INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) SOLAR POWERED SYNCHRONOUS BUCK CONVERTER FOR LOW VOLTAGE APPLICATIONS

Size: px
Start display at page:

Download "INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) SOLAR POWERED SYNCHRONOUS BUCK CONVERTER FOR LOW VOLTAGE APPLICATIONS"

Transcription

1 INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) International Journal of Electrical Engineering and Technology (IJEET), ISSN (Print), ISSN (Print) ISSN (Online) Volume 5, Issue 5, May (2014), pp IAEME: Journal Impact Factor (2014): (Calculated by GISI) IJEET I A E M E SOLAR POWERED SYNCHRONOUS BUCK CONVERTER FOR LOW VOLTAGE APPLICATIONS Lopamudra Mitra Asst. Professor, Dept. of Electrical & Electronics Engineering, Silicon Institute of Technology, Bhubaneswar, India. ABSTRACT The current resurgence of interest in the use of renewable energy is driven by the need to reduce the high environmental impact of fossil based energy systems. Future sustainability depends on use of different renewable energy sources. A photovoltaic generation system is becoming one of the important renewable energy due to absence of fuel cost, low maintenance and environment friendliness. This paper presents synchronous buck converter based PV energy system for portable applications; especially low power device applications such as charging mobile phone batteries are considered. Here, the converter topology used uses soft switching technique to reduce the switching losses which is found prominently in the conventional buck converter, thus efficiency of the system is improved and the heating of MOSFETs due to switching losses reduce and the MOSFETs have a longer life. The DC power extracted from the PV array is directly fed to the synchronous buck converter to suit the load requirements. The whole system is simulated using MATLAB-Simulink environment. Keywords: MOSFET, ZVS, ZCS, Synchronous Buck Converter, PV Module. I. INTRODUCTION India imports more than 80% of its oil; hence it has a huge dependency on external sources for development. With depleting fossil reserves worldwide, there has been a threat to India s future energy security. Hence, the government of India is investing huge capital on development of alternative sources of energy such as solar, small hydroelectric, biogas and wind energy systems apart from the conventional nuclear and large hydroelectric systems. For environmental concern and increase of peak power demand PV solar cells has become an alternative energy source for green and clean power generation. Solar cells are steadily gaining 74

2 acceptance in our society. These are usually adapted for either grid connected or standalone applications. It is becoming a boon for the rural community for whom electricity had become only an imaginary thing. Due to a sudden up rise of mobile usage, and it s cheaper availability, it has become an affordable thing to have. But its recharging is cause of concern for the rural counterparts for whom electricity is not so abundant. These lesser electrical demand can be met with these PV solar cells. But these PV cells are not so popular due to their high initial cost. But due to stiff competition among the manufacturers these cost are also scaling down. After building such an expensive renewable energy system, the user naturally wants to operate the PV array at its highest energy conversion output by continuously utilizing the solar power developed by it at different time. For low voltage applications such as mobile charging and laptop power supply etc, the output of the PV array should be regulated in order to match the dynamic energy requirement of the load [3]. In addition, the modulation process should be very efficient so that the system losses can be decreased considerably. For this efficient regulation of DC voltage, synchronous buck converter is proposed in the paper. 1.1 PV ENERGY SYSTEMS FOR PORTABLE APPLICATIONS This energy generation system consists mostly of capacities below 100W. They have a huge range of applications ranging from powering calculators, educational toys, solar lamps, traffic signals, mobile chargers, etc. They are usually made up of poly crystalline material of solar cells due to their higher energy density over a small area and fits in the portable applications. However, this system is not highly commercialised due to battery technology required to store the power generated and high cost of poly crystalline silicon solar cells. They generally use lithium ion batteries [4] to store energy due to its high energy capacity and light in weight. These systems come handy when power is required on move and has a potential to revolutionise the current era of electronics with free power on move. The simple mobile charger based on PV energy system consists of a small solar module generally made of poly crystalline silicon, connected to the electrical load through a buck/boost converter for regulation of voltage at the load end [5]. This regulation is usually done using a feedback loop that senses the output voltage and tries to keep it at the desired output voltage required.[21]. However, higher input voltages and lower output voltages have brought about very low duty cycles, increasing switching losses and decreasing conversion efficiency. So in this paper, the efficiency of the synchronous buck converter is optimised by eliminating switching losses using soft switching technique. The voltage-mode soft-switching method that has attracted most interest in recent years is the zero voltage transition [1],[2], [4]-[8], [10], [11], [13]-[20], [22]-[24], [26]-[27], [29].This is because of its low additional conduction losses and because its operation is closest to the PWM converters. The auxiliary circuit of the ZVT converters is activated just before the main switch is turned on and ceases after it is accomplished. The auxiliary circuit components in this circuit have lower ratings than those in the main power circuit because the auxiliary circuit is active for only a fraction of the switching cycle; this allows a device that can turn on with fewer switching losses than the main switch to be used as the auxiliary switch. Various converter topologies have been proposed in the literature [4]-[6]. In the conventional buck converter usually switching losses are higher due to high switching frequency of operation of MOSFET and losses in the freewheeling diode is more due to larger forward voltage drop (0.4V). Consequently, it reduces the overall efficiency of the converter systems (typically less than 90%). The possible solutions are to increase the efficiency of the converter system is described as follows. First solution is to replace the freewheeling diode by MOSFET switch. Here MOSFET acts as a rectifier. So forward voltage drop in the switch can be reduced. Second solution is to incorporate the auxiliary MOSFET across the main MOSFET along with resonant circuits (Lr& Cr) 75

3 [7].This combinations constitute a soft switching technique, so that the switching loss can be reduced in the main switch. The resultant dc-dc converter topology is said to be synchronous buck converter. Here main MOSFET s is switched on and off synchronously with the operation of the MOSFET switch s2.[24-25] In this paper an attempt has been taken to analyze such converter for PV energy system based low power applications especially to charge the batteries used in mobile phones. This converter topology enables to provide simple and cost effective solution in the charging circuit. This converter using soft switching technique for low power application [20-25 ] is found in literatures but in this paper this converter is directly connected to the modelled PV module for low voltage application not known to be present in literature is presented. 1.2 OPERATION OF A SYNCHRONOUS BUCK CONVERTER Fig 1: Synchronous Buck Converter. The operation of synchronous buck converter with ZVS and ZCS technique for reducing the switching loss of main switch is described as follows [9] Mode 1: Before starting of this mode diode of S 2 was conducting and at time t1, mosfet S 1 is turned on through ZCT which is caused by the current passing through L r. In this mode Lr and Cr are resonance with each other and it ends when diode of S 2 stops conducting and when current through L r reaches I 0. Fig 2: Mode I Mode2: L r and C r continue to resonate. At t 1 the synchronous switch S 2 is turned on under ZVS. This mode ends when S 2 is switched of and i Lr reaches its maximum value. 76

