NbN nanowire superconducting single-photon detector for mid-infrared

Size: px
Start display at page:

Download "NbN nanowire superconducting single-photon detector for mid-infrared"

Transcription

1 Available online at Physics Procedia 36 (2012 ) Superconductivity Centennial Conference NbN nanowire superconducting single-photon detector for mid-infrared A. Korneev, Yu. Korneeva, I. Florya, B. Voronov, G. Goltsman Moscow State Pedagogical University, 1 Malaya Pirogovskaya, Moscow , Russia Abstract Superconducting single-photon detectors (SSPD) is typically 100 nm-wide supercondiucting strip in a shape of meander made of 4-nm-thick film. To reduce response time and increase voltage response a parallel connection of the strips was proposed. Recently we demonstrated that reduction of the strip width improves the quantum efficiency of such a detector at wavelengths longer than 1.5 μm. Being encourage by this progress in quantum efficiency we improved the fabrication process and made parallel-wire SSPD with 40-nm-wide strips covering total area of 10 μm x 10 μm. In this paper we present the results of the characterization of such a parallel-wire SSPD at 10.6 μm wavelength and demonstrate linear dependence of the count rate on the light power as it should be in case of single-photon response. c Published by by Elsevier Ltd. B.V. Selection Selection and/or and/or peer-review peer-review under responsibility under responsibility of Horst Rogalla of the and Guest Peter Editors. Kes. Open access under CC BY-NC-ND license. Keywords: Infrared single-photon detectors, superconducting device fabrication, superconducting NbN films, thin film devices 1. Introduction Nanowire NbN superconducting single-photon detectors (SSPD) [1] is a novel type of single-photon detector successfully competing with InGaAs single-photon avalanche photodiodes at standard telecom wavelength of 1550 nm. Due to efficient coupling to single-mode optical fibres (above 90%) and high performance (detection efficiency 15% at the fibre input at 10 dark counts per second at 1550 nm wavelength, up to 100 MHz counting rate and 40 ps timing jitter [2]) SSPD was successfully used in applications ranging from single-photon source characterization [3, 4, 5] to quantum cryptography [6, 7]. Moreover, recently demonstrated successful coupling of the SSPD with optical waveguides makes these detectors a device of chose for optical signal processing on a single chip [8, 9]. Although it was demonstrated that the SSPD had a single-photon response up to wavelength of 5.6 μm its application at wavelengths longer than 1.5 μm was hampered by a dramatical drop of quantum efficiency η with the wavelength increase. Recently we demonstrated that reduction of the strip width to 56 nm improves η at wavelengths longer than 2 μm [10]. In this paper we further develop this approach and present the results of the SSPD characterization at 10.6 μm wavelength Published by Elsevier B.V. Selection and/or peer-review under responsibility of the Guest Editors. Open access under CC BY-NC-ND license. doi: /j.phpro

2 A. Korneev et al. / Physics Procedia 36 ( 2012 ) Fig. 1. SEM image of the parallel-wire SSPD with 40-nm-wide superconducting NbN strip. 2. Device topology and fabrication The initial trigger of the SSPD photoresponse is the formation of local region with suppressed superconductivity called hotspot in the place where a photon was absorbed. The size of the hotspot depends on the photon energy. It is worth noting that in a typical NbN nm wide strip made of 3 4 nm thick film the portion of the strip cross-section covered by the hotspot produced by a photon of 1 1.5μm wavelength is much smaller compared to the total strip cross-section. Thus the quantum efficiency of the detector can be improved if one reduces the strip width nevertheless maintaining its uniformity. We managed to improve our electron-beam lithography and reactive ion etching process so that we were capable to produce 40-nm-wide uniform strips. Meanwhile the reduction of the strip width imposes a certain restriction on the response pulse voltage. Indeed, the reduction of the strip width leads to the reduction of the critical current, and the bias current as well. And as the response voltage is roughly proportional to the bias current, its reduction results in the reduction of the voltage pulse making it hard to distinguish the pulse against the thermal noise background of the read-out electronics. One have several options here how to overcome this limitation, e.g. use HEMT amplifier operated in liquid helium and featuring reduced noise compared to the room temperature electronics, or one may try SQUID read-out. We applied a different approach. For response signal amplification we used an approach proposed in [11]: to connect the strips in parallel utilizing cascade switching mechanism. We managed to improve our electron-beam lithography process by using electron resist ZEP-520A-7 which was more robust in reactive ion etching and enabled higher resolution e-beam lithography compared to PMMA 950K, which we had used before. We used SEM JEOL 6380 upgraded to e-beam writer. We used 30 kv accelerating voltage with anode current ranging from 2 to 5 pa. As a developer we used ZED N50. During the e-beam process, we exposed the gaps between the superconducting strips. All strips were patterned having equal width. Due to such an improvement we were able to produce 40-nm-wide strips with 130 nm-wide gap between the strips. Our detectors had the total area of 7 μm 7 μm. Figure 1 presents an SEM image of our device. Due to large, area our detectors had 56 parallel strips. Thus the response mechanism of the detector should be similar to recently introduced arm-triggered regime [12] rather than simple cascade switching. 3. Experimental setup Recently we reported characterisation of parallel wire SSPD in wavelength range 1 μm 3.5 μm using a grating spectrometer as a light source [10]. A parallel-wire SSPD with 56-nm-wide strips exhibited an order

