An Integrated Immersive Simulator for the Dismounted Soldier

Size: px
Start display at page:

Download "An Integrated Immersive Simulator for the Dismounted Soldier"

Transcription

1 An Integrated Immersive Simulator for the Dismounted Soldier Carolina Cruz-Neira, Dirk Reiners, Jan P. Springer, Carsten Neumann, Christian N.S. Odom University of Louisiana at Lafayette Lafayette, LA {carolina, dirk, jan.springer, carsten, Kathy Kehring U.S. Army Research Laboratory Aberdeen Proving Ground MD ABSTRACT Immersive military training simulators have been available for over thirty years; but, most of these training simulators have been targeted at training forces on vehicle operations and missions (e.g., flight simulators). These simulators typically use a combination of physical devices, such as cockpits or cabins, with some large display, such as a dome or a tiled wall, to present the scenario to the trainees. However, the use of similar setups for the training of dismounted Soldiers has not yet been widely deployed. This is primarily due to the fact that in a vehicle simulator the trainee is stationary with respect to the physical mock-up, while for a dismounted Soldier the simulator must provide the means for the Soldier to physically move in the virtual space. Furthermore, the simulator must also provide the ability for the Soldiers to experience the physical exertion of the exercise. An additional level of complexity when developing immersive simulators for dismounted Soldiers is the creation of complex scenarios. The level of detail and fidelity is significantly more demanding than those for vehicle simulations as well as the wide variety of scenarios within the same area that the Soldiers need to be trained on. We present an immersive system for the dismounted Soldier with two major components. First, a combination of a physical interface, an omni-directional treadmill, with a newly designed surround-screen stereoscopic display to enable Soldiers to walk, run, crawl, and shoot in a virtual space. Second, a software framework for the rapid creation, execution, and monitoring of training scenarios. The integration of these two components provides a unique environment to perform training studies required for a variety of scenarios and physical exertion of the trainees. ABOUT THE AUTHORS Dr. Carolina Cruz-Neira is the W. Hansen Hall and Mary Officer Hall/BORSF Chair in Computer Engineering and the Chief Scientist of LITE at the University of Louisiana at Lafayette (UL Lafayette). She is the co-inventor of the CAVE and the developer of the CAVELibs. Her research is on software engineering for modeling and simulation, applications and usability studies of virtual environments. She is an ACM SIGGRAPH Computer Graphics Pioneer, holds the 2007 Virtual Reality Technical Achievement Award from the IEEE Visualization and Graphics Technical Committee, and the 2009 International Digital Media and the Arts Association Distinguished Career Award. Dr. Dirk P. Reiners is an Assistant Professor at the Center for Advanced Computer Studies at UL Lafayette. His work focuses on interactive 3D graphics and virtual reality technology and applications. He has more than 15 years of experience in these fields both in academic and industrial settings. He is the project lead of the Open Source OpenSG scene-graph project, one of the leading scene-graph systems today. He received the I/ITSEC Best Paper Award in 2006 and the IEEE Virtual Reality Best Paper Award in Dr. Jan P. Springer is a Senior Research Scientist at UL Lafayette. Until 2008 he was with the Virtual Reality Systems Group at Bauhaus-Universität Weimar in Germany. His work is on virtual reality systems for modeling and simulation, in areas such as cluster-based displays, multi-viewer stereo, software frameworks, and interactive high-quality rendering. Carsten Neumann holds a M.Sc. in mathematics form Technische Universität Darmstadt, Germany and is currently a research scientist at UL Lafayette working on the 3rd Generation Omnidirectional Treadmill Simulator. He has eight years of experience developing the Open Source scene-graph system OpenSG, four as a core developer. His main areas of interest are real-time 3D graphics and distributed immersive systems. Christian N.S. Odom is currently a Ph.D. candidate and a research scientist at UL Lafayette. His main areas of interest are interactive systems and human computer interaction. Kathy L. Kehring is an Electronics Engineer with over 20 years experience working at the U.S. Army Research Laboratory (ARL). She also served as a Science Advisor to the Commanding General of V Corps in Heidelberg, Germany from Currently, she manages ARL's Tactical Environment Simulation Facility where she has been the technical lead in the development of an immersive simulator that incorporates a state-of-the-art mobility interface. She also develops methodologies, scenarios, and data-collection protocols for immersive simulation-based research on issues affecting the cognitive and physical performance of dismounted Soldiers Paper No Page 1 of 11

2 An Integrated Immersive Simulator for the Dismounted Soldier Carolina Cruz-Neira, Dirk Reiners, Jan P. Springer, Carsten Neumann, Christian N.S. Odom University of Louisiana at Lafayette Lafayette, LA {carolina, dirk, jan.springer, carsten, Kathy Kehring U.S. Army Research Laboratory Aberdeen Proving Ground MD INTRODUCTION BACKGROUND Immersive military training simulators have been available for over thirty years. However, most of the training simulators have been vehicle-centric, such as flight simulators. Vehicle-centric simulators typically use a stationary portion of the real vehicle, such as a cockpit or a cabin, placed inside a large display like a dome or tiled wall to present the scenario to the trainees. In these simulators, the trainee is stationary with respect to the physical mockup, and all movement occurs in the virtual space through the simulation of the vehicle dynamics in the environment. Dismounted Soldiers are the military forces specifically trained for the role of close proximity combat engaging enemy forces face to face. Part of their role is to gain access to and operate in areas that cannot be reached by vehicles. They are the branch of the military requiring the most physically demanding training in addition to cognitive training in decision-making, tactical skills, and situational awareness. The use of similar virtual environments (VEs) for the training of dismounted Soldiers has not yet been as widely deployed. The reason for this is that there are significantly different requirements for the simulation capabilities to support training for dismounted Soldiers to those of Soldiers in vehicles. A key differentiating feature of training simulators for dismounted Soldiers is that the simulator must provide the means for the Soldier to physically move in the virtual space, as well as the ability for the Soldiers to feel the physical exertion of the movement. Another key differentiating factor for dismounted Soldier training is the need for a wide variety of rapidly evolving scenarios that reflect the operational conditions of a mission. These scenarios need to allow for significant variation during different training sessions because the goal is not to get proficient on manipulating a series of controls, like in vehicle simulators, but to learn and improve both cognitive and physical skills to handle a situation. This paper presents the results of a collaboration between the University of Louisiana at Lafayette and the Human Research and Engineering Directorate (HRED), U.S. Army Research Laboratory (ARL) at Aberdeen Proving Ground to develop a Dismounted Soldier Training System that supports physical motions like walking, jogging, and crawling within a VE. The system integrates software as well as hardware by introducing an omni-directional treadmill into a CAVE-like environment with software that enables the dynamic construction of diverse scenarios Paper No Page 2 of 11 There are two approaches currently used to train dismounted Soldiers: real-life facilities and computer simulators. Real-life facilities, such as the U.S. Army Yuma Proving Ground (Yuma, 2011), provide large spaces, buildings, props, and infrastructure resembling real-world locations and combat conditions. These approaches place the Soldier in situations very similar to those found in actual missions. They are limited in how many Soldiers can be trained, are labor-intensive to prepare and maintain, and are inflexible in the sense that they cannot be easily set up for different types of terrain, weather conditions, or urban landscapes (Knerr et Al., 2002). However, these real-life training environments allow to train motor skills and to prepare for the necessary physical demands of on-foot missions. Computer-based simulators for the dismounted Soldier have proliferated in the last years due to the availability of affordable graphics systems and the increasingly high quality of interactive graphics. Desktop-based simulators (DVTE, 2011), (SVS, 2001) are widely deployed across the military branches because they use standard PC technology without any specific requirements in terms of space, devices, or specialized maintenance. In these simulators, Soldiers do not have any physical mobility capabilities. Locomotion is achieved through interactive devices such as a mouse or a joystick. Immersive simulators are recently starting to become available, such as Flatworld (Pair et Al., 2003) which provides large rear-projection screens embedded into physical props to simulate room interiors, views to the outside, or a building's exterior. These systems are more flexible than real-life training grounds by enabling the development of a variety of missions and situations