4 Fig 3: Mode 2 Mode 3: At the starting of this mode, i Lr reaches its peak value i Lrmax. Since i Lr is more than load current I 0, the capacitor C s will be charged and discharge through body diode of main switch S, which leads to conduction of body diode. This mode ends when resonant current i Lr falls to load current I 0. So current through body diode of main switch S becomes zero which results turned off of body diode. At the same time the main switch S is turned on under ZVS. The voltage and current expressions for this mode are: I Lr = I 0 ; V Cr = V Cr1 ; V Cr is some voltage which can found basing on other modes. Fig 4: Mode3 Mode 4: In this mode, the main switch is turned on under ZVS. During this mode growth rate of i S is determined by the resonance between L r and C r. The resonance process continues and i Lr starts to decrease. This mode ends when i Lr falls to zero and S 1 is turned off through ZCS. Fig 5: Mode4 77

5 Mode 5: In the previous mode, S1 is turned off. The body diode of S1 begins to conduct because of discharging of Cr. The resonant current ilr starts increasing in reverse direction and finally becomes zero. The mode ends when body diode of S1 is turned off. Fig 6: Mode 5 Mode 6: Since in the previous mode, body diode of S1 is turned off, the MOSFET S alone carries the current now. There is no resonance in this mode and circuit operation is same as conventional PWM buck converter. Fig 7: Mode 6 Mode 7: At starting of this mode, the main switch S is turned off with ZVS. The schotkey diode D starts conducting. The resonant energy stored in the capacitor Cr starts discharging to the load through the high frequency schottky diode DS for a very short period of time, hence body diode conduction losses and drop in output voltage is too low. This mode finishes when Cr is fully discharged.[26] Fig 8: Mode 7 78

6 Mode 8: Before starting of this mode, the body diode of switch S2 is conducting. But as soon as resonant capacitor Cr is fully discharged, the schottky diode is turned off under ZVS. During this mode, the converter operates like a conventional PWM buck converter until the switch S1 is turned on in the next switching cycle. II. MODELLING OF PV ARRAY Fig 9: Mode 8 The use of equivalent electric circuits makes it possible to model characteristics of a PV cell. The method used here is implemented in MATLAB Simulink for simulations. The same modeling technique is also applicable for modeling a PV module. The simplest model of a PV cell is shown as an equivalent circuit below that consists of an ideal current source in parallel with an ideal diode. The current source represents the current generated by photons (often denoted as Iph or IL), and its output is constant under constant temperature and constant incident radiation of light. Fig 10: Equivalent Circuit of ideal cell with load There are two key parameters frequently used to characterize a PV cell. Shorting together the terminals of the cell, as shown in Figure 5, the photon generated current will follow out of the cell as a short-circuit current (I sc ). Thus, I ph = I sc. As shown in Figure, when there is no connection to the PV cell (open-circuit), the photon generated current is shunted internally by the intrinsic p-n junction diode. This gives the open circuit voltage (V oc ). The PV module or cell manufacturers usually provide the values of these parameters in their datasheets. 79

7 The output current (I) from the PV cell is found by applying the Kirchoff s current law (KCL) on the equivalent circuit shown in Figure.10. I = Isc Id (1.1) where: Isc is the short-circuit current that is equal to the photon generated current, and Id is the current shunted through the intrinsic diode. The diode current Id is given by the Shockley s diode equation: where: Io is the reverse saturation current of diode (A), q is the electron charge ( C), Vd is the voltage across the diode (V), k is the Boltzmann s constant ( J/K), T is the junction temperature in Kelvin (K) Id = Io exp( qvd /kt 1) (1.2) Replacing Id of the equation (1.1) by the equation (1.2) gives the current-voltage relationship of the PV cell. Ι = Isc Io (exp(qv/kt) 1) (1.3) where: V is the voltage across the PV cell, and I is the output current from the cell. The reverse saturation current of diode (Io) is constant under the constant temperature and found by setting the open-circuit condition as shown in Figure 6. Using the equation (1.3), let I = 0 (no output current) and solve for Io. 0 = I sc I o(exp (qvsc / kt ) 1) (1.4) I sc= I o(exp (qvsc / kt ) 1) (1.5) I o = I sc/(exp (qvsc / kt ) 1) (1.6) To a very good approximation, the photon generated current, which is equal to Isc, is directly proportional to the irradiance, the intensity of illumination, to PV cell. Thus, if the value, Isc, is known from the datasheet, under the standard test condition, Go=1000W/m2 at the air mass (AM) = 1.5, then the photon generated current at any other irradiance, G (W/m2), is given by: I scig = (G/Go) I scigo (1.7) Figure shows that current and voltage relationship (often called as an I-V curve) of an ideal PV cell simulated by MATLAB using the simplest equivalent circuit model. The PV cell output is both limited by the cell current and the cell voltage, and it can only produce a power with any combinations of current and voltage on the I-V curve. It also shows that the cell current is proportional to the irradiance. 80

8 module current module voltage Fig 11: I-V Characteristics of a PV Cell A single PV cell produces an output voltage less than 1V, about 0.6V for crystalline silicon (Si) cells, thus a number of PV cells are connected in series to archive a desired output voltage. When series-connected cells are placed in a frame, it is called as a module. Most of commercially available PV modules with crystalline-si cells have either 36 or 72 series-connected cells. A 36-cell module provides a voltage suitable for charging a 12V battery, and similarly a 72-cell module is appropriate for a 24V battery. This is because most of PV systems used to have backup batteries, however today many PV systems do not use batteries; for example, grid-tied systems. Furthermore, the advent of high efficiency DC-DC converters has alleviated the need for modules with specific voltages. When the PV cells are wired together in series, the current output is the same as the single cell, but the voltage output is the sum of each cell voltage, as shown in Figure 12. Fig 12: PV Cells connected in series to make up a PV Module Also, multiple modules can be wired together in series or parallel to deliver the voltage and current level needed. The group of modules is called an array. III. SIMULATION RESULTS AND DISCUSSIONS The simple diode equivalent model is take into considered and PV module is modelled and various effects of temperature and irradiance are shown below. 81

9 module current module voltage Fig 13: I-V Characteristics with varying Irradiance for G =400 W/m2, 600W/m2 and 1000 W/m modulecurent module voltage Fig 14: I-V Characteristics with varying Temperature for T=25ºC, 35ºC and 50 ºC The following parameters are considered for design: Vin = 30V,Vout = 12volts, Iload = 1 amps Fsw = 200 khz Duty ratio (D) = Vin / Vout = Assume Iripple = 0.3*Iload (typically 30%). The switching frequency is selected at 200 khz. The current ripple will be limited to 30% of maximum load. Fig 15: Simulink model of synchronous buck converter without PV 82