3 74 A. Korneev et al. / Physics Procedia 36 ( 2012 ) Fig. 2. Experimental set-up for parallel-wire SSPD characterization at 10.6 μm wavelength characterization. of magnitude better quantum efficiency at 3.5 μm wavelength compared to meander SSPD with 104-nmwide strip. Being encouraged by this result we moved forward to longer wavelength range and researched into the response of our new devices at 10.6 μm wavelength. The experimental setup is presented in Figure 2. As a light source we used CO 2 laser operated in cw (continuous wave) regime. We intentionally abandoned the usage of the grating spectrometer for long wavelength experiment and switched to the laser source. In a grating spectrometer together with the long wavelength (target wavelength) shorter wavelengths might also be present as a result of high orders of diffraction. Although these parasitic short wavelength are filtered out we were not absolutely sure that our spectrometer is completely free from such a defect. Usually these parasitic short wavelengths are not a problem as their power is several orders of magnitude smaller compared to the main wavelength of the beam. But as the quantum efficiency of the SSPD in visible and near infrared (at about 1 μm wavelength) is several several order of magnitudes higher compared to 10 μm wavelength this short wavelength light can considerably contribute to the count rate of the detector. Laser source operating at a single wavelength is free from such a defect. As CO 2 laser is a very powerful light source, its output beam was significantly attenuated. After that we placed a home-built variable attenuator enabling us to change the light power. Then we divided the beam by a beam-splitter. One part was sent to a Golay cell detector to monitor the attenuation introduced by our home-built attenuator. The other part was further attenuated and sent to the parallel-wire SSPD placed in an optical cryostat. The SSPD was maintained at 2 K temperature achieved by helium vapour evacuation. As the input window of the cryostat we used an filter transparent in 2 μm 25 μm wavelength range. To avoid latching we connected 3 Ω resistor in parallel. 4. Experimental results and discussion We measured detector dark count rate and light count rates as functions of detector bias current for various attenuations of the laser power. The results of these measurements are presented in Figure 3. The dark count rate (black squares in figure 3a) was measured by simply blocking the laser beam. One may notice that at low bias currents (below 700 μa) the dark counts rate deviates from the exponent typically observed (see e.g. [10]). We attribute such a deviation to the stray light and room temperature background. The light counts demonstrate a behaviour similar to the one previously observed at wavelengths 1 μm 3.5 μm [10]. Then we reploted count rates as a function of attenuation for bias currents of 550, 580, 600, 650, and 700 μa. The result is presented in Figure 3b. The probability of simultaneous absorption of m

4 A. Korneev et al. / Physics Procedia 36 ( 2012 ) Fig. 3. (a) Light count rates (open symbols) and dark counts rate (solid symbols) measured for different light attenuations; and (b) light count rate vs light attenuation demonstrate linear dependence as it is expected for single-photon response. photons within a certain time slot is given by the Poisson distribution: p en n m n!, (1) here n is the mean number of photons per time slot. For a cw source, as the time slot we take the lifetime of the resistive hot-spot in a strip of our parallel-wire SSPD. If the number of photons in the time slot n << 1, then equation 1 reduces to: p nm n!. (2) Thus one can resolve how many photons are responsible for the detector output voltage pulse. If the count rate is proportional to the mean number of photons n (i.e. power of the light source) then one photon is enough to trigger the detector. If the count rate is proportional to n 2 then the detector is triggered by photon pairs. If three photons are simultaneously required to trigger the detector then the count rate will be proportional to n 3. In Figure 3b we observe that although the points are scattered (due to inaccuracy in our home-built variable attenuator), in general they follow linear law. This fact suggests that single photon is enough to trigger the parallel-wire SSPD even at 10.6 μm wavelength. 5. Conclusion In conclusion, due to further improvement in the fabrication process we were able to produce SSPD with 40-nm-wide strips. We connected the strips in parallel to realize the amplification of the response voltage signal of the detector. Then we characterized the detector response at 10.6 μm wavelength with the cw laser source. We observed linear dependence of the count rate on the light attenuation as it is expected for single-photon response. 6. Acknowledgement This work was supported by Russian Federal Targeted Program Research and Development in Priority Areas of Russian S&T Development for the years References [1] A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. Goltsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski, Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors, Applied Physics Letters 84 (26) (2004)

5 76 A. Korneev et al. / Physics Procedia 36 ( 2012 ) [2] [3] R. Hadfield, M. Stevens, R. Mirin, S. W. Nam, Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors, J. Appl. Phys. 101 (2007) [4] R. Hadfield, J. Habif, J. Schlafer, R. Schwall, S. W. Nam, Quantum key distribution at 1550 nm with twin superconducting single-photon detectors, Applied Physics Letters 89 (2006) [5] H. Takesue, S. W. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors, Nature Photonics 1 (2007) [6] D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, H. Zbinden, Continuous high speed coherent one-way quantum key distribution, Opt. Express 17 (16) (2009) [7] D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, S. Ten, High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres, New J. of Physics 11 (2009) [8] arxiv: v1 [physics.optics]. [9] arxiv: v1 [quant-ph]. [10] Y. Korneeva, I. Florya, A. Semenov, A. Korneev, G. Goltsman, New generation of nanowire nbn superconducting single-photon detector for mid-infrared, Applied Superconductivity, IEEE Transactions on 21 (2011) [11] M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, G. Goltsman, A cascade switching superconducting single photon detector, Appl. Phys. Lett. 91 (2007) [12] F. Marsili, F. Najaf, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, K. K. Berggren, Single-photon detectors based on ultranarrow superconducting nanowires, Nano Lett. 11(5) (2011)