3 within the same physical space. However, due to space requirements and the use of physical props, these kinds of immersive simulators have a limited range of scenarios. Other immersive simulators recreate the scenarios and missions entirely in the virtual world through the use of surrounding projection screens or head-mounted displays (Intelligent Decisions, 2011) (FITE, 2011) (Virtra, 2011). These simulators have the advantage of allowing a wider range of scenarios under different (simulated) environmental conditions, such as weather, time of day, or weapon damage. In general, computer-based simulators have significant advantages over live simulators (Fletcher, 2009) because they enable the representation of different scenarios and missions, provide a safe training environment to immerse Soldiers in hazardous situations, do not require live actors or large props, and only use small physical spaces compared to a live simulator facility. Most computer-based simulators have usually been focused on training the dismounted Soldier on tactical, situational awareness, coordination skills, decision-making, communications, and without incorporating a physical training element. Recent studies (Knerr, 2009) show that Soldiers training in virtual simulators reported improvements of their tactical, coordination, and communication skills, but, at the same time, felt limited in improving the physical skills required for the exercise. Experience and studies (Knerr, 2007) show that computerbased simulators have great potential to train the dismounted Soldier but there is still a lack of simulators that also provide training of physical and motor skills needed for on-foot missions. DISMOUNTED SOLDIER TRAINING NEEDS The Army Strategic Planning Guidance 2005 (U.S. Army, 2005) and the Soldier CATT ORD recognize that the dismounted Soldier remains the centerpiece of the US Army and that training is critical for today s non-linear battlefields. The document presents the broad training requirements for the dismounted Soldier by emphasizing the need for: adaptability and capability to respond to rapidly changing situations and the need to train not only to react to changes but also on how to manipulate the environment to create the best possible results. Familiarity with the culture, history, and language of the area of operations. Rapidly and accurately assessing the evolving situation in the area of operations. Situation understanding beyond the tactical level Paper No Page 3 of 11 Conducting close(-quarter) combat operations in difficult terrain and weather conditions. Training in a diverse range of environments, terrains, and situations. Frequent and repetitive complex task training. Most of today s computer-based simulators address these issues but exhibit limited or no capabilities to provide training in simulators that can provide realistic perception of movement and the physical exertion associated with that movement. This is a critical component of training for the dismounted Soldier because in most of their operations they will have to walk, run, crawl, kneel, crouch and go prone. Our work addresses the training needs for the dismounted Soldier as listed above, in particular the ability to physically move through the VE. Our system is intended to serve as a platform to evaluate virtual training and dismounted Soldier performance under different stress conditions. In the long term, the framework presented can support the development of training exercises incorporating physical exertion. PREVIOUS WORK WITH THE ODT HRED currently operates an omni-directional treadmill (ODT) system embedded in a 4-wall CAVE in their Tactical Environment Simulation Facility (TESF). The screens surround the user for 360º immersion while moving on the ODT. The system is primarily used for performing human factors research related to Soldier performance and training of the dismounted Soldier as well as evaluation of new technologies for the Soldiers. HRED has been conducting research in the TESF for several years now and through their experience has identified a set of challenges and limitations of the current experimental environment that led to the definition of the requirements for the Dismounted Soldier Training System (DSTS) project. HRED System Requirements Ability to rapidly create basic scenery that resembles the operating area for a specific training task A significant limitation faced by HRED researchers is the difficulty on building their own base scenery to create the scenarios. They have a preset group of static scenes representing specific areas, such as a model of the Aberdeen Proving Grounds, a neighborhood in an American city, and an open field. Creating new base scenery (e.g., a village in the Middle East), requires 3D modeling and programming to develop the new environment. This approach is expensive in terms of effort, time, and cost and limits the researchers to what is placed in the scenario by the modeling experts. Therefore, there is a need for a system that enables HRED researchers to build base scenery with the looks of the environment needed for training and

4 experimentation. This translates into more flexibility as well as lower costs for creating new experiments. Ability to introduce changes during a training exercise Another important need is to monitor and control a scenario while the Soldiers are in the VE. The trainer and/or psychologist needs to be able to introduce changes to the environment and to the situation during an exercise. Today s battlefields present rapidly changing situations and Soldiers must be ready to understand and respond to those unexpected changes. Researchers need to be able to control a training exercise and introduce unexpected changes resembling those found in real situations to evaluate how Soldiers perform under unexpected and stressful conditions. Simplification of the operation of the immersive space Most scenarios are first designed in a regular desktop environment and then visualized in the immersive space. It is important that the process of designing the scenario includes a way to connect the desktop-based design and editing environment with the viewing and manipulation of the scenario as it is being built inside the immersive space. Researchers must be able to gradually increase the complexity, visual quality, and environmental details with immediate feedback of their scene and scenario edits. Furthermore, the initialization and operation of the immersive environment must be done from the desktop system, without requiring complex manipulation of the immersive equipment. Integration of functional weapons in the virtual space Hand-held weapons are integral to the dismounted Soldier, so it is necessary to perform training with weapons that are as close to reality as possible. Current solutions are based on modified real weapons and are subject to the same regulations and handling. In addition these modifications either do not provide for information feedback about the weapon to the controlling computer system or, if they do, usually use a proprietary communication protocol. Researchers need solutions for integrating arms into the virtual world that allow for easy use of different weapons based on instrumentation and an open communication protocol. Enable monitoring and data collection during training exercises In the existing system the collection of physiological and other physical Soldier data for after-action review is decoupled from the virtual environment, making the correlation between events in the virtual space (like attacks or explosions) and the Soldier s reactions a manual and error prone process. A more robust approach is to integrate the data collection into the actual simulation framework to allow synchronized and coordinated data collection 2011 Paper No Page 4 of 11 Use of a non-proprietary framework Most simulators use proprietary software which creates dependency on a single vendor and does not allow extensions or interconnections to other software and/or hardware systems. Furthermore, simulators have limited lifetime and may not be upgradable due to product discontinuation or the vendor being no longer in business. HRED needs a software framework for their experiments and training that is Open Source and is designed with the appropriate software methodologies, so it can be used and expanded based on the needs of the research program. This would allow for multiple collaborators to work together and to capitalize on new developments. DISMOUNTED SOLDIER TRAINING SYSTEM The DSTS is a next generation system using the ODT to support HRED s experimental activities. Our DSTS addresses the specific systems requirements defined by HRED, emphasizing flexibility of scenario design and simplicity of use. Our system has two major components: a combination of a physical interface, an omnidirectional treadmill, with a newly designed low-cost stereoscopic display composed of a set of surround screens to enable Soldiers to walk, jog, crawl, and shoot in a virtual space and a software framework for the rapid creation, execution, and monitoring of training scenarios. These two components are integrated to provide a seamless environment to perform dismounted-soldier human-factors studies requiring a variety of scenarios and data monitoring capabilities. Figure 1 shows the DSDS system located at UL Lafayette. The user is body-tracked in the environment to ensure that the correct visual, auditory, and motion feedback is provided. The hardware setup is controlled by a software framework that allows for the creation, execution, and monitoring of the virtual reality scenarios. The following sections describe the components of the DSTS in technical detail. Figure 1. Dismounted Soldier Training System at UL Lafayette.