10 Fig 16: Output Voltage of synchronous buck converter not connected to PV Fig 17: Output current of synchronous buck converter not connected to PV Fig 18: Voltage across main switch S 83

11 Fig 19: Current across switch S Fig 20: Voltage across switch S1 Fig 21: Current across switch S1 84

12 Fig 22: Current across switch S2 The voltage waveform of MOSFET S in fig. reveals the zero voltage switching (ZVS), which means the MOSFET is switched on when the voltage across MOSFET is zero, thereby causing zero power loss across MOSFET S. The MOSFET S1 along with resonant capacitor (Cr) and resonant inductor (Lr) is used as an auxiliary circuit for causing ZVS for MOSFET S. The waveforms shown in fig.18 and fig.19&20 describe the current and voltage across MOSFET S1 indicates the zero current turn off of MOSFET S1 (ZCT). It is turned off by ZCT because of resonant inductor. Fig 23: Synchronous buck converter connected with PV. 85

13 Fig 24: Output Current of synchronous buck converter connected with PV Fig 25: Output voltage of synchronous buck converter connected with PV IV. CONCLUSION The waveforms depict the soft switching phenomena. This converter is used as a DC-DC converter between PV array and load. Since the switching and conduction losses s are reduced, the system can be used as a high efficient portable device. Besides the main switch ZVS turned-on and turned-off, the auxiliary switch ZCS turned-on and turned-off, the synchronous switch also turned-on and turned-off under ZVS. Hence switching losses are reduced and the additional voltage and current stresses on the main devices do not take place, and the auxiliary devices are subjected to allowable voltage and current values. In this paper the simulation is done for two cases i.e without connecting the PV module and with connection of the PV module in MATLAB Simulink environment and for input voltage of 30V the output voltage of 12V is obtained which can be used for any low power application fed from PV module and in most cases the of PV is around 15V to 40V depending on temperature and irradiance, hence this converter connected with PV can be used for portable applications. 86

14 REFERENCES [1]. L.Yang and C.Q.Lee, Analysis and design of boost zero-voltagetransition PWM converter, in Proc. IEEE APEC Conf. 1993, pp [2]. G.Hua, C.S.Leu, Y.Jiang, and F.C.Lee, Novel zero-voltagetransitionpwm converters, IEEE Trans. Power Electron., vol.9, no.2, pp , Mar [3]. A.J.Stratakos, S.R.sanders, and R.W.Broderson, A low-voltagecmosdc-dc converter for a portable battery-operated system, in Proc. Power Electronics Specialist conf., vol.1, Jun. 1994, pp [4]. A.V.da Costa, C.H.G.Treviso, and L.C.deFreitas, A new ZCSZVS- PWM boost converter with unity power factor operation, in Proc. IEEE APEC Conf., 1994, pp [5]. N.P.Filho, V.J.Farias, and L.C.deFreitas, A novel family of DCDC PWM converters uses the self resonance principle, in Proc.IEEE PESC Conf., 1994, pp [6]. G. Moschopoulos, P.Jain, and G.Joos, A novel zero-voltage switched PWM boost converter, in Proc. IEEE PESC Conf.,1995, pp [7]. Elasser and D. A. Torrey, Soft switching active snubbers for dc/dc converters, IEEE Trans. Power Electron., vol. 11, no. 5, pp , [8]. K.M.Smith and K.M.Smedly, A comparison of voltage-mode soft switching methods for PWM converters, IEEE Trans. Power Electron., vol.12, no.2, pp , Mar [9]. O.Djekic, M.Brkovic, Synchronous rectifiers vs. schottky diodes in a buck topology for low voltage applications, Power Electronics Specialists Conference, PESC '97 Record, 28 th Annual IEEE, June 1997, vol.2, pp [10]. Y.Xi, P.K.Jain, G.Joos, and H.Jin, A zero voltage switching forward converter topology, in Proc. IEEE INTELEC conf.,1997, pp [11]. C.J.Tseng and C.L.Chen, Novel ZVT-PWM converter with active snubbers, IEEE Trans. Power Electron., vol.13, no.5, pp , Sept [12]. O.Djekic, M. Brkovic, A. Roy High frequency synchronous buck converter for low voltage applications. IEEE PESC 98 Record, vol.2, pp [13]. G. Moschopoulos, P.Jain, G.Joos, and Y.F.Liu, Zero voltage switched PWM boost converter with an energy feedforward auxiliary circuit, IEEE Trans., Power Electron., vol.14, no.4, pp , Jul [14]. T.W.Kim, H.S.Kim, and H.W.Ahn, An improved ZVT PWM boost converter, in Proc. IEEE PESC Conf., 2000, pp [15]. J.H.Kim, D.Y.Lee, H.S.Choi, and B.H.Cho, High performance boost PFP with an improved ZVT converter, in Proc., IEEE APEC Conf., 2001, pp [16]. N.Jain, P.Jain, and G.Joos, Analysis of a zero voltage transition boost converter using a soft switching auxiliary circuit with reduced conduction losses, in Proc. IEEE PESC Conf., 2001,pp [17]. M.L.Martins, H.A.Grundling, H.Pinheiro, J.R.Pinheiro, and H.L.Hey, A ZVT PWM boost converter using auxiliary resonant source, in Proc. IEEE APEC Conf., 2002, pp [18]. C.M.Wang, Zero-voltage-transition PWM dc-dc converters using a new zero-voltage switch cell, in Proc. IEEE INTELEC Conf., 2003, pp [19]. M.L. Martins, J.L. Russi, H. Pinheiro, H.A. Grundling, H.L. Hey, Unified design for ZVT PWM converters with resonant auxiliary circuit, Electric power applications, IEE proceedings, vol.151, issue 3, 8 May 2004, pp [20]. S. Kaewarsa, C. Prapanavarat, U. Yangyuen, An improved zerovoltage-transition technique in a single-phase power factor correction circuit, International conference on power system technology POERCON 2004, Nov. 2004, vol.1, pp

