Simulation for all components, phases and life-cycles of complex space systems

Size: px
Start display at page:

Download "Simulation for all components, phases and life-cycles of complex space systems"

Transcription

1 Simulation for all components, phases and life-cycles of complex space systems Fernand Quartier, Frédéric Manon Spacebel, Technoparc 8, Rue Jean Bart, Labège, France Centre National d Etudes Spatiales, 18, Avenue Edouard Belin, Toulouse, France frederic.manon@cnes.fr Abstract. This paper describes the use and evolution of discrete event simulators and models throughout CNES, its various space system developments, disciplines and related life-cycles and teams. Simulators and models are built in the first place to ensure that the organization improves it competences in a number of key areas. It presents how a careful federation of means, know-how and models using a bottom-up approach, will meet one day the top-down System of Systems approach. Keywords: Discrete event simulators, life cycle, multi-disciplinary, functional simulation, space systems 1 Introduction In a large engineering enterprise, such as Centre National d Etudes Spatiales (CNES), there are many simulators used and developed. The most demanding is the operational simulator as it has to be representative for a satellite as seen from the ground and because it is used in many verification and qualification chains for control centres, mission control centres and payload control centres. For those qualifications, the real satellite is only used rarely as incurs very expensive operations with many constraints, while introducing risks on damage and planning. Moreover, testing with real satellites still has limited representativity and fault injection is even more cumbersome. Nowadays, the operational simulators fly many months before the satellite is launched. The significant efforts to develop such large operational simulators have not only led to a better understanding of the problematic and to better technical solutions, as described in subsequent sections. It equally triggered the awareness of the value of models that contain part of the company s memory and its patrimony and a means of communication and specification of behaviour. The validation and qualification of models takes often much more resources than the development itself, so that reuse is much more rewarding than traditional reuse of software components. But most importantly, models and simulators are creating some sort of biotope that allow improv- Proceedings of the Posters Workshop at CSD&M

2 ing key competences and facilitates cooperation between people having various expertise and project roles. 2 Operational Simulators 2.1 Main Requirements Operational simulators have the following key requirements: From the point of view of operators, the simulator should be indistinguishable from the real satellite Causality must be respected and all runs must be reproducible Failure, fault and reproducible noise injection without changing models Fine control and visibility on internals (introspection) Formal and automated procedures for model and simulator validation Save/restore of context to allow bypassing operational test lead-in times of several days Perennity guarantees for 15+ years: Linux, mainstream PC s, Open source versus COTS, heritage/reuse of 15 years 2.2 Content and Performance Requirements Independent models in C, Fortran, Matlab, Scilab, object format (industrial secret). Start script based model instantiations and connection of model variables without compilation (using naming database) Computer emulators are loaded with the production version of the ROM images (1750, ERC32, LEON, ) Performance: minimum is guaranteed real-time, 3 to n times real-time for increased productivity Although the main content of an operational simulator revolves around its computer simulator, many disciplines are present: on-board software, command and control, guidance and attitude, mechanics, thermal, electric, power As an example, the Pleiades operational simulator contains: 200 models, model frequencies of 1 to 128 Hz 7 processor emulators, globally up to 80 million of OBSW instructions/sec Up to 200 events in scheduler events per simulated second Its performance is: minimum 2 times real-time 10 times real-time preferred (possibly with models that support reduced representativity) Proceedings of the Posters Workshop at CSD&M

3 events per executed second The Argos study simulators contain models and manage events in the scheduler. They run 5 to 500 times the real-time speed, executing events per second. Large simulators tend to have separate specialized teams to Develop and validate models, covering various disciplines (mechanics, thermal, power, dynamics, ) Configure, integrate and validate simulators for the specific needs Deploy simulators for use in the various operational chains and execute the needed scenarios 2.3 Life Cycles The life of a satellite simulator has many dimensions as can be seen in the pictures below. Fig. 1. Life cycles of a spacecraft Proceedings of the Posters Workshop at CSD&M

4 Fig. 2. CNES main simulator needs during a spacecraft life cycle Other dimensions along the project phases are: Instruments that range from simple acquisition subsystems to complex instruments, such as GPS, star trackers, Gyros, The several space platforms for the various product lines (mini-satellites, microsatellites) Within operational phases, different configurations of the simulators are used, called variants. Typically, representativity and scope is reconfigured as to provide optimal performance for the tests at hand. All these dimensions need a well thought out approach for testing, validation, configuration management and maintenance. 2.4 Integration with Other Components Obviously, operational simulators need to have flexible interfaces to connect with the control and operational centres. It must be possible to route those interfaces directly or via the receiving station, through real RF equipment or through Spacelink simulators when representativity is paramount. Co-simulation with other specialized simulators, such as Saber, is achieved through the use of standard interfaces, such as HLA. In the long run, hardware-in-the-loop will be needed for some components such as instruments and payloads. Proceedings of the Posters Workshop at CSD&M

5 3 Towards Better Use and Continuity of Means. The development of operational simulators is on a crossroad where many project phases, disciplines, models and people come together. Nevertheless, it was observed that the re-use of models, know-how and tools was far from optimal. So it was further investigated. 3.1 Identified Problems and Barriers The main identified problem is due to the partitioning barriers caused by the many dimensions of the life cycles, project teams, disciplines, platforms. Building a simple discrete event simulator is not that complex, so that there are many such simulators developed throughout the company. As usually with software, those simple simulators evolve quickly to more complete in-house products and test environments. The more they evolve, the less the models tend to be reusable and the more difficult it becomes to move to a common platform. 3.2 BASILES To improve the situation, in a first phase, BASILES (BAncs SImulateurs et Logiciels d Etude de Satellite) has been created. It is a common simulation platform to promote models and simulation reuse among space programs and among the different simulators that are created during the lifecycle of a project. BASILES provides a methodology and a standard for CNES simulators. First of all, BASILES is a simulation framework to develop, configure and run simulators. It allows representing complex systems using discrete event simulation. It contains the simulation kernel in charge of time and events handling, logger service, integrators, processor emulator management, distributed simulation handling, etc. Concerning the development of a new simulator, BASILES features help to easily develop prototypes with basic programming knowledge in a short period of time and with a good level of accuracy. Models are simply configurable. Concerning the execution of a simulator, BASILES provides a great number of self-functionalities to interact and introspect the models and simulation. Finally, BASILES is also a model library in order to share and reuse models and simulators among space programs. In order to extend its user base, CNES accepts to attribute licenses of the product to other industries, thereby stressing the system more to achieve quicker full maturity and to expose the product to new user requirements and ideas. 3.3 SMP2 For several years now, the European Cooperation for Space Standardization (ECSS) has taken the initiative to develop the SMP standard (Simulation Model Portability). The aim of this standard is to allow models to be portable among different simulation Proceedings of the Posters Workshop at CSD&M