Nano-structured superconducting single-photon detector

Nano-structured superconducting single-photon detector Nano-structured superconducting single-photon detector G. Gol'tsman *a, A. Korneev a,v. Izbenko a, K. Smirnov a, P. Kouminov a, B. Voronov a, A. Verevkin b, J. Zhang b, A. Pearlman b, W. Slysz b, and R.

More information

Spectral Sensitivity and Temporal Resolution of NbN Superconducting Single-Photon Detectors

Spectral Sensitivity and Temporal Resolution of NbN Superconducting Single-Photon Detectors Spectral Sensitivity and Temporal Resolution of NbN Superconducting Single-Photon Detectors A. Verevkin, J. Zhang l, W. Slysz-, and Roman Sobolewski3 Department of Electrical and Computer Engineering and

More information

Single-photon source characterization with infrared-sensitive superconducting single-photon detectors

Single-photon source characterization with infrared-sensitive superconducting single-photon detectors 1 Single-photon source characterization with infrared-sensitive superconducting single-photon detectors Robert H. Hadfield a), Martin J. Stevens, Richard P. Mirin, Sae Woo Nam National Institute of Standards

More information

LARGE-AREA SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTOR WITH DOUBLE-STAGE AVALANCHE STRUCTURE

LARGE-AREA SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTOR WITH DOUBLE-STAGE AVALANCHE STRUCTURE 1 LARGE-AREA SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTOR WITH DOUBLE-STAGE AVALANCHE STRUCTURE Risheng Cheng, Menno Poot, Xiang Guo, Linran Fan and Hong X. Tang Abstract We propose a novel design of

More information

High rate, long-distance quantum key distribution over 250km of ultra low loss fibres

High rate, long-distance quantum key distribution over 250km of ultra low loss fibres High rate, long-distance quantum key distribution over 250km of ultra low loss fibres D Stucki 1, N Walenta 1, F Vannel 1, R T Thew 1, N Gisin 1, H Zbinden 1,3, S Gray 2, C R Towery 2 and S Ten 2 1 : Group

More information

Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

A four-pixel single-photon pulse-position camera fabricated from WSi

A four-pixel single-photon pulse-position camera fabricated from WSi A four-pixel single-photon pulse-position camera fabricated from WSi superconducting nanowire single-photon detectors V. B. Verma 1*, R. Horansky 1, F. Marsili 2, J. A. Stern 2, M. D. Shaw 2, A. E. Lita

More information

2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution

2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution 2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution Jun Zhang a, Patrick Eraerds a,ninowalenta a, Claudio Barreiro a,robthew a,and Hugo Zbinden a a Group of Applied Physics,

More information

NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits

NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits 1 NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits C. Schuck, W. H. P. Pernice *, and H. X. Tang Department of Electrical Engineering,

More information

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1 Efficient single photon detection from 500 nm to 5 μm wavelength: Supporting Information F. Marsili 1, F. Bellei 1, F. Najafi 1, A. E. Dane 1, E. A. Dauler 2, R. J. Molnar 2, K. K. Berggren 1* 1 Department

More information

Reduced dark counts in optimized geometries for superconducting nanowire single photon detectors

Reduced dark counts in optimized geometries for superconducting nanowire single photon detectors Reduced dark counts in optimized geometries for superconducting nanowire single photon detectors Mohsen K. Akhlaghi, 1 Haig Atikian, 2 Amin Eftekharian, 1,3 Marko Loncar, 2 and A. Hamed Majedi 1,2,3, 1

More information

Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector Robert M. Heath, 1,a) Michael G. Tanner, 1 Alessandro Casaburi, 1 Mark G. Webster, 2 Lara San

More information

An Interleaved Two element superconducting nanowire single photon detector with series resistors method for better reduction in inactive period

An Interleaved Two element superconducting nanowire single photon detector with series resistors method for better reduction in inactive period International Journal of NanoScience and Nanotechnology. ISSN 0974-3081 Volume 5, Number 2 (2014), pp. 123-131 International Research Publication House http://www.irphouse.com An Interleaved Two element

More information

Superconducting single-photon detectors as photon-energy and polarization resolving devices. Roman Sobolewski

Superconducting single-photon detectors as photon-energy and polarization resolving devices. Roman Sobolewski Superconducting single-photon detectors as photon-energy and polarization resolving devices Roman Sobolewski Departments of Electrical and Computing Engineering Physics and Astronomy, Materials Science

More information

Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency

Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes

2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

Spectral dependency of superconducting single photon detectors

Spectral dependency of superconducting single photon detectors Spectral dependency of superconducting single photon detectors Laurent Maingault, M. Tarkhov, I. Florya, A. Semenov, Roch Espiau de Lamaestre, Paul Cavalier, G. Gol Tsman, Jean-Philippe Poizat, Jean-Claude