15 [21]. M.D.Mulligan, B.Broach, and Thomas H.Lee, A constantfrequency Method for Improving light-load efficiency in synchronous buck converters, IEEE Power Electronics letters, vol.3, no.1, pp.24-29, March [22]. M.L.Martins, J.L.Russi, H.L.Hey, Zero-voltage transition PWM converters: a classification methodology, IEEE proceedings on electric power applications, 4th March 2005, vol.152, no.2, pp [23]. W.Huang and G. Moschopoulos, A new family of zero-voltage transition PWM converters with dual active auxiliary circuits, IEEE Trans. Power Electron., vol.21, no.2, pp , March2006. [24]. V.Yousefzadeh and D.Maksimovic, Sensorless optimization of dead times in dc-dc converters with synchronous rectifiers, IEEE Trans. Power Electronics, vol.21, no.4, pp , July [25]. A.K. Panda, Aroul.K, A Novel Technique to reduce the Switching losses in a synchronous buck converter IEEE PEDES Conference, 12th-15th Dec2006, IIT, Delhi, pp.1-5. [26] B.ChittiBabu, S.R.Samantaray, Nikhil Saraogi, M.V. Ashwin Kumar, R. Sriharsha and S, Karmaker Synchronous Buck Converter based PV Energy System for Portable Applications IEEE Students Symposium, 14 th -16 th January 2011,IIT Delhi, pp1-6. [27] Jadhav Sumedh Damodhar and Phatale Aruna Prashant, Microcontroller Based Photovoltaic Battery Charging System with Buck Converter, International Journal of Electrical Engineering & Technology (IJEET), Volume 3, Issue 1, 2012, pp , ISSN Print : , ISSN Online: [28] Ramjee Prasad Gupta and Dr. Upendra Prasad, Design of a Pwm Based Buck Boost Dc/Dc Converter with Parasitic Resistance Suitable for Led Based Underground Coalmines Lighting System, International Journal of Electrical Engineering & Technology (IJEET), Volume 3, Issue 3, 2012, pp , ISSN Print : , ISSN Online: [29] Arun Kumar Pandey, Prof. S. K. Misra snd Sumit Kumar Misra, Transient Response Improvement of Buck Converter, International Journal of Electrical Engineering & Technology (IJEET), Volume 4, Issue 1, 2013, pp , ISSN Print : , ISSN Online:

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A. K. Panda and Aroul. K Abstract--This paper proposes a zero-voltage transition (ZVT) PWM synchronous buck converter, which

More information

Synchronous Buck Converter based PV Energy System for Portable Applications

Synchronous Buck Converter based PV Energy System for Portable Applications Synchronous Buck Converter based PV Energy System for Portable Applications B.ChittiBabu, S.R.Samantaray, Nikhil Saraogi, M.V. Ashwin Kumar, R. Sriharsha and S, Karmaker Department of Electrical Engineering

More information

DESIGN AND IMPLEMENTATION OF SOLAR POWERED WATER PUMPING SYSTEM

DESIGN AND IMPLEMENTATION OF SOLAR POWERED WATER PUMPING SYSTEM DESIGN AND IMPLEMENTATION OF SOLAR POWERED WATER PUMPING SYSTEM P. Nisha, St.Joseph s College of Engineering, Ch-119 nishasjce@gmail.com,ph:9940275070 Ramani Kalpathi, Professor, St.Joseph s College of

More information

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters 1 Shivaraj Kumar H.C, 2 Noorullah Sherif, 3 Gourishankar C 1,3 Asst. Professor, EEE SECAB.I.E.T Vijayapura 2 Professor,

More information

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit RESEARCH ARTICLE OPEN ACCESS High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit C. P. Sai Kiran*, M. Vishnu Vardhan** * M-Tech (PE&ED) Student, Department of EEE, SVCET,

More information

Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System

Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System Patil S.N. School of Electrical and Electronics. Engg. Singhania University, Rajashthan, India Dr. R. C. Prasad 2 Prof.

More information

A Single Switch DC-DC Converter for Photo Voltaic-Battery System

A Single Switch DC-DC Converter for Photo Voltaic-Battery System A Single Switch DC-DC Converter for Photo Voltaic-Battery System Anooj A S, Lalgy Gopi Dept Of EEE GEC, Thrissur ABSTRACT A photo voltaic-battery powered, single switch DC-DC converter system for precise

More information

Comparison Of DC-DC Boost Converters Using SIMULINK

Comparison Of DC-DC Boost Converters Using SIMULINK IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 34-42 www.iosrjournals.org Comparison Of DC-DC Boost Converters Using SIMULINK Anupa Ann Alex

More information

Simulink Based Analysis and Realization of Solar PV System

Simulink Based Analysis and Realization of Solar PV System Energy and Power Engineering, 2015, 7, 546-555 Published Online October 2015 in SciRes. http://www.scirp.org/journal/epe http://dx.doi.org/10.4236/epe.2015.711051 Simulink Based Analysis and Realization

More information

A Solar Powered Water Pumping System with Efficient Storage and Energy Management

A Solar Powered Water Pumping System with Efficient Storage and Energy Management A Solar Powered Water Pumping System with Efficient Storage and Energy Management Neena Thampi, Nisha R Abstract This paper presents a standalone solar powered water pumping system with efficient storage

More information

Anfis Based Soft Switched Dc-Dc Buck Converter with Coupled Inductor

Anfis Based Soft Switched Dc-Dc Buck Converter with Coupled Inductor IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p-ISSN: 2278-8735 PP 45-52 www.iosrjournals.org Anfis Based Soft Switched Dc-Dc Buck Converter with Coupled Inductor

More information

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 2 (February 2014), PP.84-88 A Pv Fed Buck Boost Converter Combining Ky

More information

NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS

NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 5, September October, 2016, pp.62 69, Article ID: IJEET_07_05_006 Available online at http://www.iaeme.com/ijeet/issues.asp?jtypeijeet&vtype7&itype5

More information

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN(P): 225-155X; ISSN(E): 2278-943X Vol. 4, Issue 3, Jun 214, 75-84 TJPRC Pvt. Ltd. ZERO VOLTAGE TRANSITION SYNCHRONOUS

More information

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER Kanimozhi G. and Sreedevi V. T. School of Electrical Engineering, VIT University, Chennai, India E-Mail: kanimozhi.g@vit.ac.in ABSTRACT This paper presents

More information

HIGH STEP UP CONVERTER FOR SOLAR POWER USING FLC

HIGH STEP UP CONVERTER FOR SOLAR POWER USING FLC HIGH STEP UP CONVERTER FOR SOLAR POWER USING FLC 1 Priya.M, 2 Padmashri.A, 3 Muthuselvi.G, 4 Sudhakaran.M, 1,2 Student, Dept of EEE, GTEC Engineering college, vellore, 3 Asst prof, Dept of EEE, GTEC Engineering

More information

A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters

A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters Naga Brahmendra Yadav Gorla and N. Lakshmi Narasamma auxiliary switches are not soft switched. A new active