6 infrastructures. Interfaces are specified by SMP independently of simulation infrastructures. BASILES evolved to the SMP standard and all new developments are SMP based. 3.4 Study Simulators One of the other families of discrete events simulators is MACSIM, basically used as study simulator, and having a large patrimony of existing models. Study simulators tend to be developed starting with few and relatively basic models in an incremental and iterative way: the developer improves or refines the model, runs it, validates it and restart improving it. The MACSIM environment has been successfully integrated in BASILES. 3.5 Hardware in the Loop Ideally, many of the models should be replaceable by hardware equipment, although this adds significant constraints. This allows using real equipment, to raise the level of representativity and expose the used models to a broader range of environments. Such operations have been successfully performed integrating real payloads with the simulator via Mil The new Nosyca balloon flight computer has been integrated with BASILES via a number of interfaces. In that case, BASILES became a test bench, environment simulator and controller of the Nosyca flight computer. 3.6 Software Validation Facilities BASILES has been augmented with non-intrusive flight software gdb debugging capabilities on the used processor emulators. That means that breakpoints can be set on specific instructions or data accesses. When such a breakpoint is hit, the clock of the processor and the simulator is frozen and the gdb interface is warned and normal debugging can take place. All external BASILES interfaces remain functional and time progress continues when the processor is released by the debugger. 3.7 Towards New Generation of Modular Real-time Benches A demonstrator has been build that shows the distributed real-time capability of modern systems. It runs BASILES simulators on different mainstream PC s running standard Linux connected via HLA. Measurements have shown that all simulators were capable of generating output with a time precision and jitter that is better than 50 µseconds. It is believed that test systems will become more modular and cheaper. In fact, many of the typical test systems are based on huge acquisition and driving front-ends, along with custom interfaces and uncommon processors and real-time RTOS with Proceedings of the Posters Workshop at CSD&M

7 specialised drivers. Such complex equipment creates a major constraint on re-use, maintenance and perennity. For the Nosyca system, interfaces have been made using a series of small microcontrollers such as the PIC32, complemented with the needed connectors and small interface logic and shaping. These little 50 low power boards (power via USB), with a 20 cm 2 footprint, contain a 80 MHZ CPU, significant memory and interface variety, including Ethernet. Because the microcontrollers are dedicated to one single function, they are simple, while in many cases, specific interface FPGA s can be avoided as the microcontroller can achieve a time resolution well below the µsecond. An approach that uses multiple small systems is better manageable than huge complex and hierarchical systems. 3.8 Defining Simulator Strategy. at Day One of Each Project From the many experiments and domains BASILES has been used in, it became clear that a complete simulator planning is better studied by the very beginning of each space related project. As has been shown in the Argos and SMAR project, a first global system simulator allows for better dimensioning of many components of the system and helps to create a common understanding of the project. 4 On-going Developments and R&D 4.1 Thematic There are several R&D projects and investigations going concerning microscopic traffic simulation (one model per car), Software Validation Facilities for Proba and MTg, missile test planning, FDIT management, TDM space communication and improved thermal simulation. Indeed, precise thermal simulation used to be extremely processing hungry. CNES is in the process of developing fast thermal simulation technology that will allow simulating the thermal behaviour of major satellite components with a precision of a couple of degrees. 4.2 Parallel Processing Parallel processing of several processor simulators has been proven as an important performance gain. Using the theory of separability, developed at CNES, we are in a good starting point to engineer the parallelization. Currently, a methodology is being developed to detect model dependencies and allow for parallelization by configuration, without changing the models. This step can be taken when the normal nonparallel simulator is validated. Another form of parallel work under investigation is the running of a simulator in parallel with the real system. The use would be twofold: Proceedings of the Posters Workshop at CSD&M

8 In a first phase, to dynamically validate (and improve) the simulator versus the real system. In a second phase, to compare the real system against the simulator as to warn the operator when something is out of limits. Obviously, such system could have a far more refined warning capability than existing supervision systems. A frequent context save of such systems would allow to jump backwards in time for deeper investigation of out of limit behaviour and perform what-if scenarios based on a saved context. 4.3 Processor Emulators Processing emulators are the critical path in operational simulators, so significant efforts are devoted to them. Current emulators decode each instruction to be executed, which limit their speed to around 70 MHz. One trail concerns the dynamic translation or Just in Time compilation of flight software. It has been demonstrated that such emulators have the capability to reach 500 MHz emulation capability. Another trail concerns the emulation of multi-core processors exploiting the multiple cores of the PC. Another domain being investigated concerns the emulation of the space variant of ARINC 653 (also called TSP and IMA). In IMA, application layers are isolated in partitions that are time sliced by a hypervisor. Such partitions could probably simulated in parallel as by design, they have much fewer interdependencies. Proceedings of the Posters Workshop at CSD&M

BASILES: A common simulation platform to promote model and simulation reuse

BASILES: A common simulation platform to promote model and simulation reuse SpaceOps Conferences 5-9 May 2014, Pasadena, CA SpaceOps 2014 Conference 10.2514/6.2014-1845 BASILES: A common simulation platform to promote model and simulation reuse S.Salas Solano 1, J.Marigo, F.Manon

More information

Formation Flying What s Coming Up

Formation Flying What s Coming Up Formation Flying What s Coming Up Research & Development directions for Formation Flying simulation and AIV In cooperation with CNES and Estec Fernand Quartier Mathieu Joubert Summary Coming up: Formation

More information

Model Based AOCS Design and Automatic Flight Code Generation: Experience and Future Development

Model Based AOCS Design and Automatic Flight Code Generation: Experience and Future Development ADCSS 2016 October 20, 2016 Model Based AOCS Design and Automatic Flight Code Generation: Experience and Future Development SATELLITE SYSTEMS Per Bodin Head of AOCS Department OHB Sweden Outline Company

More information

A Methodology for Effective Reuse of Design Simulators in Operational Contexts: Lessons Learned in European Space Programmes

