Constructing Pin Endgame Databases for the Backgammon Variant Plakoto

Size: px
Start display at page:

Download "Constructing Pin Endgame Databases for the Backgammon Variant Plakoto"

Transcription

1 Constructing Pin Endgame Databases for the Backgammon Variant Plakoto Nikolaos Papahristou and Ioannis Refanidis University of Macedonia Department of Applied Informatics AI Group Thessaloniki, Greece 14th International Conference Advances in Computer Games 2015

2 Motivation Previous research: Palamedes: Bot that plays several backgammon variants on expert level. This paper: Endgame databases for the Plakoto variant Evaluation of existing AI using the endgame DBs. Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 2/16

3 Outline 1. Introduction 2. Plakoto Rules and positions of interest 3. Endgame DB algorithm and AI evaluation 4. Conclusion Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 3/16

4 Backgammon games 2-player, turn-taking, zero-sum, stochastic board game Each player has 15 checkers or men Checkers move at specific direction Checkers move according to dice rolls Goal of players move all checkers to home quadrant and then remove first their checkers from board Double game: when one player removes all its checkers and opponent hasn t remove any of its own Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 4/16

5 Palamedes project Initial goal: AI for most popular variants in Greece (Portes, Plakoto, Fevga). Expanded in other variants (Narde, Takhteh, Hypergammon etc) Free download: Windows version: Android: amedes Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 5/16

6 Current state of backgammon endgame DBs Endgame DBs in standard backgammon cover bearoff and race positions. Two kind of DBs: One-sided Only store positions of the player to move. Pros: Small size Cons: Not 100% accurate for move selection Two-sided Store the full board position Pros: Full game theoretic value -> accurate move selection Cons: Large size Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 6/16

7 Plakoto Rules Usual backgammon rules apply except: No hitting. Lone checkers can be pinned by opponent Pinned checkers cannot move Initial Position Typical middle-game position Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 7/16

8 Importance of Pins A made point can be constructed with only one checker (pin). Players can nullify bad luck when they roll small rolls and/or the opponent rolls big rolls. The side that has pinned without getting pinned usually gets a few rolls ahead in the bearoff race. Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 8/16

9 Pin Endgames Positions of interest The side to move has pinned one checker inside her bearoff quadrant (points 2-6). The opponent has pinned the moving player once. No more further pins are possible (also called race ). Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 9/16

10 Algorithm Retrograde style Start from end and go backwards Main idea: find the distance to unpin Storage in DB in pairs (position, distance to unpin) Position -> int32 (perfect hash) Distance -> double Actual play DB is activated only when position before roll has the desired characteristics Find distances of all afterstates and select the move which results in position with the max distance value Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 10/16

11 Algorithm pseudo code Init P // last point where checkers reside Init pin // point where the pin is placed Position = createstartposition(pin) while Position lastpos(p) saveindb(hash(position), finddistance(position)) increment(position) function finddistance(position) avgdistance = 0 for every roll d // There are 21 possible rolls afterstates = findmoves(position, d) distances = readdistancesfromdb(afterstates) distance = max(distances) if d is double roll else avgdistance += distance avgdistance += 2 * distance return avgdistance / 36 Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 11/16

12 Number of endgame positions C + P 1 P + C 1! R = = C C! P 1! R: Number of positions C: Number of checkers (=13 in our case) P: Number of points that checkers reside Examples: P = 6, R = > 67KB P = 12, R = > 19MB This paper: 5 DBs (2-6 pin points): 12,480,720 Total 2-sided pos: 3.4x10 15 Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 12/16

13 Potential problems One sided -> best move is not 100% guaranteed. Type of positions with potential problems: Red player is way ahead in the unpinning race Red player to move 31. Possible moves: a) 23-24, b) Green player very close to unpin Best move according to DB is may be the actual best move due to better bearoff placement However, rollouts did not give statistical significant result. Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 13/16

14 NN evaluation in plakoto endgames Experiment to check if NN selects the same move as the DB. All one-sided positions and all rolls Positions encountered in self play DB activated in 1% of total moves Comparison Method Correct moves by the NN (%) All positions 15% Self-play positions 64% Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 14/16

15 Conclusions Future Work Conclusions Initial exploration of pin endgames. Small DB size but large number of positions covered. 1-sided DBs means no absolute certainty for move selection but no problems found yet. Pin DBs enhance move selection of the Palamedes program. Future Work More pin databases DBs with pin points outside the bearoff quadrant DBs with more than one pinned point Experiment with lower precision in the value. Explore compression potential. Nikolaos Papahristou, Ioannis Refanidis, 14 th ACG, 2015 Constructing Pin DBs for the Backgammon Variant Plakoto 15/16

16 Thank you for your attention!

Plakoto. A Backgammon Board Game Variant Introduction, Rules and Basic Strategy. (by J.Mamoun - This primer is copyright-free, in the public domain)

Plakoto. A Backgammon Board Game Variant Introduction, Rules and Basic Strategy. (by J.Mamoun - This primer is copyright-free, in the public domain) Plakoto A Backgammon Board Game Variant Introduction, Rules and Basic Strategy (by J.Mamoun - This primer is copyright-free, in the public domain) Introduction: Plakoto is a variation of the game of backgammon.