More information

ZVT Buck Converter with Synchronous Rectifier

ZVT Buck Converter with Synchronous Rectifier IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 8 February 217 ISSN (online): 2349-784X ZVT Buck Converter with Synchronous Rectifier Preenu Paul Assistant Professor Department

More information

Design and Simulation of Soft Switched Converter with Current Doubler Scheme for Photovoltaic System

Design and Simulation of Soft Switched Converter with Current Doubler Scheme for Photovoltaic System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. III (Jan Feb. 2015), PP 73-77 www.iosrjournals.org Design and Simulation

More information

VERY HIGH VOLTAGE BOOST CONVERTER BASED ON BOOT STRAP CAPACITORS AND BOOST INDUCTORS USED FOR PHOTOVOLTAIC APPLICATION USING MPPT

VERY HIGH VOLTAGE BOOST CONVERTER BASED ON BOOT STRAP CAPACITORS AND BOOST INDUCTORS USED FOR PHOTOVOLTAIC APPLICATION USING MPPT INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

Llc Resonant Converter for Battery Charging Applications

Llc Resonant Converter for Battery Charging Applications The International Journal Of Engineering And Science (IJES) Volume 3 Issue 3 Pages 37-44 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Llc Resonant Converter for Battery Charging Applications 1 A.Sakul

More information

Performance Enhancement of a Novel Interleaved Boost Converter by using a Soft-Switching Technique

Performance Enhancement of a Novel Interleaved Boost Converter by using a Soft-Switching Technique Performance Enhancement of a Novel Interleaved Boost Converter by using a Soft-Switching Technique 1 M. Penchala Prasad 2 Ch. Jayavardhana Rao M.Tech 3 Dr. Venu gopal. N M.E PhD., P.G Scholar, Associate

More information

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 52 CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM 3.1 INTRODUCTION The power electronics interface, connected between a solar panel and a load or battery bus, is a pulse width modulated

More information

Ghatkesar, Ranga Reddy, India.

Ghatkesar, Ranga Reddy, India. ISSN 2319-8885 Vol.03,Issue.36 November-2014, Pages:7271-7276 www.ijsetr.com Simulation of a ZVS Interleaved Boost DC-DC Converter by using Photovoltaic System PREM KUMAR 1, DR. V.BALA KRISHNA REDDY 2

More information

A NEW ZVT ZCT PWM DC-DC CONVERTER

A NEW ZVT ZCT PWM DC-DC CONVERTER A NEW ZVT ZCT PWM DC-DC CONVERTER 1 SUNITA, 2 M.S.ASPALLI Abstract A new boost converter with an active snubber cell is proposed. The active snubber cell provides main switch to turn ON with zero-voltage

More information

Single-Phase Power Factor Correction Circuit Using Zero-Voltage-Transition Technique

Single-Phase Power Factor Correction Circuit Using Zero-Voltage-Transition Technique Single-Phase Power Factor Correction Circuit Using Zero-Voltage-Transition Technique A.Dhanumjaya Apparao Assistant Professor, Department of Electrical and Electronics Engineering, ANITS College, Sangivalasa,

More information

Design of Power Inverter for Photovoltaic System

Design of Power Inverter for Photovoltaic System Design of Power Inverter for Photovoltaic System Avinash H. Shelar 1, Ravindra S. Pote 2 1P. G. Student, Dept. of Electrical Engineering, SSGMCOE, M.S. India 2Associate Prof. 1 Dept. of Electrical Engineering,

More information

MODELING AND EVALUATION OF SOLAR PHOTOVOLTAIC EMULATOR BASED ON SIMULINK MODEL

MODELING AND EVALUATION OF SOLAR PHOTOVOLTAIC EMULATOR BASED ON SIMULINK MODEL MODELING AND EVALUATION OF SOLAR PHOTOVOLTAIC EMULATOR BASED ON SIMULINK MODEL Ahmad Saudi Samosir Department of Electrical Engineering, University of Lampung, Bandar Lampung, Indonesia E-Mail: ahmad.saudi@eng.unila.ac.id

More information

Research Article A Novel Soft-Switching Synchronous Buck Converter for Portable Applications

Research Article A Novel Soft-Switching Synchronous Buck Converter for Portable Applications Power Management Electronics Volume 28, Article ID 862, 9 pages doi:./28/862 Research Article A Novel oft-witching ynchronous Buck Converter for Portable Applications Anup Kumar Panda, wapnajit Pattnaik,

More information

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR Naci GENC 1, Ires ISKENDER 1 1 Gazi University, Faculty of Engineering and Architecture, Department of Electrical

More information

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System Vahida Humayoun 1, Divya Subramanian 2 1 P.G. Student, Department of Electrical and Electronics Engineering,

More information

MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS

MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS Shivaraja L M.Tech (Energy Systems Engineering) NMAM Institute of Technology Nitte, Udupi-574110 Shivaraj.mvjce@gmail.com ABSTRACT

More information

Zero-Voltage and Zero-Current Switching Buck-Boost Converter for PV Applications

Zero-Voltage and Zero-Current Switching Buck-Boost Converter for PV Applications Bulletin of Electrical Engineering and Informatics Vol. 3, No. 4, December 214, pp. 239~244 ISSN: 289-3191 239 Zero-Voltage and Zero-Current Switching Buck-Boost Converter for PV Applications Athulya P

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

Existing system: The Master of IEEE Projects. LeMenizInfotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry

Existing system: The Master of IEEE Projects. LeMenizInfotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry Secondary-Side-Regulated Soft-Switching Full-Bridge Three-Port Converter Based on Bridgeless Boost Rectifier and Bidirectional Converter for Multiple Energy Interface Introduction: Storage battery capable

More information

HIGH STEP UP SWITCHED CAPACITOR INDUCTOR DC VOLTAGE REGULATOR

HIGH STEP UP SWITCHED CAPACITOR INDUCTOR DC VOLTAGE REGULATOR INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM4) 30-3, December, 204, Ernakulam,

More information

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications

More information

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application Vol.3, Issue.1, Jan-Feb. 2013 pp-530-537 ISSN: 2249-6645 Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application B.D.S Prasad, 1 Dr. M Siva Kumar 2 1 EEE, Gudlavalleru Engineering

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal

International Journal of Engineering Research-Online A Peer Reviewed International Journal RESEARCH ARTICLE ISSN: 2321-7758 DESIGN AND DEVELOPMENT OF A NEW SINGLE-PHASE SOFT SWITCHING POWER FACTOR CORRECTION CONVERTER THELMA NGANGOM 1, PRIYALAKSHMI KSHETRIMAYUM 2 1,2 electrical Engineering Department,

More information

,, N.Loganayaki 3. Index Terms: PV multilevel inverter, grid connected inverter, coupled Inductors, self-excited Induction Generator.