5 Immersive System One general limitation of surround-screen projection-based systems, such as a CAVE, is their high cost, which can range anywhere from $400K up to more than a million dollars. A significant portion of this is the design cost, as each system is one-of-a-kind based on the space available to build the system. Additionally, these systems require rather complex procedures for calibration, maintenance, and operation as well as specialized and certified personnel to handle the projectors. Although the group at HRED are not looking to replace their immersive system, we took the opportunity to set up our system at the University to address the issues of cost, space, maintenance, and operation, For the DSTS project, our budget for the projection system (including the computer cluster) was limited to $75K, which made it impossible to work with any of the commercially available solutions. We decided to explore the possibility of designing and building a projection system using affordable off-the-shelf components for the projectors, frame structure, and screens to address the issues of cost and the complexity of management. Furthermore, our design addressed other limiting issues of immersive projection-based systems but making them the driving design constraints: Eliminate the recurrent costs of maintenance plans: we wanted small off-the-shelf projectors, like those used in regular conference rooms, which are easy to set up and calibrate. Avoid having a monolithic frame structure and difficult to upgrade individual components of the system: we explored designing a system in which each screen frame is self-supporting to avoid the problem of screens sticking to each other after a while. We also minimized the corner seam. Eliminate the need for special cooling and power requirements: Our room could not be remodeled to bring additional power or higher voltage and we could not control the temperature. This meant we needed a system that could operate under cooling and power conditions found in a typical office space. Do not have more than one projector per screen: Multiple projectors per screen add extra complexity for calibration and maintenance as well as cooling and power consumption. We wanted to provide 3D depth perception using a single projector per screen. Do not have a customized design: there was a potential need to replicate our design in other facilities, so we wanted a design that could adapt easily to different room sizes and space layouts. With these constraints, we knew we had to do some compromises between the quality of the display and overall simplicity of the installation. However, we were striving for a solution that is good enough for the majority of 2011 Paper No Page 5 of 11 applications and scenarios that we wanted to deploy. After reviewing currently available projectors, we decided to use the DepthQ -WXGA HD 3D video projector (DepthQ, 2011). This projector has a resolution of 1280x720 pixels, which is a little lower than those used in most existing CAVES (1280x1024) but still provides a good resolution for training exercises. Additionally, this projector supports active stereo allowing us to provide depth perception with a single projector per screen using active 3D glasses. Our main challenge using this particular projector was that it was designed to be placed on a flat surface and allow to project an image upwards without the need for major adjustments. Therefore, the projection path is not straight from the center, but somewhat skewed to compensate for the table surface. We solved this problem by designing an adjustable projector stand and placing the projectors upsidedown in it. The stand also provides additional alignment and calibration possibilities for the system. The room in which we were installing the projection system could not support anything attached to the ceiling, walls, or floor, so we had to design a self- supporting structure to hold the screens. This frame structure was raised two feet above ground so as to align the bottom of the screens with the ODT's surface. For the frame materials we used standard T-slotted aluminum framing material. For the screens we deployed a flexible rear-projection screen material strong enough to withstand the tension when wrapped around the frame without sagging. Each screen frame rests on another screen frame at their corners, which provides tight corner seams. This design does not apply any pressure to the seams to avoid the fusion of screen material, which happens over time when flexible screen materials are tightly placed together.

6

7

8 Once these two sketches are done, the user, through a configuration GUI shown in Figure 5, specifies the parameters that define the details for the scenario. In our example, the user will select a Middle East desert look for the entire scene. The user also specifies the Figure 6: Final Scene: a) multiview; b) close up size of the scenario in square miles or kilometers and the maximum terrain height. The user can also specify other details such as: the type of buildings: high single family homes, stores, temples; the type of vehicles on the streets and roads; additional props such as trees, electrical poles, debris, barricades, etc. Once the civilization and height maps are sketched and configured, our system takes the information and generates the detailed scenario. Terrain Generation The first step is to build the terrain with the correct scaling in size and height from the configuration. We create a tiled ground model so we can provide better performance, especially better intersection performance for when the user is walking the terrain in the ODT. Next our algorithm generates the urban areas by computing the placement of the different buildings in the scene. The building placement algorithm is as follows: Go through civilization map, find housing area Find house set for this housing area Put first house along the edge Fits completely in patch? Ground level enough? Walk around the edge of the patch trying to put other house until circle completed (optional) Put second row of houses behind the first to close gaps Generate house shadow image and road mask As the target users of this simulation are foot-based Soldiers, the level of detail of the roads and ground needs to be high enough for a realistic experience. In many systems roads are created geometrically, which comes at a high cost in terms of geometric complexity both from the roads themselves as well as the need to cut them out of the terrain to avoid the ground sticking out through the road. To avoid these problems we decided to use a texture-based approach. Given that we have the civilization image as an input, we can easily define a mask that differentiates road from nonroad pixels. This mask is used in a shader to interpolate 2011 Paper No Page 8 of 11 between different kinds of ground cover (sand, asphalt etc.) that are represented by tiled samples. To avoid the typical tiled floor look that many ground textures suffer from we dynamically resize and rotate the road and earth tiles. The final components are the house shadows. To avoid the overhead and quality limitations in large scenes of dynamic shadows we precalculate a shadow mask, based on the houses footprints on the ground, that is used to darken the results of the previously described ground shader. Figure 6 shows the final scene in a a) multiview of the scene editor (note the urban areas corresponding to the colored areas in the initial sketch, the terrain height, and the roads); b) close up of the environment. Scenario Editor and Execution The management of the DSTS system is done from our scenario authoring tool, the Scenario Editor. It is a 2D GUI front end to create, place, and manipulate 3D objects, as well as attaching behaviors to those objects. Users can automatically generate the base scenarios using the terraingeneration method explained above or they can manually build the scenario with the editor. Both automated and manual scenarios can be refined by manually adding more details in the editor. We provide a library of 3D models, including virtual humans, to populate the scenarios and create the dynamic features of specific tasks assigned to the dismounted Soldier. Furthermore, the Scenario Editor can also be used as a live connection to the immersive simulator to launch, monitor, and manipulate the execution of the scenarios. Additional details about the Scenario Editor can be found in (Springer 2012).

9

10 makes it fairly straightforward to asynchronously execute the processing for those subsystems. The three major subsystems in our system are simulation, dynamics, and rendering. Simulation is tasked with evaluating behaviors of dynamic_objects as well as processing all logic_objects. This produces a set of updates that are passed to the dynamics system which performs basic physics simulation and collision detection. The dynamics system therefore either validates the simulation update and passes it on or replaces it with a corrected update to be passed on instead. In either case the final updates are received by the rendering subsystem which applies them to the visual scene representation. For display using a cluster only the visual representation needs to be distributed. By basing our implementation on OpenSG, a scene-graph system that has built-in support for cluster distribution, we achieve this consistency without additional implementation effort. When establishing a connection to an immersive cluster system, the scenario editor distributes the graphical representation of the scenario to the rendering nodes so that a user in the immersive VE sees the exact same state of the scenario as the user operating the editor application. Besides the editor application we also provide a scenario viewer application that uses the exact same underlying software components, but with reduced interaction options that only allow running a scenario, but not manipulating it. The intention is that this application can be used to run actual experiments and record the results, once construction of a scenario is completed. generation is based on a height map and a civilization map. Our method can easily be extended to allow for adding more layers (e.g., vegetation, water ways). This can further enhance the fast and automatic generation of terrains. The software architecture currently provides an object hierarchy that is tailored for scenarios targeted at the military sector. However, by using an ontology that provides a more general world view we can support practically any use case. This change, while requiring some efforts in changing the software infrastructure, would also open the framework for user-specified extensions to the object system. Figure 8. Complex DSTS built in the Scene Editor DISCUSSION CONCLUSIONS The DSTS software framework and weapon system is in the process of being deployed at HRED, but we have been using it in our University facility for almost a year now. The design of the immersive system has proven to be very robust and stable. We have frequent visitors coming for demonstrations and we have been able to be always ready. The calibration and alignment is simple and can be done quickly, which is also a great advantage of our design. The perceived quality is better than we expected, and most users and visitors do not realize we are using a slightly lower resolution than most immersive projection systems. We have presented our work on a next generation dismounted Soldier training system. The system consists of a low-cost high-quality immersive projection system combined with an omni-directional treadmill, flexible instrumentation of hardware for training weapons as well as an open communication format between the instrumented weapon and a computer control system. Finally, we also presented a software architecture and prototype framework that provides a pipeline for constructing scenarios for experiments related to dismounted Soldier performance. We have been using the Scenario Editor to build and run our own scenarios for several months now. Since our design is so flexible we have been able to use it in a variety of projects beyond the dismounted Soldier project. Our psychology faculty collaborators have been able to build several scenarios for their cognitive experiments without problems. They are delighted to have the ability to manipulate the scene themselves and tweak the details as needed. Figure 8 shows a more complex scenario we have built using the DSTS system. Currently, the terrain 2011 Paper No Page 10 of 11 The DSTS system provides a novel approach to scenario construction, manipulation, and execution for dismounted Soldier training. It simplifies and streamlines the tasks of scenario creation by providing a semi-automated framework as well as a live connection to the immersive simulation. During the actual training exercises the DSTS system allows for monitoring and manipulation of the simulation, enabling researchers to introduce random events and keep track of the Soldier s performance. The use of offthe-shelf hardware components as well as the ability of