More information

Spectral Sensitivity of the NbN Single-Photon Superconducting Detector

Spectral Sensitivity of the NbN Single-Photon Superconducting Detector IEICE TRANS. ELECTRON., VOL.E85 C, NO.3 MARCH 2002 797 INVITED PAPER Special Issue on Superconductive Electronics Spectral Sensitivity of the NbN Single-Photon Superconducting Detector Roman SOBOLEWSKI,

More information

Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits

Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits Marcello Graziosi, ESR 3 within PICQUE (Marie Curie ITN project) and PhD student marcello.graziosi@ifn.cnr.it Istituto

More information

A single-photon detector with high efficiency. and sub-10 ps time resolution

A single-photon detector with high efficiency. and sub-10 ps time resolution A single-photon detector with high efficiency and sub-10 ps time resolution arxiv:1801.06574v1 [physics.ins-det] 19 Jan 2018 Iman Esmaeil Zadeh,,, Johannes W. N. Los, Ronan B. M. Gourgues, Gabriele Bulgarini,

More information

Multimode Fiber Coupled Superconductor Nanowire Single-Photon Detector

Multimode Fiber Coupled Superconductor Nanowire Single-Photon Detector Multimode Fiber Coupled Superconductor Nanowire Single-Photon Detector Volume 6, Number 5, October 2014 Labao Zhang Ming Gu Tao Jia Ruiyin Xu Chao Wan Lin Kang Jian Chen Peiheng Wu DOI: 10.1109/JPHOT.2014.2360285

More information

arxiv:physics/ v2 [physics.ins-det] 22 Jan 2007

arxiv:physics/ v2 [physics.ins-det] 22 Jan 2007 Constriction-limited detection efficiency of superconducting nanowire single-photon detectors Andrew J. Kerman Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 024 Eric A. Dauler,

More information

Resolving Dark Pulses from Photon Pulses in NbN Superconducting Single-Photon Detectors

Resolving Dark Pulses from Photon Pulses in NbN Superconducting Single-Photon Detectors Resolving Dark Pulses from Photon Pulses in NbN Superconducting Single-Photon Detectors Introduction Fast and reliable single-photon detectors (SPD s) have become a highly sought after technology in recent

More information

Detecting single photons. Andrea Fiore

Detecting single photons. Andrea Fiore Detecting single photons Why single-photon detectors? Measure "very efficient" nonlinear frequency conversion... A PhD student "under Rosencher's rule": Will I ever get a few photons and my thesis? Wikipedia

More information

Niobium superconducting nanowire singlephoton

Niobium superconducting nanowire singlephoton 1 Niobium superconducting nanowire singlephoton detectors Anthony J. Annunziata, Daniel F. Santavicca, Joel D. Chudow, Luigi Frunzio, Michael J. Rooks, Aviad Frydman, Daniel E. Prober Abstract We investigate

More information

Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices

Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices KOBIT- 1 Izmir Yuksek Teknoloji Enstitusu Döndü Sahin QET Labs, d.sahin@bristol.ac.uk EU-FP7 Implementing QNIX

More information

Matrix of integrated superconducting single-photon detectors with high timing resolution

Matrix of integrated superconducting single-photon detectors with high timing resolution 1 Matrix of integrated superconducting single-photon detectors with high timing resolution Carsten Schuck 1, Wolfram H. P. Pernice 1,2, Olga Minaeva 3, Mo Li 1,4, Gregory Gol tsman 5, Alexander V. Sergienko

More information

INTEGRATED SINGLE photon detectors are key components

INTEGRATED SINGLE photon detectors are key components IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 23, NO. 3, JUNE 2013 2201007 Matrix of Integrated Superconducting Single-Photon Detectors With High Timing Resolution Carsten Schuck, Wolfram H. P.

More information

Sub-micron SNIS Josephson junctions for metrological application

Sub-micron SNIS Josephson junctions for metrological application Available online at www.sciencedirect.com Physics Procedia 36 (2012 ) 105 109 Superconductivity Centennial Conference Sub-micron SNIS Josephson junctions for metrological application N. De Leoa*, M. Fretto,

More information

Superconducting nanowire single photon detectors for quantum information and communications

Superconducting nanowire single photon detectors for quantum information and communications > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < Superconducting nanowire single photon detectors for quantum information and communications Zhen Wang, Shigehito

More information

Proposal for a superconducting photon number resolving detector with large dynamic range Jahanmirinejad, S.; Fiore, A.

Proposal for a superconducting photon number resolving detector with large dynamic range Jahanmirinejad, S.; Fiore, A. Proposal for a superconducting photon number resolving detector with large dynamic range Jahanmirinejad, S.; Fiore, A. Published in: Optics Express DOI:.364/OE.20.0007 Published: 0/0/202 Document Version

More information

Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture

Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture Qingyuan Zhao, 1,2 Adam N. McCaughan, 2 Andrew E. Dane, 2 Faraz Najafi, 2 Francesco

More information

KEYWORDS: title, utility, rle logo

KEYWORDS: title, utility, rle logo I m Im going to present work today from the quantum nanofabrication group at MIT done in collaboration with MIT Lincoln Lab and NIST. I will be focusing on ultranarrow Superconductive Single-Photon detectors.