A Methodology for Effective Reuse of Design Simulators in Operational Contexts: Lessons Learned in European Space Programmes A Methodology for Effective Reuse of Design Simulators in Operational Contexts: Lessons Learned in European Space Programmes 11th International Workshop on Simulation & EGSE facilities for Space Programmes

More information

vstasker 6 A COMPLETE MULTI-PURPOSE SOFTWARE TO SPEED UP YOUR SIMULATION PROJECT, FROM DESIGN TIME TO DEPLOYMENT REAL-TIME SIMULATION TOOLKIT FEATURES

vstasker 6 A COMPLETE MULTI-PURPOSE SOFTWARE TO SPEED UP YOUR SIMULATION PROJECT, FROM DESIGN TIME TO DEPLOYMENT REAL-TIME SIMULATION TOOLKIT FEATURES REAL-TIME SIMULATION TOOLKIT A COMPLETE MULTI-PURPOSE SOFTWARE TO SPEED UP YOUR SIMULATION PROJECT, FROM DESIGN TIME TO DEPLOYMENT Diagram based Draw your logic using sequential function charts and let

More information

Evolution of Software-Only-Simulation at NASA IV&V

Evolution of Software-Only-Simulation at NASA IV&V Evolution of Software-Only-Simulation at NASA IV&V http://www.nasa.gov/centers/ivv/jstar/itc.html Justin McCarty Justin.McCarty@TMCTechnologies.com Justin Morris Justin.R.Morris@Nasa.gov Scott Zemerick

More information

Rapid Development and Test for UKube-1 using Software and Hardware-in-the-Loop Simulation. Peter Mendham and Mark McCrum

Rapid Development and Test for UKube-1 using Software and Hardware-in-the-Loop Simulation. Peter Mendham and Mark McCrum Rapid Development and Test for UKube-1 using Software and Hardware-in-the-Loop Simulation Peter Mendham and Mark McCrum UKube-1 United Kingdom Universal Bus Experiment 3U CubeSat Five payloads C3D imager

More information

Standardised Ground Data Systems Implementation: A Dream?

Standardised Ground Data Systems Implementation: A Dream? GSAW 2007 Standardised Ground Data Systems Y. Doat, C. R. Haddow, M. Pecchioli and N. Peccia ESA/ESOC, Robert Bosch Straße 5, 64293 Darmstadt, Germany Ground Data Systems at ESA/ESOC: The current approach

More information

A FRAMEWORK FOR PERFORMING V&V WITHIN REUSE-BASED SOFTWARE ENGINEERING

A FRAMEWORK FOR PERFORMING V&V WITHIN REUSE-BASED SOFTWARE ENGINEERING A FRAMEWORK FOR PERFORMING V&V WITHIN REUSE-BASED SOFTWARE ENGINEERING Edward A. Addy eaddy@wvu.edu NASA/WVU Software Research Laboratory ABSTRACT Verification and validation (V&V) is performed during

More information

27/05/2014. Dr. Peter Fritzen Telespazio VEGA Deutschland GmbH. Architecture and Development Process of Spacecraft Simulators for ESOC

27/05/2014. Dr. Peter Fritzen Telespazio VEGA Deutschland GmbH. Architecture and Development Process of Spacecraft Simulators for ESOC Architecture and Development Process of Spacecraft Simulators for ESOC Dr. Peter Fritzen Telespazio VEGA Deutschland GmbH 27/05/2014 Telespazio VEGA Deutschland Introduction AGENDA Telespazio VEGA Deutschland

More information

MODEL AND SIMULATION BASED SATELLITE ENGINEERING

MODEL AND SIMULATION BASED SATELLITE ENGINEERING 1st International Academy of Astronautics Latin American Symposium on Small Satellites: Advanced Technologies and Distributed Systems CUSTOM DESIGNED TECHNOLOGY MODEL AND SIMULATION BASED SATELLITE ENGINEERING

More information

Towards the definition of ESA s future OBCP building block

Towards the definition of ESA s future OBCP building block Towards the definition of ESA s future OBCP building block M. Ferraguto, J. Johansson, K. Jurva (SSF) A. Oganessian, M. Prochazka (ESA) A.I. Rodríguez, T. Schoofs (GMV) M. Barrenscheen (IDA), M. Muñoz

More information

GNC/AOCS DEVELOPMENT SYSTEM FOR RENDEZ-VOUS AND DOCKING MISSIONS AT SENER, AND ASSOCIATED TEST FACILITIES

GNC/AOCS DEVELOPMENT SYSTEM FOR RENDEZ-VOUS AND DOCKING MISSIONS AT SENER, AND ASSOCIATED TEST FACILITIES . GNC/AOCS DEVELOPMENT SYSTEM FOR RENDEZ-VOUS AND DOCKING MISSIONS AT SENER, AND ASSOCIATED TEST FACILITIES Gonzalo Saavedra, Antonio Ayuso, Juan Manuel del Cura, Jose Maria Fernandez, Salvador Llorente,

More information

ACCELERATE SOFTWARE DEVELOPMENT WITH CONTINUOUS INTEGRATION AND SIMULATION

ACCELERATE SOFTWARE DEVELOPMENT WITH CONTINUOUS INTEGRATION AND SIMULATION ACCELERATE SOFTWARE DEVELOPMENT WITH CONTINUOUS INTEGRATION AND SIMULATION A How-to Guide for Embedded Development WHEN IT MATTERS, IT RUNS ON WIND RIVER EXECUTIVE SUMMARY Adopting the practice of Continuous

More information

Software Product Assurance for Autonomy On-board Spacecraft

Software Product Assurance for Autonomy On-board Spacecraft Software Product Assurance for Autonomy On-board Spacecraft JP. Blanquart (1), S. Fleury (2) ; M. Hernek (3) ; C. Honvault (1) ; F. Ingrand (2) ; JC. Poncet (4) ; D. Powell (2) ; N. Strady-Lécubin (4)

More information

"TELSIM: REAL-TIME DYNAMIC TELEMETRY SIMULATION ARCHITECTURE USING COTS COMMAND AND CONTROL MIDDLEWARE"

TELSIM: REAL-TIME DYNAMIC TELEMETRY SIMULATION ARCHITECTURE USING COTS COMMAND AND CONTROL MIDDLEWARE "TELSIM: REAL-TIME DYNAMIC TELEMETRY SIMULATION ARCHITECTURE USING COTS COMMAND AND CONTROL MIDDLEWARE" Rodney Davis, & Greg Hupf Command and Control Technologies, 1425 Chaffee Drive, Titusville, FL 32780,