11 researchers to create and manipulate scenarios based on simple model building blocks is a flexible and costeffective way compared to predefined static scenarios from 3rd-party vendors. FUTURE WORK We are planning on continuing to work on the DSTS system and enhancing its capabilities. We need to extend our scenario-generation algorithm to allow for road creation with western-style markings. We also want to extend our virtual humans capabilities to incorporate autonomous behavior in contrast with the scripted behavior supported now. Finally, we have to investigate ways to guarantee interactive performance even for very large and geometrically complex scenes, scenes with many thousands of objects (static as well as dynamic), and under rendering conditions that support more realistic visual appearance of the scene (such as lighting and environmental conditions). ACKNOWLEDGEMENTS Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon. Special thanks to Donald Gremillion and Marsha Miller for their assistance and support of the project. REFERENCES Cruz-Neira, C., Reiners, D.P., Springer, J.P. An Affordable Surround-Screen Virtual Reality Display. Journal of the Society of Information Displays, 18(10): , October Deployable Virtual Training Environment (DVTE), Lockheed Martin. Retrieved June 14, 2011 from 2011 Paper No Page 11 of 11 ngenvironment/index.html DepthQ projector, LightSpeed Design. Retrieved May 29, 2011 from Fletcher, J.D. Education and Training Technology in the Military. Science 2, Vol 323, no 5910, 2009 Fully Immersive Virtual Simulation Training System, Intelligent Decisions. Retrieved June 14, 2011 from Future Immersive Training Environment (FITE), U.S. Army PEO STRI. Retrieved June 14, 2011 from Knerr, B.W., Lampton, D.R., Thomas, M., et. Al. Virtual Environments for Dismounted Soldier Simulation, Training, and Mission Rehearsal: Results of the FY 2002 Culminating Event. Technical Report United States Army Research Institute for the Behavioral and Social Sciences, September Knerr, B.W. Current Issues in the Use of Virtual Simulation for Dismounted Soldier Training. In Virtual Media for Military Applications (pp ). Meeting Proceedings RTO-MPHFM-136, Paper 21. Neuilly-sur-Seine, France: RTO. Knerr, B.W., Immersive Simulation Training for the Dismounted Soldier. Report U.S. Army Research Institute for the Behavioral and Social Sciences [Pair, J., Neumann, U., Piepol, D. and Swartout, B. FlatWorld: Combining Hollywood Set-Design Techniques with VR. IEEE Computer Graphics and Applications (January/February 2003) Soldier Visualization Station (SVS), Advanced Interactive Systems. Retrieved June 14, 2001 from Springer, J.P. Neumann, C., Reiners, D.P., and Cruz-Neira, C.. An Integrated Pipeline to Create and Experience Compelling Scenarios in Virtual Reality. In IS&T/SPIE Electronic Imaging SPIE, U.S.Army Strategic Planning Guide Retrieved June 2, 2011 from y_guide_topics/the_army_plan/army-strategic-planningg.shtml Virtra 300ML, Virtra systems. Retrieved June 14, 2011 from Yuma Proving Grounds, Retrieved June 14, 2011 from

ARMY RDT&E BUDGET ITEM JUSTIFICATION (R2 Exhibit)

ARMY RDT&E BUDGET ITEM JUSTIFICATION (R2 Exhibit) Exhibit R-2 0602308A Advanced Concepts and Simulation ARMY RDT&E BUDGET ITEM JUSTIFICATION (R2 Exhibit) FY 2005 FY 2006 FY 2007 FY 2008 FY 2009 FY 2010 FY 2011 Total Program Element (PE) Cost 22710 27416

More information

PRESS RELEASE EUROSATORY 2018

PRESS RELEASE EUROSATORY 2018 PRESS RELEASE EUROSATORY 2018 Booth Hall 5 #B367 June 2018 Press contact: Emmanuel Chiva chiva@agueris.com #+33 6 09 76 66 81 www.agueris.com SUMMARY Who we are Our solutions: Generic Virtual Trainer Embedded

More information

MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL REALITY TECHNOLOGIES

MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL REALITY TECHNOLOGIES INTERNATIONAL CONFERENCE ON ENGINEERING AND PRODUCT DESIGN EDUCATION 4 & 5 SEPTEMBER 2008, UNIVERSITAT POLITECNICA DE CATALUNYA, BARCELONA, SPAIN MECHANICAL DESIGN LEARNING ENVIRONMENTS BASED ON VIRTUAL

More information

Physical Presence in Virtual Worlds using PhysX

Physical Presence in Virtual Worlds using PhysX Physical Presence in Virtual Worlds using PhysX One of the biggest problems with interactive applications is how to suck the user into the experience, suspending their sense of disbelief so that they are

More information

FULL MISSION REHEARSAL & SIMULATION SOLUTIONS

FULL MISSION REHEARSAL & SIMULATION SOLUTIONS FULL MISSION REHEARSAL & SIMULATION SOLUTIONS COMPLEX & CHANGING MISSIONS. REDUCED TRAINING BUDGETS. BECAUSE YOU OPERATE IN A NETWORK-CENTRIC ENVIRONMENT YOU SHOULD BE TRAINED IN ONE. And like your missions,

More information

Mission-focused Interaction and Visualization for Cyber-Awareness!

Mission-focused Interaction and Visualization for Cyber-Awareness! Mission-focused Interaction and Visualization for Cyber-Awareness! ARO MURI on Cyber Situation Awareness Year Two Review Meeting Tobias Höllerer Four Eyes Laboratory (Imaging, Interaction, and Innovative

More information

Application of 3D Terrain Representation System for Highway Landscape Design

Application of 3D Terrain Representation System for Highway Landscape Design Application of 3D Terrain Representation System for Highway Landscape Design Koji Makanae Miyagi University, Japan Nashwan Dawood Teesside University, UK Abstract In recent years, mixed or/and augmented

More information

Microsoft ESP Developer profile white paper

Microsoft ESP Developer profile white paper Microsoft ESP Developer profile white paper Reality XP Simulation www.reality-xp.com Background Microsoft ESP is a visual simulation platform that brings immersive games-based technology to training and

More information

Design of a Remote-Cockpit for small Aerospace Vehicles

Design of a Remote-Cockpit for small Aerospace Vehicles Design of a Remote-Cockpit for small Aerospace Vehicles Muhammad Faisal, Atheel Redah, Sergio Montenegro Universität Würzburg Informatik VIII, Josef-Martin Weg 52, 97074 Würzburg, Germany Phone: +49 30

More information

Perception in Immersive Environments

Perception in Immersive Environments Perception in Immersive Environments Scott Kuhl Department of Computer Science Augsburg College scott@kuhlweb.com Abstract Immersive environment (virtual reality) systems provide a unique way for researchers

More information

MANPADS VIRTUAL REALITY SIMULATOR

MANPADS VIRTUAL REALITY SIMULATOR MANPADS VIRTUAL REALITY SIMULATOR SQN LDR Faisal Rashid Pakistan Air Force Adviser: DrAmela Sadagic 2 nd Reader: Erik Johnson 1 AGENDA Problem Space Problem Statement Background Research Questions Approach

More information

Chapter 1 Virtual World Fundamentals

Chapter 1 Virtual World Fundamentals Chapter 1 Virtual World Fundamentals 1.0 What Is A Virtual World? {Definition} Virtual: to exist in effect, though not in actual fact. You are probably familiar with arcade games such as pinball and target

More information

A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems

A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems F. Steinicke, G. Bruder, H. Frenz 289 A Multimodal Locomotion User Interface for Immersive Geospatial Information Systems Frank Steinicke 1, Gerd Bruder 1, Harald Frenz 2 1 Institute of Computer Science,

More information

Sikorsky S-70i BLACK HAWK Training

Sikorsky S-70i BLACK HAWK Training Sikorsky S-70i BLACK HAWK Training Serving Government and Military Crewmembers Worldwide U.S. #15-S-0564 Updated 11/17 FlightSafety offers pilot and maintenance technician training for the complete line