More information

Decision Making in Multiplayer Environments Application in Backgammon Variants

Decision Making in Multiplayer Environments Application in Backgammon Variants Decision Making in Multiplayer Environments Application in Backgammon Variants PhD Thesis by Nikolaos Papahristou AI researcher Department of Applied Informatics Thessaloniki, Greece Contributions Expert

More information

On the Design and Training of Bots to Play Backgammon Variants

On the Design and Training of Bots to Play Backgammon Variants On the Design and Training of Bots to Play Backgammon Variants Nikolaos Papahristou, Ioannis Refanidis To cite this version: Nikolaos Papahristou, Ioannis Refanidis. On the Design and Training of Bots

More information

Adversarial Search (Game Playing)

Adversarial Search (Game Playing) Artificial Intelligence Adversarial Search (Game Playing) Chapter 5 Adapted from materials by Tim Finin, Marie desjardins, and Charles R. Dyer Outline Game playing State of the art and resources Framework

More information

YourTurnMyTurn.com: Backgammon rules. YourTurnMyTurn.com Copyright 2018 YourTurnMyTurn.com

YourTurnMyTurn.com: Backgammon rules. YourTurnMyTurn.com Copyright 2018 YourTurnMyTurn.com YourTurnMyTurn.com: Backgammon rules YourTurnMyTurn.com Copyright 2018 YourTurnMyTurn.com Inhoud Backgammon Rules...1 The board...1 Object of the board game...1 Moving the men...1 Rules for moving the

More information

CITS3001. Algorithms, Agents and Artificial Intelligence. Semester 2, 2016 Tim French

CITS3001. Algorithms, Agents and Artificial Intelligence. Semester 2, 2016 Tim French CITS3001 Algorithms, Agents and Artificial Intelligence Semester 2, 2016 Tim French School of Computer Science & Software Eng. The University of Western Australia 8. Game-playing AIMA, Ch. 5 Objectives

More information

Adversarial Search. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 5

Adversarial Search. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 5 Adversarial Search CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 5 Outline Game

More information

Game Playing AI Class 8 Ch , 5.4.1, 5.5

Game Playing AI Class 8 Ch , 5.4.1, 5.5 Game Playing AI Class Ch. 5.-5., 5.4., 5.5 Bookkeeping HW Due 0/, :59pm Remaining CSP questions? Cynthia Matuszek CMSC 6 Based on slides by Marie desjardin, Francisco Iacobelli Today s Class Clear criteria

More information

CPS 570: Artificial Intelligence Two-player, zero-sum, perfect-information Games

CPS 570: Artificial Intelligence Two-player, zero-sum, perfect-information Games CPS 57: Artificial Intelligence Two-player, zero-sum, perfect-information Games Instructor: Vincent Conitzer Game playing Rich tradition of creating game-playing programs in AI Many similarities to search

More information

Game playing. Chapter 5. Chapter 5 1

Game playing. Chapter 5. Chapter 5 1 Game playing Chapter 5 Chapter 5 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 5 2 Types of

More information

CS 188: Artificial Intelligence Spring Game Playing in Practice

CS 188: Artificial Intelligence Spring Game Playing in Practice CS 188: Artificial Intelligence Spring 2006 Lecture 23: Games 4/18/2006 Dan Klein UC Berkeley Game Playing in Practice Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.

More information

CLASSIC 18'' BACKGAMMON SET

CLASSIC 18'' BACKGAMMON SET CLASSIC 18'' BACKGAMMON SET August 2012 UPC Code 7-19265-51829-9 HOW TO PLAY BACKGAMMON Backgammon Includes: 15 Black Pieces 15 White Pieces 4 Dice 1 Doubling Cube Board How to Set Up the Board 1. Lay

More information

Game Playing AI. Dr. Baldassano Yu s Elite Education

Game Playing AI. Dr. Baldassano Yu s Elite Education Game Playing AI Dr. Baldassano chrisb@princeton.edu Yu s Elite Education Last 2 weeks recap: Graphs Graphs represent pairwise relationships Directed/undirected, weighted/unweights Common algorithms: Shortest

More information

Artificial Intelligence. Topic 5. Game playing

Artificial Intelligence. Topic 5. Game playing Artificial Intelligence Topic 5 Game playing broadening our world view dealing with incompleteness why play games? perfect decisions the Minimax algorithm dealing with resource limits evaluation functions

More information

Game playing. Chapter 5, Sections 1{5. AIMA Slides cstuart Russell and Peter Norvig, 1998 Chapter 5, Sections 1{5 1

Game playing. Chapter 5, Sections 1{5. AIMA Slides cstuart Russell and Peter Norvig, 1998 Chapter 5, Sections 1{5 1 Game playing Chapter 5, Sections 1{5 AIMA Slides cstuart Russell and Peter Norvig, 1998 Chapter 5, Sections 1{5 1 } Perfect play } Resource limits } { pruning } Games of chance Outline AIMA Slides cstuart