More information

Noise temperature measurements of NbN phonon-cooled Hot Electron Bolometer mixer at 2.5 and 3.8 THz.

Noise temperature measurements of NbN phonon-cooled Hot Electron Bolometer mixer at 2.5 and 3.8 THz. Noise temperature measurements of NbN phonon-cooled Hot Electron Bolometer mixer at 2.5 and 3.8 THz. ABSTRACT Yu. B. Vachtomin, S. V. Antipov, S. N. Maslennikov, K. V. Smirnov, S. L. Polyakov, N. S. Kaurova,

More information

Self-aligned multi-channel superconducting nanowire avalanche photodetector

Self-aligned multi-channel superconducting nanowire avalanche photodetector Self-aligned multi-channel superconducting nanowire avalanche photodetector Risheng Cheng, Xiang Guo, Xiaosong Ma, Linran Fan, King Y. Fong, Menno Poot, and Hong X. Tang a) Department of Electrical Engineering,

More information

Ultrafast Superconducting Single-Photon Optical Detectors and Their Applications

Ultrafast Superconducting Single-Photon Optical Detectors and Their Applications Ultrafast Superconducting Single-Photon Optical Detectors and Their Applications Introduction Single-photon detectors (SPD s) represent the ultimate sensitivity limit for any quantum radiation detectors.

More information

Superconducting Single-photon Detectors Made of Ultra-thin VN Films

Superconducting Single-photon Detectors Made of Ultra-thin VN Films VII International Conference on Photonics and Information Optics Volume 2018 Conference Paper Superconducting Single-photon Detectors Made of Ultra-thin VN Films Philipp Zolotov 1,2,3, Alexander Divochiy

More information

2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes

2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

Optimized Illumination Directions of Single-photon Detectors Integrated with Different Plasmonic Structures

Optimized Illumination Directions of Single-photon Detectors Integrated with Different Plasmonic Structures Optimized Illumination Directions of Single-photon Detectors Integrated with Different Plasmonic Structures Mária Csete, Áron Sipos, Anikó Szalai, Gábor Szabó Department of Optics and Quantum Electronics

More information

Characterization of superconducting nanowire single-photon detector with artificial constrictions

Characterization of superconducting nanowire single-photon detector with artificial constrictions Characterization of superconducting nanowire single-photon detector with artificial constrictions Ling Zhang 1, 2 ( 张玲 ), Lixing You 1,a ( 尤立星 ), Dengkuan Liu 1,2 ( 刘登宽 ), Weijun Zhang 1 ( 张伟君 ), Lu Zhang

More information

Superconducting nanowire detector jitters limited by detector geometry

Superconducting nanowire detector jitters limited by detector geometry Superconducting nanowire detector jitters limited by detector geometry Niccolò Calandri 1,2, Qing-Yuan Zhao 1, Di Zhu 1, Andrew Dane 1, and Karl K.Berggren 1 1 Department of Electrical Engineering and

More information

High-performance Multichannel Superconducting Single-Photon Detector System with Compact Cryocooler

High-performance Multichannel Superconducting Single-Photon Detector System with Compact Cryocooler High-performance Multichannel Superconducting Single-Photon Detector System with Compact Cryocooler Taro Yamashita, Shigehito Miki, and Hirotaka Terai Advanced ICT Research Institute National Institute

More information

Free-running single-photon detection based on a negative feedback InGaAs APD

Free-running single-photon detection based on a negative feedback InGaAs APD Journal of Modern Optics Vol. 59, No. 17, 10 October 2012, 1481 1488 Free-running single-photon detection based on a negative feedback InGaAs APD Tommaso Lunghi a *, Claudio Barreiro a, Olivier Guinnard

More information

Correlated photon-pair generation in reverseproton-exchange. integrated mode demultiplexer at 10 GHz clock

Correlated photon-pair generation in reverseproton-exchange. integrated mode demultiplexer at 10 GHz clock Correlated photon-pair generation in reverseproton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock Qiang Zhang 1, Xiuping Xie 1, Hiroki Takesue 2, Sae Woo Nam 3, Carsten Langrock

More information

Secure Communication Application of Josephson Tetrode in THz Region

Secure Communication Application of Josephson Tetrode in THz Region Available online at www.sciencedirect.com Physics Procedia 36 (2012 ) 435 440 Superconductivity Centennial Conference Secure Communication Application of Josephson Tetrode in THz Region Nurliyana Bte Mohd

More information

ADVANTAGES OF SILICON PHOTON COUNTERS IN GATED MODE APPLICATION NOTE

ADVANTAGES OF SILICON PHOTON COUNTERS IN GATED MODE APPLICATION NOTE ADVANTAGES OF SILICON PHOTON COUNTERS IN GATED MODE APPLICATION NOTE Matthieu Legré (1), Tommaso Lunghi (2), Damien Stucki (1), Hugo Zbinden (2) (1) (2) Abstract SA, Rue de la Marbrerie, CH- 1227 Carouge,

More information

Detecting Single Infrared Photons with 93% System Efficiency

Detecting Single Infrared Photons with 93% System Efficiency Detecting Single Infrared Photons with 93% System Efficiency F. Marsili 1*, V. B. Verma 1, J. A. Stern 2, S. Harrington 1, A. E. Lita 1, T. Gerrits 1, I. Vayshenker 1, B. Baek 1, M. D. Shaw 2, R. P. Mirin

More information

High energy photon detection using a NbN superconducting single-photon detector.