More information

OFFensive Swarm-Enabled Tactics (OFFSET)

OFFensive Swarm-Enabled Tactics (OFFSET) OFFensive Swarm-Enabled Tactics (OFFSET) Dr. Timothy H. Chung, Program Manager Tactical Technology Office Briefing Prepared for OFFSET Proposers Day 1 Why are Swarms Hard: Complexity of Swarms Number Agent

More information

Fish4Knowlege: a Virtual World Exhibition Space. for a Large Collaborative Project

Fish4Knowlege: a Virtual World Exhibition Space. for a Large Collaborative Project Fish4Knowlege: a Virtual World Exhibition Space for a Large Collaborative Project Yun-Heh Chen-Burger, Computer Science, Heriot-Watt University and Austin Tate, Artificial Intelligence Applications Institute,

More information

The LVCx Framework. The LVCx Framework An Advanced Framework for Live, Virtual and Constructive Experimentation

The LVCx Framework. The LVCx Framework An Advanced Framework for Live, Virtual and Constructive Experimentation An Advanced Framework for Live, Virtual and Constructive Experimentation An Advanced Framework for Live, Virtual and Constructive Experimentation The CSIR has a proud track record spanning more than ten

More information

vstasker 6 A COMPLETE MULTI-PURPOSE SOFTWARE TO SPEED UP YOUR SIMULATION PROJECT, FROM DESIGN TIME TO DEPLOYMENT REAL-TIME SIMULATION TOOLKIT FEATURES

vstasker 6 A COMPLETE MULTI-PURPOSE SOFTWARE TO SPEED UP YOUR SIMULATION PROJECT, FROM DESIGN TIME TO DEPLOYMENT REAL-TIME SIMULATION TOOLKIT FEATURES REAL-TIME SIMULATION TOOLKIT A COMPLETE MULTI-PURPOSE SOFTWARE TO SPEED UP YOUR SIMULATION PROJECT, FROM DESIGN TIME TO DEPLOYMENT Diagram based Draw your logic using sequential function charts and let

More information

STE Standards and Architecture Framework TCM ITE

STE Standards and Architecture Framework TCM ITE STE Framework TCM ITE 18 Sep 17 Further dissemination only as directed by TCM ITE, 410 Kearney Ave., Fort Leavenworth, KS 66027 or higher authority. This dissemination was made on 8 SEP 17. 1 Open Standards

More information

A Distributed Virtual Reality Prototype for Real Time GPS Data

A Distributed Virtual Reality Prototype for Real Time GPS Data A Distributed Virtual Reality Prototype for Real Time GPS Data Roy Ladner 1, Larry Klos 2, Mahdi Abdelguerfi 2, Golden G. Richard, III 2, Beige Liu 2, Kevin Shaw 1 1 Naval Research Laboratory, Stennis

More information

Virtual Environments. Ruth Aylett

Virtual Environments. Ruth Aylett Virtual Environments Ruth Aylett Aims of the course 1. To demonstrate a critical understanding of modern VE systems, evaluating the strengths and weaknesses of the current VR technologies 2. To be able

More information

UNIT-III LIFE-CYCLE PHASES

UNIT-III LIFE-CYCLE PHASES INTRODUCTION: UNIT-III LIFE-CYCLE PHASES - If there is a well defined separation between research and development activities and production activities then the software is said to be in successful development

More information

H2020 RIA COMANOID H2020-RIA

H2020 RIA COMANOID H2020-RIA Ref. Ares(2016)2533586-01/06/2016 H2020 RIA COMANOID H2020-RIA-645097 Deliverable D4.1: Demonstrator specification report M6 D4.1 H2020-RIA-645097 COMANOID M6 Project acronym: Project full title: COMANOID

More information

Railway Training Simulators run on ESRI ArcGIS generated Track Splines

Railway Training Simulators run on ESRI ArcGIS generated Track Splines Railway Training Simulators run on ESRI ArcGIS generated Track Splines Amita Narote 1, Technical Specialist, Pierre James 2, GIS Engineer Knorr-Bremse Technology Center India Pvt. Ltd. Survey No. 276,

More information

Improved Methods for the Generation of Full-Ship Simulation/Analysis Models NSRP ASE Subcontract Agreement

Improved Methods for the Generation of Full-Ship Simulation/Analysis Models NSRP ASE Subcontract Agreement Title Improved Methods for the Generation of Full-Ship Simulation/Analysis Models NSRP ASE Subcontract Agreement 2007-381 Executive overview Large full-ship analyses and simulations are performed today

More information

Robotics Institute. University of Valencia

Robotics Institute. University of Valencia ! " # $&%' ( Robotics Institute University of Valencia !#"$&% '(*) +%,!-)./ Training of heavy machinery operators involves several problems both from the safety and economical point of view. The operation

More information

Modeling and Simulation: Linking Entertainment & Defense

Modeling and Simulation: Linking Entertainment & Defense Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 1998 Modeling and Simulation: Linking Entertainment & Defense Zyda, Michael 1 April 98: "Modeling

More information

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment Helmut Schrom-Feiertag 1, Christoph Schinko 2, Volker Settgast 3, and Stefan Seer 1 1 Austrian

More information

University of Geneva. Presentation of the CISA-CIN-BBL v. 2.3

University of Geneva. Presentation of the CISA-CIN-BBL v. 2.3 University of Geneva Presentation of the CISA-CIN-BBL 17.05.2018 v. 2.3 1 Evolution table Revision Date Subject 0.1 06.02.2013 Document creation. 1.0 08.02.2013 Contents added 1.5 12.02.2013 Some parts

More information

NAVIGATIONAL CONTROL EFFECT ON REPRESENTING VIRTUAL ENVIRONMENTS

NAVIGATIONAL CONTROL EFFECT ON REPRESENTING VIRTUAL ENVIRONMENTS NAVIGATIONAL CONTROL EFFECT ON REPRESENTING VIRTUAL ENVIRONMENTS Xianjun Sam Zheng, George W. McConkie, and Benjamin Schaeffer Beckman Institute, University of Illinois at Urbana Champaign This present

More information

TECHNOLOGY COMMONALITY FOR SIMULATION TRAINING OF AIR COMBAT OFFICERS AND NAVAL HELICOPTER CONTROL OFFICERS

TECHNOLOGY COMMONALITY FOR SIMULATION TRAINING OF AIR COMBAT OFFICERS AND NAVAL HELICOPTER CONTROL OFFICERS TECHNOLOGY COMMONALITY FOR SIMULATION TRAINING OF AIR COMBAT OFFICERS AND NAVAL HELICOPTER CONTROL OFFICERS Peter Freed Managing Director, Cirrus Real Time Processing Systems Pty Ltd ( Cirrus ). Email:

More information

Haptic presentation of 3D objects in virtual reality for the visually disabled

Haptic presentation of 3D objects in virtual reality for the visually disabled Haptic presentation of 3D objects in virtual reality for the visually disabled M Moranski, A Materka Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, Lodz, POLAND marcin.moranski@p.lodz.pl,

More information

Air Marshalling with the Kinect

Air Marshalling with the Kinect Air Marshalling with the Kinect Stephen Witherden, Senior Software Developer Beca Applied Technologies stephen.witherden@beca.com Abstract. The Kinect sensor from Microsoft presents a uniquely affordable

More information

SIU-CAVE. Cave Automatic Virtual Environment. Project Design. Version 1.0 (DRAFT) Prepared for. Dr. Christos Mousas JBU.

SIU-CAVE. Cave Automatic Virtual Environment. Project Design. Version 1.0 (DRAFT) Prepared for. Dr. Christos Mousas JBU. SIU-CAVE Cave Automatic Virtual Environment Project Design Version 1.0 (DRAFT) Prepared for Dr. Christos Mousas By JBU on March 2nd, 2018 SIU CAVE Project Design 1 TABLE OF CONTENTS -Introduction 3 -General

More information

New Developments in VBS3 GameTech 2014

New Developments in VBS3 GameTech 2014 New Developments in VBS3 GameTech 2014 Agenda VBS3 status VBS3 v3.4 released VBS3 v3.6 in development Key new VBS3 capabilities Paged, correlated terrain Command and control Advanced wounding Helicopter

More information

Sagittarius Evolution Product Line

Sagittarius Evolution Product Line Picture-Alliance/dpa www.thalesgroup.com/germany Sagittarius Evolution Product Line Picture-Alliance/dpa Simulation & Training More than 20 years of experience in providing small arms training simulators

More information

What will the robot do during the final demonstration?