More information

UNIT-III LIFE-CYCLE PHASES

UNIT-III LIFE-CYCLE PHASES INTRODUCTION: UNIT-III LIFE-CYCLE PHASES - If there is a well defined separation between research and development activities and production activities then the software is said to be in successful development

More information

The Virtual Spacecraft Reference Facility

The Virtual Spacecraft Reference Facility The Virtual Spacecraft M.Schön, M.Arcioni, D.Temperanza, K.Hjortnaes Michael.Schoen@esa.int On-Board Software Systems Section 1 Agenda Why? What? How? When? 2 The Virtual Spacecraft architecture view EuroSim

More information

Software-Intensive Systems Producibility

Software-Intensive Systems Producibility Pittsburgh, PA 15213-3890 Software-Intensive Systems Producibility Grady Campbell Sponsored by the U.S. Department of Defense 2006 by Carnegie Mellon University SSTC 2006. - page 1 Producibility

More information

PROPAGATION CHANNEL EMULATOR : ECP

PROPAGATION CHANNEL EMULATOR : ECP PROPAGATION CHANNEL EMULATOR : ECP The ECP (Propagation Channel Emulator) synthesizes the principal phenomena of propagation occurring on RF signal links between earth and space. Developed by the R&D laboratory,

More information

Beyond CubeSats: Operational, Responsive, Nanosatellite Missions. 9th annual CubeSat Developers Workshop

Beyond CubeSats: Operational, Responsive, Nanosatellite Missions. 9th annual CubeSat Developers Workshop Beyond CubeSats: Operational, Responsive, Nanosatellite Missions 9th annual CubeSat Developers Workshop Jeroen Rotteveel Nanosatellite Applications Nanosatellite Market growing rapidly Cubesats: Conception

More information

The PROBA Missions Design Capabilities for Autonomous Guidance, Navigation and Control. Jean de Lafontaine President

The PROBA Missions Design Capabilities for Autonomous Guidance, Navigation and Control. Jean de Lafontaine President The PROBA Missions Design Capabilities for Autonomous Guidance, Navigation and Control Jean de Lafontaine President Overview of NGC NGC International Inc (holding company) NGC Aerospace Ltd Sherbrooke,

More information

Design of Mixed-Signal Microsystems in Nanometer CMOS

Design of Mixed-Signal Microsystems in Nanometer CMOS Design of Mixed-Signal Microsystems in Nanometer CMOS Carl Grace Lawrence Berkeley National Laboratory August 2, 2012 DOE BES Neutron and Photon Detector Workshop Introduction Common themes in emerging

More information

Changing of the guard: after more than 10 years, a new GSM reference system

Changing of the guard: after more than 10 years, a new GSM reference system MOBILE RADIO GSM Protocol Analyzer CRTU-G Changing of the guard: after more than 10 years, a new GSM reference system For more than 10 years Rohde & Schwarz has been successful in the market with the reference

More information

Research Activities on Small Satellite in HIT

Research Activities on Small Satellite in HIT 7th UK-China Workshop on Space Science and Technology Research Activities on Small Satellite in HIT Prof. ZHANG Shijie (RCST) Contents 7th UK-China Workshop on Space Science and Technology 1. RCST Overview

More information

ARTES Competitiveness & Growth Full Proposal. Requirements for the Content of the Technical Proposal. Part 3B Product Development Plan

ARTES Competitiveness & Growth Full Proposal. Requirements for the Content of the Technical Proposal. Part 3B Product Development Plan ARTES Competitiveness & Growth Full Proposal Requirements for the Content of the Technical Proposal Part 3B Statement of Applicability and Proposal Submission Requirements Applicable Domain(s) Space Segment

More information

By the end of this chapter, you should: Understand what is meant by engineering design. Understand the phases of the engineering design process.

By the end of this chapter, you should: Understand what is meant by engineering design. Understand the phases of the engineering design process. By the end of this chapter, you should: Understand what is meant by engineering design. Understand the phases of the engineering design process. Be familiar with the attributes of successful engineers.

More information

Objectives. Designing, implementing, deploying and operating systems which include hardware, software and people

Objectives. Designing, implementing, deploying and operating systems which include hardware, software and people Chapter 2. Computer-based Systems Engineering Designing, implementing, deploying and operating s which include hardware, software and people Slide 1 Objectives To explain why software is affected by broader

More information

Real-Time Testing Made Easy with Simulink Real-Time

Real-Time Testing Made Easy with Simulink Real-Time Real-Time Testing Made Easy with Simulink Real-Time Andreas Uschold Application Engineer MathWorks Martin Rosser Technical Sales Engineer Speedgoat 2015 The MathWorks, Inc. 1 Model-Based Design Continuous

More information

Modernised GNSS Receiver and Design Methodology

Modernised GNSS Receiver and Design Methodology Modernised GNSS Receiver and Design Methodology March 12, 2007 Overview Motivation Design targets HW architecture Receiver ASIC Design methodology Design and simulation Real Time Emulation Software module

More information

1. SMOS Status 1.1 Payload 1.2 Platform 1.3 Satellite 1.4 Launcher 1.5 FOS 1.6 DPGS 2. Other Developments 3. Future (Near & Far) 4.

1. SMOS Status 1.1 Payload 1.2 Platform 1.3 Satellite 1.4 Launcher 1.5 FOS 1.6 DPGS 2. Other Developments 3. Future (Near & Far) 4. 1. SMOS Status 1.1 Payload 1.2 Platform 1.3 Satellite 1.4 Launcher 1.5 FOS 1.6 DPGS 2. Other Developments 3. Future (Near & Far) 4. Schedule 1 1.1 Payload General: Structural / Thermal Model test campaigns

More information

Digital Systems Design

Digital Systems Design Digital Systems Design Digital Systems Design and Test Dr. D. J. Jackson Lecture 1-1 Introduction Traditional digital design Manual process of designing and capturing circuits Schematic entry System-level

More information

A Holistic Approach to Systems Development

A Holistic Approach to Systems Development A Holistic Approach to Systems Development Douglas T. Wong Habitability and Human Factors Branch, Space and Life Science Directorate NASA Johnson Space Center Houston, Texas NDIA 11 th Annual Systems Engineering

More information

Towards an MDA-based development methodology 1

Towards an MDA-based development methodology 1 Towards an MDA-based development methodology 1 Anastasius Gavras 1, Mariano Belaunde 2, Luís Ferreira Pires 3, João Paulo A. Almeida 3 1 Eurescom GmbH, 2 France Télécom R&D, 3 University of Twente 1 gavras@eurescom.de,

More information

SCOE SIMULATION. Pascal CONRATH (1), Christian ABEL (1)

SCOE SIMULATION. Pascal CONRATH (1), Christian ABEL (1) SCOE SIMULATION Pascal CONRATH (1), Christian ABEL (1) Clemessy Switzerland AG (1) Gueterstrasse 86b 4053 Basel, Switzerland E-mail: p.conrath@clemessy.com, c.abel@clemessy.com ABSTRACT During the last

More information

Pragmatic Strategies for Adopting Model-Based Design for Embedded Applications. The MathWorks, Inc.