,, N.Loganayaki 3. Index Terms: PV multilevel inverter, grid connected inverter, coupled Inductors, self-excited Induction Generator. Modeling Of PV and Wind Energy Systems with Multilevel Inverter Using MPPT Technique,, N.Loganayaki 3 Abstract -The recent upsurge is in the demand of hybrid energy systems which can be accomplished by

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY ANALYSIS OF MAXIMUM POWER POINT TRACKING FOR PHOTOVOLTAIC POWER SYSTEM USING CUK CONVERTER Miss.Siljy N. John *, Prof.P. Sankar

More information

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India. A Closed Loop for Soft Switched PWM ZVS Full Bridge DC - DC Converter S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP-517583, India. Abstract: - This paper propose soft switched PWM ZVS full bridge DC to

More information

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR Josna Ann Joseph 1, S.Bella Rose 2 PG Scholar, Karpaga Vinayaga College of Engineering and Technology, Chennai 1 Professor, Karpaga Vinayaga

More information

A Novel Soft Switching Lcl-T Buck Dc Dc Converter System

A Novel Soft Switching Lcl-T Buck Dc Dc Converter System Vol.3, Issue.1, Jan-Feb. 2013 pp-574-579 ISSN: 2249-6645 A Novel Soft Switching Lcl-T Buck Dc Dc Converter System A Mallikarjuna Prasad, 1 D Subbarayudu, 2 S Sivanagaraju 3 U Chaithanya 4 1 Research Scholar,

More information

Optimization of Different Solar Cell Arrangements Using Matlab/Simulink for Small Scale Systems

Optimization of Different Solar Cell Arrangements Using Matlab/Simulink for Small Scale Systems Optimization of Different Solar Cell Arrangements Using Matlab/Simulink for Small Scale Systems Sunil Kumar Saini, Shelly Vadhera School of Renewable Energy & Efficiency, NIT-Kurukshetra, Haryana, India

More information

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors B. Ramu M.Tech (POWER ELECTRONICS) EEE Department Pathfinder engineering college Hanmakonda, Warangal,

More information

Chapter 6 Soft-Switching dc-dc Converters Outlines

Chapter 6 Soft-Switching dc-dc Converters Outlines Chapter 6 Soft-Switching dc-dc Converters Outlines Classification of soft-switching resonant converters Advantages and disadvantages of ZCS and ZVS Zero-current switching topologies The resonant switch

More information

A New Soft Switching ZCS and ZVS High Frequency Boost Converter with an HI-Bridge Auxiliary Resonant Circuit to Drive a BLDC Motor

A New Soft Switching ZCS and ZVS High Frequency Boost Converter with an HI-Bridge Auxiliary Resonant Circuit to Drive a BLDC Motor International Journal of Scientific and Research Publications, Volume 4, Issue 7, July 2014 1 A New Soft Switching ZCS and ZVS High Frequency Boost Converter with an HI-Bridge Auxiliary Resonant Circuit

More information

Improving the efficiency of PV Generation System Using Soft- Switching Boost Converter with SARC

Improving the efficiency of PV Generation System Using Soft- Switching Boost Converter with SARC International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 10 (September 2012), PP. 35-46 Improving the efficiency of PV Generation

More information

ISSN Vol.07,Issue.06, July-2015, Pages:

ISSN Vol.07,Issue.06, July-2015, Pages: ISSN 2348 2370 Vol.07,Issue.06, July-2015, Pages:0828-0833 www.ijatir.org An improved Efficiency of Boost Converter with Voltage Multiplier Module for PV System N. NAVEENKUMAR 1, E. CHUDAMANI 2, N. RAMESH

More information

Closed Loop Controlled ZV ZCS Interleaved Boost Converter System

Closed Loop Controlled ZV ZCS Interleaved Boost Converter System Closed Loop Controlled ZV ZCS Interleaved Boost Converter System M.L.Bharathi, and Dr.D.Kirubakaran Abstract This paper deals with modeling and simulation of closed loop controlled interleaved boost converter.

More information

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications. IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 53-60 www.iosrjen.org Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications. Sangeetha U G 1 (PG Scholar,

More information

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application ISSN (Online) : 239-8753 ISSN (Print) : 2347-67 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 24 24 International Conference on Innovations

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK IMPLEMENTATION OF VOLTAGE DOUBLERS RECTIFIED BOOST- INTEGRATED HALF BRIDGE (VDRBHB)

More information

Implementation of Photovoltaic Cell and Analysis of Different Grid Connection

Implementation of Photovoltaic Cell and Analysis of Different Grid Connection International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 2 (February 2014), PP.112-119 Implementation of Photovoltaic Cell and

More information

Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources

Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources Nishi N S P G student, Dept. of Electrical and Electronics Engineering Vidya Academy of Science and

More information

Analysis and Experimentation of Quadratic Boost Converter for Photovoltaic Applications

Analysis and Experimentation of Quadratic Boost Converter for Photovoltaic Applications ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Indian Journal of Science and Technology, Vol 10(37), DOI: 10.17485/ijst/2017/v10i37/117553, October 2017 Analysis and Experimentation of Quadratic Boost

More information

Closed Loop Control of Boost Converter for a Grid Connected Photovoltaic System

Closed Loop Control of Boost Converter for a Grid Connected Photovoltaic System International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 4 (2013), pp. 459-471 International Research Publication House http://www.irphouse.com Closed Loop Control of Boost Converter

More information

Simulation of a novel ZVT technique based boost PFC converter with EMI filter

Simulation of a novel ZVT technique based boost PFC converter with EMI filter ISSN 1746-7233, England, UK World Journal of Modelling and Simulation Vol. 4 (2008) No. 1, pp. 49-56 Simulation of a novel ZVT technique based boost PFC converter with EMI filter P. Ram Mohan 1 1,, M.

More information

ISSN: X Impact factor: (Volume3, Issue2) Simulation of MPPT based Multi-level CUK converter

ISSN: X Impact factor: (Volume3, Issue2) Simulation of MPPT based Multi-level CUK converter ISSN: 2454-132X Impact factor: 4.295 (Volume3, Issue2) Simulation of MPPT based Multi-level CUK converter Nikunj B Patel Electrical Engineering department L D College of engineering and technology Ahmedabad,

More information

DESIGN OF NEW POSITIVE OUTPUT SUPER-LIFT LUO CONVERTER FOR SOLAR INPUT IN COMPARISON WITH DIFFERENT DC-DC CONVERTERS

DESIGN OF NEW POSITIVE OUTPUT SUPER-LIFT LUO CONVERTER FOR SOLAR INPUT IN COMPARISON WITH DIFFERENT DC-DC CONVERTERS DESIGN OF NEW POSITIVE OUTPUT SUPER-LIFT LUO CONVERTER FOR SOLAR INPUT IN COMPARISON WITH DIFFERENT DC-DC CONVERTERS M.Pradeep Chand 1, G.Ramesh 2 1Student, Vignan s Lara Institute of Science and Technology,

More information

Resonant Inverter. Fig. 1. Different architecture of pv inverters.