What will the robot do during the final demonstration? SPENCER Questions & Answers What is project SPENCER about? SPENCER is a European Union-funded research project that advances technologies for intelligent robots that operate in human environments. Such

More information

VIRTUAL REALITY APPLICATIONS IN THE UK's CONSTRUCTION INDUSTRY

VIRTUAL REALITY APPLICATIONS IN THE UK's CONSTRUCTION INDUSTRY Construction Informatics Digital Library http://itc.scix.net/ paper w78-1996-89.content VIRTUAL REALITY APPLICATIONS IN THE UK's CONSTRUCTION INDUSTRY Bouchlaghem N., Thorpe A. and Liyanage, I. G. ABSTRACT:

More information

Mid-term report - Virtual reality and spatial mobility

Mid-term report - Virtual reality and spatial mobility Mid-term report - Virtual reality and spatial mobility Jarl Erik Cedergren & Stian Kongsvik October 10, 2017 The group members: - Jarl Erik Cedergren (jarlec@uio.no) - Stian Kongsvik (stiako@uio.no) 1

More information

STATE OF THE ART 3D DESKTOP SIMULATIONS FOR TRAINING, FAMILIARISATION AND VISUALISATION.

STATE OF THE ART 3D DESKTOP SIMULATIONS FOR TRAINING, FAMILIARISATION AND VISUALISATION. STATE OF THE ART 3D DESKTOP SIMULATIONS FOR TRAINING, FAMILIARISATION AND VISUALISATION. Gordon Watson 3D Visual Simulations Ltd ABSTRACT Continued advancements in the power of desktop PCs and laptops,

More information

Virtual and Augmented Reality for Cabin Crew Training: Practical Applications

Virtual and Augmented Reality for Cabin Crew Training: Practical Applications EATS 2018: the 17th European Airline Training Symposium Virtual and Augmented Reality for Cabin Crew Training: Practical Applications Luca Chittaro Human-Computer Interaction Lab Department of Mathematics,

More information

Craig Barnes. Previous Work. Introduction. Tools for Programming Agents

Craig Barnes. Previous Work. Introduction. Tools for Programming Agents From: AAAI Technical Report SS-00-04. Compilation copyright 2000, AAAI (www.aaai.org). All rights reserved. Visual Programming Agents for Virtual Environments Craig Barnes Electronic Visualization Lab

More information

EVALUATION OF DESIGN AND OPERABILITY IN AN IMMERSIVE 3D SIMULATOR

EVALUATION OF DESIGN AND OPERABILITY IN AN IMMERSIVE 3D SIMULATOR 2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) TECHNICAL SESSION AUGUST 12-14, 2014 - NOVI, MICHIGAN EVALUATION OF DESIGN AND

More information

Using VRML and Collaboration Tools to Enhance Feedback and Analysis of Distributed Interactive Simulation (DIS) Exercises

Using VRML and Collaboration Tools to Enhance Feedback and Analysis of Distributed Interactive Simulation (DIS) Exercises Using VRML and Collaboration Tools to Enhance Feedback and Analysis of Distributed Interactive Simulation (DIS) Exercises Julia J. Loughran, ThoughtLink, Inc. Marchelle Stahl, ThoughtLink, Inc. ABSTRACT:

More information

Prospective Teleautonomy For EOD Operations

Prospective Teleautonomy For EOD Operations Perception and task guidance Perceived world model & intent Prospective Teleautonomy For EOD Operations Prof. Seth Teller Electrical Engineering and Computer Science Department Computer Science and Artificial

More information

EMPLOYING VIRTUAL REALITY SIMULATION TO TRAIN FOR PREVENTION, DETERRENCE, RESPONSE, AND RECOVERY FOR CHEM BIO EVENTS

EMPLOYING VIRTUAL REALITY SIMULATION TO TRAIN FOR PREVENTION, DETERRENCE, RESPONSE, AND RECOVERY FOR CHEM BIO EVENTS EMPLOYING VIRTUAL REALITY SIMULATION TO TRAIN FOR PREVENTION, DETERRENCE, RESPONSE, AND RECOVERY FOR CHEM BIO EVENTS Presented by: Scott Milburn, Reality Response SVS is a state-of-the-art, turn-key, highfidelity,

More information

E90 Project Proposal. 6 December 2006 Paul Azunre Thomas Murray David Wright

E90 Project Proposal. 6 December 2006 Paul Azunre Thomas Murray David Wright E90 Project Proposal 6 December 2006 Paul Azunre Thomas Murray David Wright Table of Contents Abstract 3 Introduction..4 Technical Discussion...4 Tracking Input..4 Haptic Feedack.6 Project Implementation....7

More information

TEAM JAKD WIICONTROL

TEAM JAKD WIICONTROL TEAM JAKD WIICONTROL Final Progress Report 4/28/2009 James Garcia, Aaron Bonebright, Kiranbir Sodia, Derek Weitzel 1. ABSTRACT The purpose of this project report is to provide feedback on the progress

More information

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»!

Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! Welcome to this course on «Natural Interactive Walking on Virtual Grounds»! The speaker is Anatole Lécuyer, senior researcher at Inria, Rennes, France; More information about him at : http://people.rennes.inria.fr/anatole.lecuyer/

More information

Psychophysics of night vision device halo

Psychophysics of night vision device halo University of Wollongong Research Online Faculty of Health and Behavioural Sciences - Papers (Archive) Faculty of Science, Medicine and Health 2009 Psychophysics of night vision device halo Robert S Allison

More information

Instrumentation and Control

Instrumentation and Control Program Description Instrumentation and Control Program Overview Instrumentation and control (I&C) and information systems impact nuclear power plant reliability, efficiency, and operations and maintenance

More information

Inertial Doppler Radio Locator (IDRL) for DoD Test Range Applications

Inertial Doppler Radio Locator (IDRL) for DoD Test Range Applications INNOVATIONS IN ENGINEERING Inertial Doppler Radio Locator (IDRL) for DoD Test Range Applications This project is funded by the Test Resource Management Center (TRMC) Test and Evaluation/Science and Technology

More information

Individual Test Item Specifications

Individual Test Item Specifications Individual Test Item Specifications 8208120 Game and Simulation Design 2015 The contents of this document were developed under a grant from the United States Department of Education. However, the content

More information

The Army s Future Tactical UAS Technology Demonstrator Program

The Army s Future Tactical UAS Technology Demonstrator Program The Army s Future Tactical UAS Technology Demonstrator Program This information product has been reviewed and approved for public release, distribution A (Unlimited). Review completed by the AMRDEC Public

More information

Immersive Visualization and Collaboration with LS-PrePost-VR and LS-PrePost-Remote

Immersive Visualization and Collaboration with LS-PrePost-VR and LS-PrePost-Remote 8 th International LS-DYNA Users Conference Visualization Immersive Visualization and Collaboration with LS-PrePost-VR and LS-PrePost-Remote Todd J. Furlong Principal Engineer - Graphics and Visualization

More information

Virtual Reality as Innovative Approach to the Interior Designing

Virtual Reality as Innovative Approach to the Interior Designing SSP - JOURNAL OF CIVIL ENGINEERING Vol. 12, Issue 1, 2017 DOI: 10.1515/sspjce-2017-0011 Virtual Reality as Innovative Approach to the Interior Designing Pavol Kaleja, Mária Kozlovská Technical University

More information

USER-ORIENTED INTERACTIVE BUILDING DESIGN *

USER-ORIENTED INTERACTIVE BUILDING DESIGN * USER-ORIENTED INTERACTIVE BUILDING DESIGN * S. Martinez, A. Salgado, C. Barcena, C. Balaguer RoboticsLab, University Carlos III of Madrid, Spain {scasa@ing.uc3m.es} J.M. Navarro, C. Bosch, A. Rubio Dragados,