Pragmatic Strategies for Adopting Model-Based Design for Embedded Applications. The MathWorks, Inc. Pragmatic Strategies for Adopting Model-Based Design for Embedded Applications Larry E. Kendrick, PhD The MathWorks, Inc. Senior Principle Technical Consultant Introduction What s MBD? Why do it? Make

More information

EGS-CC. System Engineering Team. Commonality of Ground Systems. Executive Summary

EGS-CC. System Engineering Team. Commonality of Ground Systems. Executive Summary System Engineering Team Prepared: System Engineering Team Date: Approved: System Engineering Team Leader Date: Authorized: Steering Board Date: Restriction of Disclosure: The copyright of this document

More information

High Performance Computing Systems and Scalable Networks for. Information Technology. Joint White Paper from the

High Performance Computing Systems and Scalable Networks for. Information Technology. Joint White Paper from the High Performance Computing Systems and Scalable Networks for Information Technology Joint White Paper from the Department of Computer Science and the Department of Electrical and Computer Engineering With

More information

AstroBus S, the high performance and competitive Small Satellites platform for Earth Observation

AstroBus S, the high performance and competitive Small Satellites platform for Earth Observation AstroBus S, the high performance and competitive Small Satellites platform for Earth Observation Dr. Jean Cheganças 10th IAA Symposium on Small Satellites for Earth Observation April 20-24, 2015 Berlin,

More information

Complex Systems and Microsystems Design: The Meet-in-the-Middle Approach

Complex Systems and Microsystems Design: The Meet-in-the-Middle Approach Complex Systems and Microsystems Design: The Meet-in-the-Middle Approach J.L. Boizard, N. Nasreddine, D. Estève, JY. Fourniols N2IS Université de Toulouse, LAAS-CNRS 7 avenue du Colonel Roche, 31 077 Toulouse.

More information

PhoneSat: Balloon Testing Results. Mike Safyan 2011 Summer CubeSat Developers Workshop

PhoneSat: Balloon Testing Results. Mike Safyan 2011 Summer CubeSat Developers Workshop PhoneSat: Balloon Testing Results Mike Safyan 2011 Summer CubeSat Developers Workshop 85 Why use a phone? Increase on-orbit processor capability by a factor of 10-100 Decrease cost by a factor of 10-1000

More information

The Preliminary Risk Analysis Approach: Merging Space and Aeronautics Methods

The Preliminary Risk Analysis Approach: Merging Space and Aeronautics Methods The Preliminary Risk Approach: Merging Space and Aeronautics Methods J. Faure, A. Cabarbaye & R. Laulheret CNES, Toulouse,France ABSTRACT: Based on space industry but also on aeronautics methods, we will

More information

Integrating Advanced Payload Data Processing in a Demanding CubeSat Mission. Mark McCrum, Peter Mendham

Integrating Advanced Payload Data Processing in a Demanding CubeSat Mission. Mark McCrum, Peter Mendham Integrating Advanced Payload Data Processing in a Demanding CubeSat Mission Mark McCrum, Peter Mendham CubeSat mission capability Nano-satellites missions are increasing in capability Constellations Distributed

More information

Brazilian Inter-University CubeSat Mission Overview

Brazilian Inter-University CubeSat Mission Overview Brazilian Inter-University CubeSat Mission Overview Victor Menegon, Leonardo Kessler Slongo, Lui Pillmann, Julian Lopez, William Jamir, Thiago Pereira, Eduardo Bezerra and Djones Lettnin. victormenegon.eel@gmail.com

More information

CP7 ORBITAL PARTICLE DAMPER EVALUATION

CP7 ORBITAL PARTICLE DAMPER EVALUATION CP7 ORBITAL PARTICLE DAMPER EVALUATION Presenters John Abel CP7 Project Lead & Head Electrical Engineer Daniel Walker CP7 Head Software Engineer John Brown CP7 Head Mechanical Engineer 2010 Cubesat Developers

More information

IS 525 Chapter 2. Methodology Dr. Nesrine Zemirli

IS 525 Chapter 2. Methodology Dr. Nesrine Zemirli IS 525 Chapter 2 Methodology Dr. Nesrine Zemirli Assistant Professor. IS Department CCIS / King Saud University E-mail: Web: http://fac.ksu.edu.sa/nzemirli/home Chapter Topics Fundamental concepts and

More information

A SERVICE-ORIENTED SYSTEM ARCHITECTURE FOR THE HUMAN CENTERED DESIGN OF INTELLIGENT TRANSPORTATION SYSTEMS

A SERVICE-ORIENTED SYSTEM ARCHITECTURE FOR THE HUMAN CENTERED DESIGN OF INTELLIGENT TRANSPORTATION SYSTEMS Tools and methodologies for ITS design and drivers awareness A SERVICE-ORIENTED SYSTEM ARCHITECTURE FOR THE HUMAN CENTERED DESIGN OF INTELLIGENT TRANSPORTATION SYSTEMS Jan Gačnik, Oliver Häger, Marco Hannibal

More information

Reconsidering the Role of Systems Engineering in DoD Software Problems

Reconsidering the Role of Systems Engineering in DoD Software Problems Pittsburgh, PA 15213-3890 SIS Acquisition Reconsidering the Role of Systems Engineering in DoD Software Problems Grady Campbell (ghc@sei.cmu.edu) Sponsored by the U.S. Department of Defense 2004 by Carnegie