More information

Game Playing. Philipp Koehn. 29 September 2015

Game Playing. Philipp Koehn. 29 September 2015 Game Playing Philipp Koehn 29 September 2015 Outline 1 Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information 2 games

More information

Today. Types of Game. Games and Search 1/18/2010. COMP210: Artificial Intelligence. Lecture 10. Game playing

Today. Types of Game. Games and Search 1/18/2010. COMP210: Artificial Intelligence. Lecture 10. Game playing COMP10: Artificial Intelligence Lecture 10. Game playing Trevor Bench-Capon Room 15, Ashton Building Today We will look at how search can be applied to playing games Types of Games Perfect play minimax

More information

CS 331: Artificial Intelligence Adversarial Search II. Outline

CS 331: Artificial Intelligence Adversarial Search II. Outline CS 331: Artificial Intelligence Adversarial Search II 1 Outline 1. Evaluation Functions 2. State-of-the-art game playing programs 3. 2 player zero-sum finite stochastic games of perfect information 2 1

More information

MITOCW Project: Backgammon tutor MIT Multicore Programming Primer, IAP 2007

MITOCW Project: Backgammon tutor MIT Multicore Programming Primer, IAP 2007 MITOCW Project: Backgammon tutor MIT 6.189 Multicore Programming Primer, IAP 2007 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue

More information

CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions

CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions Slides by Svetlana Lazebnik, 9/2016 Modified by Mark Hasegawa Johnson, 9/2017 Types of game environments Perfect

More information

Programming Project 1: Pacman (Due )

Programming Project 1: Pacman (Due ) Programming Project 1: Pacman (Due 8.2.18) Registration to the exams 521495A: Artificial Intelligence Adversarial Search (Min-Max) Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

Monte Carlo Tree Search

Monte Carlo Tree Search Monte Carlo Tree Search 1 By the end, you will know Why we use Monte Carlo Search Trees The pros and cons of MCTS How it is applied to Super Mario Brothers and Alpha Go 2 Outline I. Pre-MCTS Algorithms

More information

Game playing. Outline

Game playing. Outline Game playing Chapter 6, Sections 1 8 CS 480 Outline Perfect play Resource limits α β pruning Games of chance Games of imperfect information Games vs. search problems Unpredictable opponent solution is

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 4: Adversarial Search 10/12/2009 Luke Zettlemoyer Based on slides from Dan Klein Many slides over the course adapted from either Stuart Russell or Andrew

More information

Lecture 5: Game Playing (Adversarial Search)

Lecture 5: Game Playing (Adversarial Search) Lecture 5: Game Playing (Adversarial Search) CS 580 (001) - Spring 2018 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA February 21, 2018 Amarda Shehu (580) 1 1 Outline

More information

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search COMP19: Artificial Intelligence COMP19: Artificial Intelligence Dr. Annabel Latham Room.05 Ashton Building Department of Computer Science University of Liverpool Lecture 1: Game Playing 1 Overview Last

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.

More information

Games CSE 473. Kasparov Vs. Deep Junior August 2, 2003 Match ends in a 3 / 3 tie!

Games CSE 473. Kasparov Vs. Deep Junior August 2, 2003 Match ends in a 3 / 3 tie! Games CSE 473 Kasparov Vs. Deep Junior August 2, 2003 Match ends in a 3 / 3 tie! Games in AI In AI, games usually refers to deteristic, turntaking, two-player, zero-sum games of perfect information Deteristic:

More information

CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MONTE CARLO SEARCH Santiago Ontañón so367@drexel.edu Recall: Adversarial Search Idea: When there is only one agent in the world, we can solve problems using DFS, BFS, ID,

More information

Unit-III Chap-II Adversarial Search. Created by: Ashish Shah 1

Unit-III Chap-II Adversarial Search. Created by: Ashish Shah 1 Unit-III Chap-II Adversarial Search Created by: Ashish Shah 1 Alpha beta Pruning In case of standard ALPHA BETA PRUNING minimax tree, it returns the same move as minimax would, but prunes away branches

More information

Solving Problems by Searching: Adversarial Search

Solving Problems by Searching: Adversarial Search Course 440 : Introduction To rtificial Intelligence Lecture 5 Solving Problems by Searching: dversarial Search bdeslam Boularias Friday, October 7, 2016 1 / 24 Outline We examine the problems that arise

More information

Chapter 6. Overview. Why study games? State of the art. Game playing State of the art and resources Framework

Chapter 6. Overview. Why study games? State of the art. Game playing State of the art and resources Framework Overview Chapter 6 Game playing State of the art and resources Framework Game trees Minimax Alpha-beta pruning Adding randomness Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison

More information

Outline. Game playing. Types of games. Games vs. search problems. Minimax. Game tree (2-player, deterministic, turns) Games

Outline. Game playing. Types of games. