Contoured Ionosphere Properties Some F-Layer Anomalies Revealed By Marcel H. De Canck, ON5AU. E Layer Critical Frequencies Maps

Global Maps with Contoured Ionosphere Properties Some F-Layer Anomalies Revealed By Marcel H. De Canck, ON5AU. E Layer Critical Frequencies Maps Global Maps with Contoured Ionosphere Properties Some F-Layer Anomalies Revealed By Marcel H. De Canck, ON5AU In this column, I shall handle some possibilities given by PROPLAB-PRO to have information

More information