Resonant Inverter. Fig. 1. Different architecture of pv inverters. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, PP 50-58 www.iosrjournals.org Resonant Inverter Ms.Kavitha Paul 1, Mrs.Gomathy S 2 1 (EEE Department

More information

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction A High Efficient DC-DC Converter with Soft Switching for Stress Reduction S.K.Anuja, R.Satheesh Kumar M.E. Student, M.E. Lecturer Sona College of Technology Salem, TamilNadu, India ABSTRACT Soft switching

More information

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

Design and analysis of ZVZCS converter with active clamping

Design and analysis of ZVZCS converter with active clamping Design and analysis of ZVZCS converter with active clamping Mr.J.Sivavara Prasad 1 Dr.Ch.Sai babu 2 Dr.Y.P.Obelesh 3 1. Mr. J.Sivavara Prasad, Asso. Professor in Dept. of EEE, Aditya College of Engg.,

More information

TRANSFORMERLESS THREE LEVEL DIODE CLAMPED INVERTER FOR SINGLE PHASE GRID CONNECTED PHOTOVOLTAIC SYSTEM

TRANSFORMERLESS THREE LEVEL DIODE CLAMPED INVERTER FOR SINGLE PHASE GRID CONNECTED PHOTOVOLTAIC SYSTEM INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

High Voltage Gain Interleaved Boost Converter

High Voltage Gain Interleaved Boost Converter High Voltage Gain Interleaved Boost Converter P.Radika 1, J.Baskaran 2, A.Nandhini 3 Professor, Dept. of EEE, Adhiparasakthi Engineering College, Melmaruvathur, Tamilnadu, India 1 HOD, Dept. of EEE, Adhiparasakthi

More information

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89 Soft Switching Converter with High Voltage Gain for Solar Energy Applications S. Hema*, A. Arulmathy,V. Saranya, S. Yugapriya Department of EEE, Veltech, Chennai *Corresponding author: E-Mail: hema@veltechengg.com

More information

ZCS-PWM Converter for Reducing Switching Losses

ZCS-PWM Converter for Reducing Switching Losses IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. III (Jan. 2014), PP 29-35 ZCS-PWM Converter for Reducing Switching Losses

More information

HALF BRIDGE CONVERTER WITH WIDE RANGE ZVS

HALF BRIDGE CONVERTER WITH WIDE RANGE ZVS INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976

More information

Soft-Switched High Efficiency CCM Boost Converter with High Voltage Gain

Soft-Switched High Efficiency CCM Boost Converter with High Voltage Gain International Journal of Emerging Trends in Science and Technology Soft-Switched High Efficiency CCM Boost Converter with High Voltage Gain Author Praveen Kumar Parate 1, C.S.Sharma 2, D. Tiwari 3 1 PG

More information

SIMULATION OF A BI-DIRECTIONAL DC-DC CONVERTER FOR PV APPLICATIONS

SIMULATION OF A BI-DIRECTIONAL DC-DC CONVERTER FOR PV APPLICATIONS SIMULATION OF A BI-DIRECTIONAL DC-DC CONVERTER FOR PV APPLICATIONS Dr.R.Seyezhai and M.UmaMaheswari Associate Professor, Department of EEE, SSN College of Engineering, Chennai. ABSTRACT Bi-directional

More information

HI-BRIDGE RESONANT SOFT-SWITCHED BOOST CONVERTER

HI-BRIDGE RESONANT SOFT-SWITCHED BOOST CONVERTER HI-BRIDGE RESONANT SOFT-SWITCHED BOOST CONVERTER 1 ELANGOVAN.S, 2 MARIMUTHU. M, 3 VIJYALASKMI 1,2,3 Department of Electrical and Electronics Engineering, Saranathan College of Engineering, Triuchirapalli,

More information

Integration of CUK and SEPIC Converters for Hybrid Renewable Energy Systems

Integration of CUK and SEPIC Converters for Hybrid Renewable Energy Systems ISSN No: 2454-9614 Integration of CUK and SEPIC Converters for Hybrid Renewable Energy Systems Dharani.M, K.Rajalashmi, Dr.S.U.Prabha, K. Indu Rani Department of Electrical And Electronics Engineering,

More information

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors Reshma Ismail PG Scholar, EEE Department KMEA Engineering College Edathala, Kerala, India Neenu B Assistant Professor, EEE Department

More information

Comparison and Simulation of Full Bridge and LCL-T Buck DC-DC Converter Systems

Comparison and Simulation of Full Bridge and LCL-T Buck DC-DC Converter Systems Comparison and Simulation of Full Bridge and LCL-T Buck DC-DC Converter Systems A Mallikarjuna Prasad 1, B Gururaj 2 & S Sivanagaraju 3 1&2 SJCET, Yemmiganur, Kurnool, India 3 JNTU Kakinada, Kakinada,

More information

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion Mrs.Nagajothi Jothinaga74@gmail.com Assistant Professor Electrical & Electronics Engineering Sri Vidya College of Engineering

More information

An Interleaved Boost Converter with LC Coupled Soft Switching Mahesh.P 1, Srilatha.D 2 1 M.Tech (PE) Scholar, 2 Associate Professor

An Interleaved Boost Converter with LC Coupled Soft Switching Mahesh.P 1, Srilatha.D 2 1 M.Tech (PE) Scholar, 2 Associate Professor An Interleaved Boost Converter with LC Coupled Soft Switching Mahesh.P 1, Srilatha.D 2 1 M.Tech (PE) Scholar, 2 Associate Professor Department of EEE, Prakasam Engineering College, Kandukur, Prakasam District,

More information

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Design and Simulation of Synchronous Buck Converter for Microprocessor Applications Lakshmi M Shankreppagol 1 1 Department of EEE, SDMCET,Dharwad, India Abstract: The power requirements for the microprocessor

More information

Literature Review on Design of MPPT Based Stand-Alone Solar PV System for Small Load Applications

Literature Review on Design of MPPT Based Stand-Alone Solar PV System for Small Load Applications Literature Review on Design of MPPT Based Stand-Alone Solar PV System for Small Load Applications Amruta Fulzele 1, Prashant Meshram 2 Dept. of Electrical Engg., Dr. Babasaheb Ambedkar College of Engg.