More information

Visualization and Simulation for Research and Collaboration. An AVI-SPL Tech Paper. (+01)

Visualization and Simulation for Research and Collaboration. An AVI-SPL Tech Paper.  (+01) Visualization and Simulation for Research and Collaboration An AVI-SPL Tech Paper www.avispl.com (+01).866.559.8197 1 Tech Paper: Visualization and Simulation for Research and Collaboration (+01).866.559.8197

More information

Attorney Docket No Date: 25 April 2008

Attorney Docket No Date: 25 April 2008 DEPARTMENT OF THE NAVY NAVAL UNDERSEA WARFARE CENTER DIVISION NEWPORT OFFICE OF COUNSEL PHONE: (401) 832-3653 FAX: (401) 832-4432 NEWPORT DSN: 432-3853 Attorney Docket No. 98580 Date: 25 April 2008 The

More information

Configuring Multiscreen Displays With Existing Computer Equipment

Configuring Multiscreen Displays With Existing Computer Equipment Configuring Multiscreen Displays With Existing Computer Equipment Jeffrey Jacobson www.planetjeff.net Department of Information Sciences, University of Pittsburgh An immersive multiscreen display (a UT-Cave)

More information

DepthTouch: Using Depth-Sensing Camera to Enable Freehand Interactions On and Above the Interactive Surface

DepthTouch: Using Depth-Sensing Camera to Enable Freehand Interactions On and Above the Interactive Surface DepthTouch: Using Depth-Sensing Camera to Enable Freehand Interactions On and Above the Interactive Surface Hrvoje Benko and Andrew D. Wilson Microsoft Research One Microsoft Way Redmond, WA 98052, USA

More information

Effects of Visual-Vestibular Interactions on Navigation Tasks in Virtual Environments

Effects of Visual-Vestibular Interactions on Navigation Tasks in Virtual Environments Effects of Visual-Vestibular Interactions on Navigation Tasks in Virtual Environments Date of Report: September 1 st, 2016 Fellow: Heather Panic Advisors: James R. Lackner and Paul DiZio Institution: Brandeis

More information

Advanced Tools for Graphical Authoring of Dynamic Virtual Environments at the NADS

Advanced Tools for Graphical Authoring of Dynamic Virtual Environments at the NADS Advanced Tools for Graphical Authoring of Dynamic Virtual Environments at the NADS Matt Schikore Yiannis E. Papelis Ginger Watson National Advanced Driving Simulator & Simulation Center The University

More information

HeroX - Untethered VR Training in Sync'ed Physical Spaces

HeroX - Untethered VR Training in Sync'ed Physical Spaces Page 1 of 6 HeroX - Untethered VR Training in Sync'ed Physical Spaces Above and Beyond - Integrating Robotics In previous research work I experimented with multiple robots remotely controlled by people

More information

Virtual Reality Devices in C2 Systems

Virtual Reality Devices in C2 Systems Jan Hodicky, Petr Frantis University of Defence Brno 65 Kounicova str. Brno Czech Republic +420973443296 jan.hodicky@unbo.cz petr.frantis@unob.cz Virtual Reality Devices in C2 Systems Topic: Track 8 C2

More information

Nao Devils Dortmund. Team Description for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann

Nao Devils Dortmund. Team Description for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Nao Devils Dortmund Team Description for RoboCup 2014 Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Robotics Research Institute Section Information Technology TU Dortmund University 44221 Dortmund,

More information

SPQR RoboCup 2016 Standard Platform League Qualification Report

SPQR RoboCup 2016 Standard Platform League Qualification Report SPQR RoboCup 2016 Standard Platform League Qualification Report V. Suriani, F. Riccio, L. Iocchi, D. Nardi Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti Sapienza Università

More information

Context-Aware Interaction in a Mobile Environment

Context-Aware Interaction in a Mobile Environment Context-Aware Interaction in a Mobile Environment Daniela Fogli 1, Fabio Pittarello 2, Augusto Celentano 2, and Piero Mussio 1 1 Università degli Studi di Brescia, Dipartimento di Elettronica per l'automazione

More information

AN AUTONOMOUS SIMULATION BASED SYSTEM FOR ROBOTIC SERVICES IN PARTIALLY KNOWN ENVIRONMENTS

AN AUTONOMOUS SIMULATION BASED SYSTEM FOR ROBOTIC SERVICES IN PARTIALLY KNOWN ENVIRONMENTS AN AUTONOMOUS SIMULATION BASED SYSTEM FOR ROBOTIC SERVICES IN PARTIALLY KNOWN ENVIRONMENTS Eva Cipi, PhD in Computer Engineering University of Vlora, Albania Abstract This paper is focused on presenting

More information

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS BY SERAFIN BENTO MASTER OF SCIENCE in INFORMATION SYSTEMS Edmonton, Alberta September, 2015 ABSTRACT The popularity of software agents demands for more comprehensive HAI design processes. The outcome of

More information

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS Nuno Sousa Eugénio Oliveira Faculdade de Egenharia da Universidade do Porto, Portugal Abstract: This paper describes a platform that enables

More information

Intelligent driving TH« TNO I Innovation for live

Intelligent driving TH« TNO I Innovation for live Intelligent driving TNO I Innovation for live TH«Intelligent Transport Systems have become an integral part of the world. In addition to the current ITS systems, intelligent vehicles can make a significant

More information

Head-Movement Evaluation for First-Person Games

Head-Movement Evaluation for First-Person Games Head-Movement Evaluation for First-Person Games Paulo G. de Barros Computer Science Department Worcester Polytechnic Institute 100 Institute Road. Worcester, MA 01609 USA pgb@wpi.edu Robert W. Lindeman

More information

PROGRESS ON THE SIMULATOR AND EYE-TRACKER FOR ASSESSMENT OF PVFR ROUTES AND SNI OPERATIONS FOR ROTORCRAFT

PROGRESS ON THE SIMULATOR AND EYE-TRACKER FOR ASSESSMENT OF PVFR ROUTES AND SNI OPERATIONS FOR ROTORCRAFT PROGRESS ON THE SIMULATOR AND EYE-TRACKER FOR ASSESSMENT OF PVFR ROUTES AND SNI OPERATIONS FOR ROTORCRAFT 1 Rudolph P. Darken, 1 Joseph A. Sullivan, and 2 Jeffrey Mulligan 1 Naval Postgraduate School,

More information

Engineered Resilient Systems NDIA Systems Engineering Conference October 29, 2014

Engineered Resilient Systems NDIA Systems Engineering Conference October 29, 2014 Engineered Resilient Systems NDIA Systems Engineering Conference October 29, 2014 Jeffery P. Holland, PhD, PE (SES) ERS Community of Interest (COI) Lead Director, US Army Engineer Research and Development

More information

Development of a Novel Low-Cost Flight Simulator for Pilot Training

Development of a Novel Low-Cost Flight Simulator for Pilot Training Development of a Novel Low-Cost Flight Simulator for Pilot Training Hongbin Gu, Dongsu Wu, and Hui Liu Abstract A novel low-cost flight simulator with the development goals cost effectiveness and high

More information

preface Motivation Figure 1. Reality-virtuality continuum (Milgram & Kishino, 1994) Mixed.Reality Augmented. Virtuality Real...

preface Motivation Figure 1. Reality-virtuality continuum (Milgram & Kishino, 1994) Mixed.Reality Augmented. Virtuality Real... v preface Motivation Augmented reality (AR) research aims to develop technologies that allow the real-time fusion of computer-generated digital content with the real world. Unlike virtual reality (VR)

More information

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN FACULTY OF COMPUTING AND INFORMATICS UNIVERSITY MALAYSIA SABAH 2014 ABSTRACT The use of Artificial Intelligence

More information

REQUEST FOR INFORMATION (RFI) United States Marine Corps Experimental Forward Operating Base (ExFOB) 2014

REQUEST FOR INFORMATION (RFI) United States Marine Corps Experimental Forward Operating Base (ExFOB) 2014 REQUEST FOR INFORMATION (RFI) United States Marine Corps Experimental Forward Operating Base (ExFOB) 2014 OVERVIEW: This announcement constitutes a Request for Information (RFI) notice for planning purposes.