More information

Data Quality Monitoring of the CMS Pixel Detector

Data Quality Monitoring of the CMS Pixel Detector Data Quality Monitoring of the CMS Pixel Detector 1 * Purdue University Department of Physics, 525 Northwestern Ave, West Lafayette, IN 47906 USA E-mail: petra.merkel@cern.ch We present the CMS Pixel Data

More information

Keywords: Aircraft Systems Integration, Real-Time Simulation, Hardware-In-The-Loop Testing

Keywords: Aircraft Systems Integration, Real-Time Simulation, Hardware-In-The-Loop Testing 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES REAL-TIME HARDWARE-IN-THE-LOOP SIMULATION OF FLY-BY-WIRE FLIGHT CONTROL SYSTEMS Eugenio Denti*, Gianpietro Di Rito*, Roberto Galatolo* * University

More information

Making your ISO Flow Flawless Establishing Confidence in Verification Tools

Making your ISO Flow Flawless Establishing Confidence in Verification Tools Making your ISO 26262 Flow Flawless Establishing Confidence in Verification Tools Bryan Ramirez DVT Automotive Product Manager August 2015 What is Tool Confidence? Principle: If a tool supports any process

More information

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO Exhibit R-2, RDT&E Budget Item Justification: PB 2013 Air Force DATE: February 2012 BA 3: Advanced Development (ATD) COST ($ in Millions) Program Element 75.103 74.009 64.557-64.557 61.690 67.075 54.973

More information

Strategic Considerations when Introducing Model Based Systems Engineering

Strategic Considerations when Introducing Model Based Systems Engineering Copyright 2015 by Christoph Bräuchle, Manfred Broy, Dominik Rüchardt. Permission granted to INCOSE to publish and use Strategic Considerations when Introducing Model Based Systems Engineering Christoph

More information

The Test and Launch Control Technology for Launch Vehicles

The Test and Launch Control Technology for Launch Vehicles The Test and Launch Control Technology for Launch Vehicles Zhengyu Song The Test and Launch Control Technology for Launch Vehicles 123 Zhengyu Song China Academy of Launch Vehicle Technology Beijing China

More information

The Need for Gate-Level CDC

The Need for Gate-Level CDC The Need for Gate-Level CDC Vikas Sachdeva Real Intent Inc., Sunnyvale, CA I. INTRODUCTION Multiple asynchronous clocks are a fact of life in today s SoC. Individual blocks have to run at different speeds

More information

Real-Time AOCS EGSE Using EuroSim and SMP2-Compliant Building Blocks

Real-Time AOCS EGSE Using EuroSim and SMP2-Compliant Building Blocks UNCLASSIFIED Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR Executive summary Real-Time AOCS EGSE Using EuroSim and SMP2-Compliant Building Blocks Environment control torque

More information

Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems

Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems Walt Truszkowski, Harold L. Hallock, Christopher Rouff, Jay Karlin, James Rash, Mike Hinchey, and Roy Sterritt Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations

More information

CubeSat Integration into the Space Situational Awareness Architecture

CubeSat Integration into the Space Situational Awareness Architecture CubeSat Integration into the Space Situational Awareness Architecture Keith Morris, Chris Rice, Mark Wolfson Lockheed Martin Space Systems Company 12257 S. Wadsworth Blvd. Mailstop S6040 Littleton, CO

More information

NASA s X2000 Program - an Institutional Approach to Enabling Smaller Spacecraft

NASA s X2000 Program - an Institutional Approach to Enabling Smaller Spacecraft NASA s X2000 Program - an Institutional Approach to Enabling Smaller Spacecraft Dr. Leslie J. Deutsch and Chris Salvo Advanced Flight Systems Program Jet Propulsion Laboratory California Institute of Technology

More information

UNISEC Europe CSID An Advanced Efficient Electrical Interface Standard for CubeSats

UNISEC Europe CSID An Advanced Efficient Electrical Interface Standard for CubeSats UNISEC Europe CSID An Advanced Efficient Electrical Interface Standard for CubeSats 4 th IAA Conference on University Satellite Missions and CubeSat Workshop Oliver Ruf 1 Motivation for a Standardization

More information

GPS RECEIVER IMPLEMENTATION USING SIMULINK

GPS RECEIVER IMPLEMENTATION USING SIMULINK GPS RECEIVER IMPLEMENTATION USING SIMULINK C.Abhishek 1, A.Charitha 2, Dasari Goutham 3 1 Student, SCSVMV University, Kanchipuram 2 Student, kl university, Vijayawada 3 Student, SVEC college, Tirupati

More information

SpectraTronix C700. Modular Test & Development Platform. Ideal Solution for Cognitive Radio, DSP, Wireless Communications & Massive MIMO Applications

SpectraTronix C700. Modular Test & Development Platform. Ideal Solution for Cognitive Radio, DSP, Wireless Communications & Massive MIMO Applications SpectraTronix C700 Modular Test & Development Platform Ideal Solution for Cognitive Radio, DSP, Wireless Communications & Massive MIMO Applications Design, Test, Verify & Prototype All with the same tool

More information

Future Concepts for Galileo SAR & Ground Segment. Executive summary

Future Concepts for Galileo SAR & Ground Segment. Executive summary Future Concepts for Galileo SAR & Ground Segment TABLE OF CONTENT GALILEO CONTRIBUTION TO THE COSPAS/SARSAT MEOSAR SYSTEM... 3 OBJECTIVES OF THE STUDY... 3 ADDED VALUE OF SAR PROCESSING ON-BOARD G2G SATELLITES...