High energy photon detection using a NbN superconducting single-photon detector. High energy photon detection using a NbN superconducting single-photon detector. THESIS submitted in partial fulfillment of the requirements for the degree of BACHELOR OF SCIENCE in PHYSICS Author : D.

More information

217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector

217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector Guo-Liang Shentu, 1,5 Qi-Chao Sun, 1,2,5 Xiao Jiang, 1,5 Xiao-Dong Wang,

More information

arxiv: v1 [physics.optics] 14 Jan 2015

arxiv: v1 [physics.optics] 14 Jan 2015 Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors arxiv:1501.03333v1 [physics.optics] 14 Jan 2015 Robert M. Heath,, Michael G. Tanner, Timothy D. Drysdale, Shigehito

More information

Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors

Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors Eric A. Dauler a,b*, Andrew J. Kerman b, Bryan S. Robinson b, Joel K. W. Yang a, Boris

More information

Amplitude Distributions of Dark Counts and Photon Counts in NbN Superconducting Single-Photon Detectors

Amplitude Distributions of Dark Counts and Photon Counts in NbN Superconducting Single-Photon Detectors Amplitude Distributions of Dark Counts and Photon Counts in NbN Superconducting Single-Photon Detectors Integrated with a High-Electron Mobility Transistor Readout Introduction Fast and reliable single-photon

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

P olarization, together with amplitude, phase and frequency or wavelength, are the four fundamental properties

P olarization, together with amplitude, phase and frequency or wavelength, are the four fundamental properties OPEN SUBJECT AREAS: SINGLE PHOTONS AND QUANTUM EFFECTS NANOWIRES QUANTUM OPTICS OPTICAL SENSORS Single photon detector with high polarization sensitivity Qi Guo, Hao Li, LiXing You, WeiJun Zhang, Lu Zhang,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Detecting Single Infrared Photons with 93 % System Efficiency: Supplementary Information F. Marsili 1*, V. B. Verma 1, J. A. Stern 2, S. Harrington 1, A. E. Lita 1, T. Gerrits 1, I. Vayshenker 1, B. Baek

More information

L ow dark count rate, high detection efficiency and accurate timing resolution are the three most desired

L ow dark count rate, high detection efficiency and accurate timing resolution are the three most desired SUBJECT AREAS: SUPERCONDUCTING DEVICES NANOWIRES NANOPHOTONICS AND PLASMONICS QUANTUM OPTICS Received 8 March 2013 Accepted 7 May 2013 Published 29 May 2013 Waveguide integrated low noise NbTiN nanowire

More information

Lecture 9 External Modulators and Detectors

Lecture 9 External Modulators and Detectors Optical Fibres and Telecommunications Lecture 9 External Modulators and Detectors Introduction Where are we? A look at some real laser diodes. External modulators Mach-Zender Electro-absorption modulators

More information

SY-SNSPD-001 Superconducting Nanowire Single Photon Detector System

SY-SNSPD-001 Superconducting Nanowire Single Photon Detector System SY-SNSPD-001 Superconducting Nanowire Single Photon Detector System www.ali-us.com Overview Advanced Lab Instruments SY-SNSPD-001 single-photon detectors system is integrated one or more units Advanced

More information

Bias reversal technique in SQUID Bootstrap Circuit (SBC) scheme

Bias reversal technique in SQUID Bootstrap Circuit (SBC) scheme Available online at www.sciencedirect.com Physics Procedia 36 (2012 ) 441 446 Superconductivity Centennial Conference Bias reversal technique in SQUID Bootstrap Circuit (SBC) scheme Liangliang Rong b,c*,

More information

Xiuliang Chen, E Wu, Guang Wu, and Heping Zeng*

Xiuliang Chen, E Wu, Guang Wu, and Heping Zeng* Low-noise high-speed InGaAs/InP-based singlephoton detector Xiuliang Chen, E Wu, Guang Wu, and Heping Zeng* State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062,

More information

arxiv: v1 [physics.ins-det] 11 Aug 2017

arxiv: v1 [physics.ins-det] 11 Aug 2017 UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature arxiv:78.423v [physics.ins-det] Aug 27 E. E. WOLLMAN,,* V. B. VERMA, 2 A. D. BEYER, R.

More information

Supplementary information

Supplementary information Supplementary information Supplementary figures Supplementary Figure S1. Characterization of the superconducting films. a) Atomic force microscope (AFM) measurements of the NbN film morphology after deposition

More information

Advantages of gated silicon single photon detectors

Advantages of gated silicon single photon detectors Advantages of gated silicon single photon detectors Matthieu Legré (1), Tommaso Lunghi (2), Damien Stucki (1), Hugo Zbinden (2) (1) ID Quantique SA, Rue de la Marbrerie, CH-1227 Carouge, Switzerland (2)

More information

Photon Count. for Brainies.

Photon Count. for Brainies. Page 1/12 Photon Count ounting for Brainies. 0. Preamble This document gives a general overview on InGaAs/InP, APD-based photon counting at telecom wavelengths. In common language, telecom wavelengths

More information

Single photon detection with nanowires

Single photon detection with nanowires Single photon detection with nanowires Val Zwiller, L. Schweickert, J. Zichi, K. Jöns, M. Versteegh, A. Elshaari, L. Yang, M. Bavinck, A. Fognini, I. Zadeh Quantum Nano Photonics Applied Physics KTH zwillerlab.tudelft.nl

More information

Phonon-cooled NbN HEB Mixers for Submillimeter Wavelengths

Phonon-cooled NbN HEB Mixers for Submillimeter Wavelengths Phonon-cooled NbN HEB Mixers for Submillimeter Wavelengths J. Kawamura, R. Blundell, C.-Y. E. Tong Harvard-Smithsonian Center for Astrophysics 60 Garden St. Cambridge, Massachusetts 02138 G. Gortsman,

More information

Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires

Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires Jian Li, 1,3,4 Robert A. Kirkwood, 1 Luke J. Baker, 1 David Bosworth, 2 Kleanthis

More information

Superconducting nanowire single-photon detection system and demonstration in quantum key distribution

Superconducting nanowire single-photon detection system and demonstration in quantum key distribution Article Quantum Information April 2013 Vol.58 No.10: 1145 1149 doi: 10.1007/s11434-013-5698-1 Superconducting nanowire single-photon detection system and demonstration in quantum key distribution CHEN

More information

NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature Supplementary Information NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature W. J. Zhang, L. X. You *, H. Li,

More information

Dark counts of superconducting nanowire single-photon detector under illumination

Dark counts of superconducting nanowire single-photon detector under illumination Dark counts of superconducting nanowire single-photon detector under illumination Sijing Chen, Lixing You, * Weijun Zhang, Xiaoyan Yang, Hao Li, Lu Zhang, Zhen Wang, and Xiaoming Xie State Key Laboratory

More information

Fabrication Process Yielding Saturated Nanowire Single- Photon Detectors With 24-Picosecond Jitter

Fabrication Process Yielding Saturated Nanowire Single- Photon Detectors With 24-Picosecond Jitter Fabrication Process Yielding Saturated Nanowire Single- Photon Detectors With 24-Picosecond Jitter The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Superconducting nanowire single-photon detectors integrated with optical nano-antennae

Superconducting nanowire single-photon detectors integrated with optical nano-antennae Superconducting nanowire single-photon detectors integrated with optical nano-antennae The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Superconducting detector of IR single-photons based on thin WSi films

Superconducting detector of IR single-photons based on thin WSi films Superconducting detector of IR single-photons based on thin WSi films V A Seleznev 1,2, A V Divochiy 1,2, Yu B Vakhtomin 1,2, P V Morozov 2, P I Zolotov 1,2, D D Vasil ev 3, K M Moiseev 3, E I Malevannaya

More information

High speed coherent one-way quantum key distribution prototype

High speed coherent one-way quantum key distribution prototype High speed coherent one-way quantum key distribution prototype Damien Stucki 1, Claudio Barreiro 1, Sylvain Fasel 1, Jean-Daniel Gautier 1, Olivier Gay 2, Nicolas Gisin 1, Rob Thew 1, Yann Thoma 1, Patrick

More information

10-GHz clock differential phase shift quantum key distribution experiment

10-GHz clock differential phase shift quantum key distribution experiment 10-GHz clock differential phase shift quantum key distribution experiment Hiroki Takesue 1,2, Eleni Diamanti 3, Carsten Langrock 3, M. M. Fejer 3 and Yoshihisa Yamamoto 3 1 NTT Basic Research Laboratories,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature10864 1. Supplementary Methods The three QW samples on which data are reported in the Letter (15 nm) 19 and supplementary materials (18 and 22 nm) 23 were grown

More information

Superconducting nanowire photon number resolving detector at telecom wavelength

Superconducting nanowire photon number resolving detector at telecom wavelength Superconducting nanowire photon number resolving detector at telecom wavelength Aleksander Divochiy 1, Francesco Marsili 2,*,, David Bitauld 2,, Alessandro Gaggero 3, Roberto Leoni 3, Francesco Mattioli

More information

Cavity QED with quantum dots in semiconductor microcavities

Cavity QED with quantum dots in semiconductor microcavities Cavity QED with quantum dots in semiconductor microcavities M. T. Rakher*, S. Strauf, Y. Choi, N.G. Stolz, K.J. Hennessey, H. Kim, A. Badolato, L.A. Coldren, E.L. Hu, P.M. Petroff, D. Bouwmeester University

More information

Unconditionally secure quantum key distribution over 50km of satndard telecom fibre

Unconditionally secure quantum key distribution over 50km of satndard telecom fibre Unconditionally secure quantum key distribution over 50km of satndard telecom fibre C. Gobby,* Z. L. Yuan and A. J. Shields Toshiba Research Europe Ltd, Cambridge Research Laboratory, 260 Cambridge Science