More information

DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION

DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION Vadaje Sachin 1, M.K. Chaudhari 2, M. Venkateshwara Reddy 3 1 PG Student, Dept. of Electrical Engg., GES R. H. Sapat College

More information

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 63 CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM 3.1 INTRODUCTION The power output of the PV module varies with the irradiation and the temperature and the output

More information

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 1, FEBRUARY 2002 165 Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss Hang-Seok Choi, Student Member, IEEE,

More information

STUDY OF A PHOTOVOLTAIC SYSTEM WITH MPPT USING MATLAB TM

STUDY OF A PHOTOVOLTAIC SYSTEM WITH MPPT USING MATLAB TM STUDY OF A PHOTOVOLTAIC SYSTEM WITH MPPT USING MATLAB TM Dumitru POP, Radu TÎRNOVAN, Liviu NEAMŢ, Dorin SABOU Technical University of Cluj Napoca dan.pop@enm.utcluj.ro Key words: photovoltaic system, solar

More information

ANALYSIS OF MATHEMATICAL MODEL OF PV MODULE USING MATLAB/SIMULINK ENVIRONMENT: REVIEW

ANALYSIS OF MATHEMATICAL MODEL OF PV MODULE USING MATLAB/SIMULINK ENVIRONMENT: REVIEW ANALYSIS OF MATHEMATICAL MODEL OF PV MODULE USING MATLAB/SIMULINK ENVIRONMENT: REVIEW 1 NISHA PATEL, 2 Hardik Patel, 3 Ketan Bariya 1 M.E. Student, 2 Assistant Professor, 3 Assistant Professor 1 Electrical

More information

Design of step-up converter for a constant output in a high power design

Design of step-up converter for a constant output in a high power design 2015; 1(6): 125-129 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 3.4 IJAR 2015; 1(6): 125-129 www.allresearchjournal.com Received: 25-03-2015 Accepted: 27-04-2015 M. Tech, (VLSI Design and

More information

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter 1 Neha Gupta, 2 Dr. A.K. pandey, 3 Dr. K.G. Upadhyay 1. M.Tech(Power Electronics & Drives), Electrical Engineering Department,

More information

Design and Control of Solar Powered Boost Converter

Design and Control of Solar Powered Boost Converter Design and Control of Solar Powered Boost Converter A.Venkadesan 1, K.Sedhu Raman 2 1 National Institute of Technology Puducherry, Karaikal, India 2 Manakula Vinayagar Institute of Technology, Puducherry,

More information

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter Elezabeth Skaria 1, Beena M. Varghese 2, Elizabeth Paul 3 PG Student, Mar Athanasius College

More information

Interleaved Boost Converter Fed DC Machine with Zero Voltage Switching and PWM Technique

Interleaved Boost Converter Fed DC Machine with Zero Voltage Switching and PWM Technique Indian Journal of Science and Technology, Vol 8(4, 376 382, February 2015 ISSN (Print : 0974-6846 ISSN (Online : 0974-5645 Interleaved Boost Converter Fed DC Machine with Zero Voltage Switching and PWM

More information

Boost Half Bridge Converter with ANN Based MPPT

Boost Half Bridge Converter with ANN Based MPPT Boost Half Bridge Converter with ANN Based MPPT Deepthy Thomas 1, Aparna Thampi 2 1 Student, Saintgits College Of Engineering 2 Associate Professor, Saintgits College Of Engineering Abstract This paper

More information

A Variable Step Size MPPT Method for Stand-Alone PV Energy Systems

A Variable Step Size MPPT Method for Stand-Alone PV Energy Systems Journal of Energy and Natural Resources 2016; 5(1-1): 1-5 Published online January 12, 2016 (http://www.sciencepublishinggroup.com/j/jenr) doi: 10.11648/j.jenr.s.2016050101.11 ISSN: 2330-7366 (Print);

More information

IN APPLICATIONS where nonisolation, step-down conversion

IN APPLICATIONS where nonisolation, step-down conversion 3664 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 8, AUGUST 2012 Interleaved Buck Converter Having Low Switching Losses and Improved Step-Down Conversion Ratio Il-Oun Lee, Student Member, IEEE,

More information

CHAPTER 3 PHOTOVOLTAIC SYSTEM MODEL WITH CHARGE CONTROLLERS

CHAPTER 3 PHOTOVOLTAIC SYSTEM MODEL WITH CHARGE CONTROLLERS 34 CHAPTER 3 PHOTOVOLTAIC SYSTEM MODEL WITH CHARGE CONTROLLERS Solar photovoltaics are used for the direct conversion of solar energy into electrical energy by means of the photovoltaic effect, that is,

More information

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 68 CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 4.1 INTRODUCTION The main objective of this research work is to implement and compare four control methods, i.e., PWM

More information

Sliding Mode Control based Maximum Power Point Tracking of PV System

Sliding Mode Control based Maximum Power Point Tracking of PV System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 4 Ver. II (July Aug. 2015), PP 58-63 www.iosrjournals.org Sliding Mode Control based

More information

Analysis of Non-Isolated Bidirectional Active Clamped DC-DC Converter for PV and Battery Integrated Systems

Analysis of Non-Isolated Bidirectional Active Clamped DC-DC Converter for PV and Battery Integrated Systems Indian Journal of Science and Technology, Vol 9(22), DOI: 10.17485/ijst/2016/v9i22/93191, June 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Analysis of Non-Isolated Bidirectional Active Clamped

More information

A Grid Connected Hybrid Fuel Cell-Po Based Mppt For Partially Shaded Solar Pv System

A Grid Connected Hybrid Fuel Cell-Po Based Mppt For Partially Shaded Solar Pv System A Grid Connected Hybrid Fuel Cell-Po Based Mppt For Partially Shaded Solar Pv System K.Kiruthiga, M.E.(Power Systems Engineering), II Year, Engineering for women, A.Dyaneswaran, Department of Electrical

More information

Full Bridge DC-DC Step-Up Converter With ZVZCS PWM Control Scheme

Full Bridge DC-DC Step-Up Converter With ZVZCS PWM Control Scheme Full Bridge DC-DC Step-Up Converter With ZVZCS PWM Control Scheme 1 J. Sivavara Prasad, 2 Y. P. Obulesh, 3 Ch. Saibabu, 4 S. Ramalinga Reddy 1,2 LBRCE, Mylavaram, AP, India 3 JNTUK, Kakinada, AP, India

More information

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage

Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Bridgeless Cuk Power Factor Corrector with Regulated Output Voltage Ajeesh P R 1, Prof. Dinto Mathew 2, Prof. Sera Mathew 3 1 PG Scholar, 2,3 Professors, Department of Electrical and Electronics Engineering,

More information