More information

TECHNIQUES FOR COMMERCIAL SDR WAVEFORM DEVELOPMENT

TECHNIQUES FOR COMMERCIAL SDR WAVEFORM DEVELOPMENT TECHNIQUES FOR COMMERCIAL SDR WAVEFORM DEVELOPMENT Anna Squires Etherstack Inc. 145 W 27 th Street New York NY 10001 917 661 4110 anna.squires@etherstack.com ABSTRACT Software Defined Radio (SDR) hardware

More information

The PTR Group Capabilities 2014

The PTR Group Capabilities 2014 The PTR Group Capabilities 2014 20 Feb 2014 How We Make a Difference Cutting Edge Know How At Cisco, The PTR Group is the preferred North American vendor to develop courseware and train their embedded

More information

Test & Measurement Technology goes Embedded

Test & Measurement Technology goes Embedded Thomas Wenzel Test & Measurement Technology goes Embedded The Electronics World speaks Embedded No doubt! The term embedded is omnipresent and can be found in nearly every development sector. And everybody

More information

Achieving the Systems Engineering Vision 2025

Achieving the Systems Engineering Vision 2025 Achieving the Systems Engineering Vision 2025 Alan Harding INCOSE President alan.harding@incose.org @incosepres CSDM Paris 14 th December 2016 Copyright 2016 by A Harding. Published and used by CSD&M Paris

More information

Electronics Putting Internet into Things. JP Morgan. 1 April 2015 Sam Weiss Chairman

Electronics Putting Internet into Things. JP Morgan. 1 April 2015 Sam Weiss Chairman Electronics Putting Internet into Things JP Morgan 1 April 2015 Sam Weiss Chairman Introduction Disclaimer This presentation has been prepared by Altium Limited (ACN 009 568 772) and is for information

More information

Satellite Technology for Future Applications

Satellite Technology for Future Applications Satellite Technology for Future Applications WSRF Panel n 4 Dubai, 3 March 2010 Guy Perez VP Telecom Satellites Programs 1 Commercial in confidence / All rights reserved, 2010, Thales Alenia Space Content

More information

ARTES Competitiveness & Growth Full Proposal. Requirements for the Content of the Technical Proposal

ARTES Competitiveness & Growth Full Proposal. Requirements for the Content of the Technical Proposal ARTES Competitiveness & Growth Full Proposal Requirements for the Content of the Technical Proposal Part 3C (DDVP) Statement of Applicability and Proposal Submission Requirements Applicable Domain(s) Space

More information

CSE 435: Software Engineering

CSE 435: Software Engineering CSE 435: Software Engineering Dr. James Daly 3501 Engineering Building Office: 3501 EB, by appointment dalyjame at msu dot edu TAs: Vincent Ragusa and Mohammad Roohitavaf Helproom Tuesday: 2-4 pm, Wednesday

More information

Systems Engineering Overview. Axel Claudio Alex Gonzalez

Systems Engineering Overview. Axel Claudio Alex Gonzalez Systems Engineering Overview Axel Claudio Alex Gonzalez Objectives Provide additional insights into Systems and into Systems Engineering Walkthrough the different phases of the product lifecycle Discuss

More information

Measurement tools at heart of Smart Grid need calibration to ensure reliability

Measurement tools at heart of Smart Grid need calibration to ensure reliability Measurement tools at heart of Smart Grid need calibration to ensure reliability Smart grid; PMU calibration position 1 The North American interconnections, or electric transmission grids, operate as a

More information

International Cooperation for Small Satellite Development

International Cooperation for Small Satellite Development International Cooperation for Small Satellite Development Milind Pimprikar, Rick Earles CANEUS International Andrew Quintero The Aerospace Corporation Fredrik Bruhn Angstrom Aerospace CANEUS Background

More information

Technology Transfers Opportunities, Process and Risk Mitigation. Radhika Srinivasan, Ph.D. IBM

Technology Transfers Opportunities, Process and Risk Mitigation. Radhika Srinivasan, Ph.D. IBM Technology Transfers Opportunities, Process and Risk Mitigation Radhika Srinivasan, Ph.D. IBM Abstract Technology Transfer is quintessential to any technology installation or semiconductor fab bring up.

More information

ARMADILLO: Subsystem Booklet

ARMADILLO: Subsystem Booklet ARMADILLO: Subsystem Booklet Mission Overview The ARMADILLO mission is the Air Force Research Laboratory s University Nanosatellite Program s 7 th winner. ARMADILLO is a 3U cube satellite (cubesat) constructed

More information

MOSAIC: Automated Model Transfer in Simulator Development

MOSAIC: Automated Model Transfer in Simulator Development MOSAIC: Automated Model Transfer in Simulator Development W.F. Lammen, A.H.W. Nelisse and A.A. ten Dam Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR MOSAIC: Automated Model

More information

Qosmotec. Software Solutions GmbH. Technical Overview. QPER C2X - Car-to-X Signal Strength Emulator and HiL Test Bench. Page 1

Qosmotec. Software Solutions GmbH. Technical Overview. QPER C2X - Car-to-X Signal Strength Emulator and HiL Test Bench. Page 1 Qosmotec Software Solutions GmbH Technical Overview QPER C2X - Page 1 TABLE OF CONTENTS 0 DOCUMENT CONTROL...3 0.1 Imprint...3 0.2 Document Description...3 1 SYSTEM DESCRIPTION...4 1.1 General Concept...4

More information

DYNAMICALLY RECONFIGURABLE SOFTWARE DEFINED RADIO FOR GNSS APPLICATIONS

DYNAMICALLY RECONFIGURABLE SOFTWARE DEFINED RADIO FOR GNSS APPLICATIONS DYNAMICALLY RECONFIGURABLE SOFTWARE DEFINED RADIO FOR GNSS APPLICATIONS Alison K. Brown (NAVSYS Corporation, Colorado Springs, Colorado, USA, abrown@navsys.com); Nigel Thompson (NAVSYS Corporation, Colorado

More information

University. Federal University of Santa Catarina (UFSC) Florianópolis/SC - Brazil. Brazil. Embedded Systems Group (UFSC)

University. Federal University of Santa Catarina (UFSC) Florianópolis/SC - Brazil. Brazil. Embedded Systems Group (UFSC) University 1 Federal University of Santa Catarina (UFSC) Florianópolis/SC - Brazil Brazil Agenda 2 Partnership Introduction Subsystems Payload Communication System Power System On-Board Computer Attitude

More information

Software Maintenance Cycles with the RUP

Software Maintenance Cycles with the RUP Software Maintenance Cycles with the RUP by Philippe Kruchten Rational Fellow Rational Software Canada The Rational Unified Process (RUP ) has no concept of a "maintenance phase." Some people claim that

More information

Rome, Changing of the Requirements and Astrofein s Business Models for Cubesat Deployer

Rome, Changing of the Requirements and Astrofein s Business Models for Cubesat Deployer Rome, 07.12.2017 4 th IAA Conference on University Satellite Missions and Cubesat Workshop Changing of the Requirements and Astrofein s Business Models for Cubesat Deployer Stephan Roemer Head of Space

More information

Energy autonomous wireless sensors: InterSync Project. FIMA Autumn Conference 2011, Nov 23 rd, 2011, Tampere Vesa Pentikäinen VTT

Energy autonomous wireless sensors: InterSync Project. FIMA Autumn Conference 2011, Nov 23 rd, 2011, Tampere Vesa Pentikäinen VTT Energy autonomous wireless sensors: InterSync Project FIMA Autumn Conference 2011, Nov 23 rd, 2011, Tampere Vesa Pentikäinen VTT 2 Contents Introduction to the InterSync project, facts & figures Design

More information

Introduction to co-simulation. What is HW-SW co-simulation?