More information

Detectors for Optical Communications

Detectors for Optical Communications Optical Communications: Circuits, Systems and Devices Chapter 3: Optical Devices for Optical Communications lecturer: Dr. Ali Fotowat Ahmady Sep 2012 Sharif University of Technology 1 Photo All detectors

More information

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO. a Nd:YSO resonator array µm Transmission spectrum (a. u.) b 4 F3/2-4I9/2 25 2 5 5 875 88 λ(nm) 885 Supplementary Figure. An array of nano-beam resonators fabricated in Nd:YSO. (a) Scanning electron microscope

More information

Infrared superconducting single-photon detectors

Infrared superconducting single-photon detectors AFRL-AFOSR-UK-TR-2012-0052 Infrared superconducting single-photon detectors Dr. Robert Hadfield Heriot-Watt University Riccarton Currie Edinburgh, United Kingdom EH14 4AS EOARD Grant 11-3074 Report Date:

More information

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat.

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat. Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat. Scattering: The changes in direction of light confined within an OF, occurring due to imperfection in

More information

Total Absorption Dual Readout Calorimetry R&D

Total Absorption Dual Readout Calorimetry R&D Available online at www.sciencedirect.com Physics Procedia 37 (2012 ) 309 316 TIPP 2011 - Technology and Instrumentation for Particle Physics 2011 Total Absorption Dual Readout Calorimetry R&D B. Bilki

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information

Single-photon imager based on a superconducting nanowire delay line

Single-photon imager based on a superconducting nanowire delay line In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2017.35 Single-photon imager based on a superconducting nanowire delay line Authors: Qing-Yuan Zhao 1,

More information

High-performance InGaAs/InP-based single photon avalanche diode with reduced afterpulsing

High-performance InGaAs/InP-based single photon avalanche diode with reduced afterpulsing High-performance InGaAs/InP-based single photon avalanche diode with reduced afterpulsing Chong Hu *, Xiaoguang Zheng, and Joe C. Campbell Electrical and Computer Engineering, University of Virginia, Charlottesville,

More information

Characterisation of SiPM Index :

Characterisation of SiPM Index : Characterisation of SiPM --------------------------------------------------------------------------------------------Index : 1. Basics of SiPM* 2. SiPM module 3. Working principle 4. Experimental setup

More information

Quantum key distribution system clocked at 2 GHz

Quantum key distribution system clocked at 2 GHz Quantum key distribution system clocked at 2 GHz Karen J. Gordon, Veronica Fernandez, Gerald S. Buller School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK, EH14 4AS k.j.gordon@hw.ac.uk

More information

2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Metrology for QKD an industrial quantum optical communication technology

Metrology for QKD an industrial quantum optical communication technology Metrology for QKD an industrial quantum optical communication technology Christopher Chunnilall christopher.chunnilall@npl.co.uk 1 st ETSI Quantum-Safe-Crypto-Workshop Sophia-Antipolis, France 26-27 September

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

arxiv: v1 [quant-ph] 1 Aug 2012

arxiv: v1 [quant-ph] 1 Aug 2012 Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating Xiao-Lei Liang, 1 Jian-Hong Liu, 2 Quan Wang, 2 De-Bing Du, 2 Jian Ma, 1 Ge Jin, 1 Zeng-Bing Chen, 1 Jun Zhang,

More information

Study of As 50 Se 50 thin film dissolution kinetics in amine based solutions

Study of As 50 Se 50 thin film dissolution kinetics in amine based solutions Available online at www.sciencedirect.com Physics Procedia 44 (2013 ) 114 119 10 th International Conference on Solid State Chemistry, Pardubice, Czech Republic Study of As 50 Se 50 thin film dissolution

More information

Methods to Optimize Plasmonic Structure Integrated Single-Photon Detector Designs

Methods to Optimize Plasmonic Structure Integrated Single-Photon Detector Designs Methods to Optimize Plasmonic Structure Integrated Single-Photon Detector Designs Mária Csete *1, Gábor Szekeres 1, Balázs Bánhelyi 2, András Szenes 1, Tibor Csendes 2 and Gábor Szabó 1 1 Department of

More information

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING Siti Aisyah bt. Ibrahim and Chong Wu Yi Photonics Research Center Department of Physics,

More information

Miniature Mid-Infrared Thermooptic Switch with Photonic Crystal Waveguide Based Silicon-on-Sapphire Mach Zehnder Interferometers

Miniature Mid-Infrared Thermooptic Switch with Photonic Crystal Waveguide Based Silicon-on-Sapphire Mach Zehnder Interferometers Miniature Mid-Infrared Thermooptic Switch with Photonic Crystal Waveguide Based Silicon-on- Mach Zehnder Interferometers Yi Zou, 1,* Swapnajit Chakravarty, 2,* Chi-Jui Chung, 1 1, 2, * and Ray T. Chen

More information

TCSPC at Wavelengths from 900 nm to 1700 nm

TCSPC at Wavelengths from 900 nm to 1700 nm TCSPC at Wavelengths from 900 nm to 1700 nm We describe picosecond time-resolved optical signal recording in the spectral range from 900 nm to 1700 nm. The system consists of an id Quantique id220 InGaAs

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #3 is due today No class Monday, Feb 26 Pre-record

More information