More information

CSE 165: 3D User Interaction. Lecture #14: 3D UI Design

CSE 165: 3D User Interaction. Lecture #14: 3D UI Design CSE 165: 3D User Interaction Lecture #14: 3D UI Design 2 Announcements Homework 3 due tomorrow 2pm Monday: midterm discussion Next Thursday: midterm exam 3D UI Design Strategies 3 4 Thus far 3DUI hardware

More information

EVALUATION OF. SECURITY FORCES APPLICATIONS IN THE CONTEXT OF VIRTUAL REALITY AND MOBILE LEARNING Prof. Gonca Telli Yamamoto

EVALUATION OF. SECURITY FORCES APPLICATIONS IN THE CONTEXT OF VIRTUAL REALITY AND MOBILE LEARNING Prof. Gonca Telli Yamamoto EVALUATION OF SECURITY FORCES APPLICATIONS IN THE CONTEXT OF VIRTUAL REALITY AND MOBILE LEARNING Prof. Gonca Telli Yamamoto Virtual Virtual Reality Reality Basically Virtual Reality is a technology which

More information

Waves Nx VIRTUAL REALITY AUDIO

Waves Nx VIRTUAL REALITY AUDIO Waves Nx VIRTUAL REALITY AUDIO WAVES VIRTUAL REALITY AUDIO THE FUTURE OF AUDIO REPRODUCTION AND CREATION Today s entertainment is on a mission to recreate the real world. Just as VR makes us feel like

More information

Introduction to Systems Engineering

Introduction to Systems Engineering p. 1/2 ENES 489P Hands-On Systems Engineering Projects Introduction to Systems Engineering Mark Austin E-mail: austin@isr.umd.edu Institute for Systems Research, University of Maryland, College Park Career

More information

About 3D perception. Experience & Innovation: Powered by People

About 3D perception. Experience & Innovation: Powered by People About 3D perception 3D perception designs and supplies seamless immersive visual display solutions and technologies for simulation and visualization applications. 3D perception s Northstar ecosystem of

More information

Interactive Simulation: UCF EIN5255. VR Software. Audio Output. Page 4-1

Interactive Simulation: UCF EIN5255. VR Software. Audio Output. Page 4-1 VR Software Class 4 Dr. Nabil Rami http://www.simulationfirst.com/ein5255/ Audio Output Can be divided into two elements: Audio Generation Audio Presentation Page 4-1 Audio Generation A variety of audio

More information

VEWL: A Framework for Building a Windowing Interface in a Virtual Environment Daniel Larimer and Doug A. Bowman Dept. of Computer Science, Virginia Tech, 660 McBryde, Blacksburg, VA dlarimer@vt.edu, bowman@vt.edu

More information

Prototyping interactive cockpit applications

Prototyping interactive cockpit applications Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR Prototyping interactive cockpit applications R.P.M. Verhoeven and A.J.C. de Reus This report has been based on a paper presented

More information

Virtual Environments. CSCI 420 Computer Graphics Lecture 25. History of Virtual Reality Flight Simulators Immersion, Interaction, Real-time Haptics

Virtual Environments. CSCI 420 Computer Graphics Lecture 25. History of Virtual Reality Flight Simulators Immersion, Interaction, Real-time Haptics CSCI 420 Computer Graphics Lecture 25 Virtual Environments Jernej Barbic University of Southern California History of Virtual Reality Flight Simulators Immersion, Interaction, Real-time Haptics 1 Virtual

More information

Directions in Modeling, Virtual Environments and Simulation (MOVES) / presentation

Directions in Modeling, Virtual Environments and Simulation (MOVES) / presentation Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 1999-06-23 Directions in Modeling, Virtual Environments and Simulation (MOVES) / presentation

More information

Tangible interaction : A new approach to customer participatory design

Tangible interaction : A new approach to customer participatory design Tangible interaction : A new approach to customer participatory design Focused on development of the Interactive Design Tool Jae-Hyung Byun*, Myung-Suk Kim** * Division of Design, Dong-A University, 1

More information

VIRTUAL REALITY FOR NONDESTRUCTIVE EVALUATION APPLICATIONS

VIRTUAL REALITY FOR NONDESTRUCTIVE EVALUATION APPLICATIONS VIRTUAL REALITY FOR NONDESTRUCTIVE EVALUATION APPLICATIONS Jaejoon Kim, S. Mandayam, S. Udpa, W. Lord, and L. Udpa Department of Electrical and Computer Engineering Iowa State University Ames, Iowa 500

More information

Virtual Reality in Satellite Integration and Testing

Virtual Reality in Satellite Integration and Testing Virtual Reality in Satellite Integration and Testing Valentina Paparo (1), Fabio Di Giorgio (1), Mauro Poletti (2), Egidio Martinelli (2), Sébastien Dorgan (3), Nicola Barilla (2) (1) Thales Alenia Space

More information

Virtual Environments. Virtual Reality. History of Virtual Reality. Virtual Reality. Cinerama. Cinerama

Virtual Environments. Virtual Reality. History of Virtual Reality. Virtual Reality. Cinerama. Cinerama CSCI 480 Computer Graphics Lecture 25 Virtual Environments Virtual Reality computer-simulated environments that can simulate physical presence in places in the real world, as well as in imaginary worlds

More information

Assessments of Grade Crossing Warning and Signalization Devices Driving Simulator Study

Assessments of Grade Crossing Warning and Signalization Devices Driving Simulator Study Assessments of Grade Crossing Warning and Signalization Devices Driving Simulator Study Petr Bouchner, Stanislav Novotný, Roman Piekník, Ondřej Sýkora Abstract Behavior of road users on railway crossings

More information

1/22/13. Virtual Environments. Virtual Reality. History of Virtual Reality. Virtual Reality. Cinerama. Cinerama

1/22/13. Virtual Environments. Virtual Reality. History of Virtual Reality. Virtual Reality. Cinerama. Cinerama CSCI 480 Computer Graphics Lecture 25 Virtual Environments Apr 29, 2013 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s13/ History of Virtual Reality Immersion,

More information

SITUATED DESIGN OF VIRTUAL WORLDS USING RATIONAL AGENTS

SITUATED DESIGN OF VIRTUAL WORLDS USING RATIONAL AGENTS SITUATED DESIGN OF VIRTUAL WORLDS USING RATIONAL AGENTS MARY LOU MAHER AND NING GU Key Centre of Design Computing and Cognition University of Sydney, Australia 2006 Email address: mary@arch.usyd.edu.au

More information

Interacting within Virtual Worlds (based on talks by Greg Welch and Mark Mine)

Interacting within Virtual Worlds (based on talks by Greg Welch and Mark Mine) Interacting within Virtual Worlds (based on talks by Greg Welch and Mark Mine) Presentation Working in a virtual world Interaction principles Interaction examples Why VR in the First Place? Direct perception

More information

A Virtual Environments Editor for Driving Scenes

A Virtual Environments Editor for Driving Scenes A Virtual Environments Editor for Driving Scenes Ronald R. Mourant and Sophia-Katerina Marangos Virtual Environments Laboratory, 334 Snell Engineering Center Northeastern University, Boston, MA 02115 USA

More information

Edward Waller Joseph Chaput Presented at the IAEA International Conference on Physical Protection of Nuclear Material and Facilities

Edward Waller Joseph Chaput Presented at the IAEA International Conference on Physical Protection of Nuclear Material and Facilities Training and Exercising the Nuclear Safety and Nuclear Security Interface Incident Response through Synthetic Environment, Augmented Reality and Virtual Reality Simulations Edward Waller Joseph Chaput

More information

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department

EE631 Cooperating Autonomous Mobile Robots. Lecture 1: Introduction. Prof. Yi Guo ECE Department EE631 Cooperating Autonomous Mobile Robots Lecture 1: Introduction Prof. Yi Guo ECE Department Plan Overview of Syllabus Introduction to Robotics Applications of Mobile Robots Ways of Operation Single

More information