Introduction to co-simulation. What is HW-SW co-simulation? Introduction to co-simulation CPSC489-501 Hardware-Software Codesign of Embedded Systems Mahapatra-TexasA&M-Fall 00 1 What is HW-SW co-simulation? A basic definition: Manipulating simulated hardware with

More information

GalileoSat System Simulation Facility (GSSF)

GalileoSat System Simulation Facility (GSSF) GalileoSat System Simulation Facility (GSSF) VEGA Informations-Technologien GmbH Slide 1 Introduction GSSF Project Overview GSSF Requirements The GSSF System ❽ Components ❽ User Interface ❽ Technology

More information

Prototyping Unit for Modelbased Applications

Prototyping Unit for Modelbased Applications PUMA Software and hardware at the highest level Prototyping Unit for Modelbased Applications With PUMA, we offer a compact and universal Rapid-Control-Prototyping-Platform optionally with integrated power

More information

Understand that technology has different levels of maturity and that lower maturity levels come with higher risks.

Understand that technology has different levels of maturity and that lower maturity levels come with higher risks. Technology 1 Agenda Understand that technology has different levels of maturity and that lower maturity levels come with higher risks. Introduce the Technology Readiness Level (TRL) scale used to assess

More information

THE APPLICATION OF SYSTEMS ENGINEERING ON THE BUILDING DESIGN PROCESS

THE APPLICATION OF SYSTEMS ENGINEERING ON THE BUILDING DESIGN PROCESS THE APPLICATION OF SYSTEMS ENGINEERING ON THE BUILDING DESIGN PROCESS A.Yahiaoui 1, G. Ulukavak Harputlugil 2, A.E.K Sahraoui 3 & J. Hensen 4 1 & 4 Center for Building & Systems TNO-TU/e, 5600 MB Eindhoven,

More information

Model Based Systems of Systems Engineering. Fran McCafferty Principal Systems Engineer

Model Based Systems of Systems Engineering. Fran McCafferty Principal Systems Engineer Model Based Systems of Systems Engineering Fran McCafferty Principal Systems Engineer fmccafferty@vitechcorp.com 1 System of Systems v System of Subsystems The major distinction between systems as elements

More information

GEM - Generic Engineering Model Overview

GEM - Generic Engineering Model Overview GEM - Generic Engineering Model 2 Introduction The GEM has been developed by ISIS with the ambition to offer a starting point for new nanosatellite missions. The system allows satellite developers to get

More information

STRS COMPLIANT FPGA WAVEFORM DEVELOPMENT

STRS COMPLIANT FPGA WAVEFORM DEVELOPMENT STRS COMPLIANT FPGA WAVEFORM DEVELOPMENT Jennifer Nappier (Jennifer.M.Nappier@nasa.gov); Joseph Downey (Joseph.A.Downey@nasa.gov); NASA Glenn Research Center, Cleveland, Ohio, United States Dale Mortensen

More information

Methodology for Agent-Oriented Software

Methodology for Agent-Oriented Software ب.ظ 03:55 1 of 7 2006/10/27 Next: About this document... Methodology for Agent-Oriented Software Design Principal Investigator dr. Frank S. de Boer (frankb@cs.uu.nl) Summary The main research goal of this

More information

Miguel A. Aguirre. Introduction to Space. Systems. Design and Synthesis. ) Springer

Miguel A. Aguirre. Introduction to Space. Systems. Design and Synthesis. ) Springer Miguel A. Aguirre Introduction to Space Systems Design and Synthesis ) Springer Contents Foreword Acknowledgments v vii 1 Introduction 1 1.1. Aim of the book 2 1.2. Roles in the architecture definition

More information

SV2C 28 Gbps, 8 Lane SerDes Tester

SV2C 28 Gbps, 8 Lane SerDes Tester SV2C 28 Gbps, 8 Lane SerDes Tester Data Sheet SV2C Personalized SerDes Tester Data Sheet Revision: 1.0 2015-03-19 Revision Revision History Date 1.0 Document release. March 19, 2015 The information in

More information

A flexible application framework for distributed real time systems with applications in PC based driving simulators

A flexible application framework for distributed real time systems with applications in PC based driving simulators A flexible application framework for distributed real time systems with applications in PC based driving simulators M. Grein, A. Kaussner, H.-P. Krüger, H. Noltemeier Abstract For the research at the IZVW

More information

INTRODUCTION The validity of dissertation Object of investigation Subject of investigation The purpose: of the tasks The novelty:

INTRODUCTION The validity of dissertation Object of investigation Subject of investigation The purpose: of the tasks The novelty: INTRODUCTION The validity of dissertation. According to the federal target program "Maintenance, development and use of the GLONASS system for 2012-2020 years the following challenges were determined:

More information

A Case Study - RF ASIC validation of a satellite transceiver

A Case Study - RF ASIC validation of a satellite transceiver A Case Study - RF ASIC validation of a satellite transceiver Maeve Colbert IC Design Engineer S3 Semiconductors WEBSITE: www.s3semi.com CONTACT: info@s3semi.com Contents Abstract...1 Planning for Validation...2

More information

Toppindustrisenteret AS. April 2017

Toppindustrisenteret AS. April 2017 Toppindustrisenteret AS April 2017 Hva tror norske ledere om utfordringene? 02.05.2017 WORLD CLASS - through people, technology and dedication Page 5 + + + + + +? + + = Technology creates opportunities

More information

Executive Summary. Chapter 1. Overview of Control

Executive Summary. Chapter 1. Overview of Control Chapter 1 Executive Summary Rapid advances in computing, communications, and sensing technology offer unprecedented opportunities for the field of control to expand its contributions to the economic and

More information

Canadian Activities in Intelligent Robotic Systems - An Overview

Canadian Activities in Intelligent Robotic Systems - An Overview In Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2004' ESTEC, Noordwijk, The Netherlands, November 2-4, 2004 Canadian Activities in Intelligent Robotic

More information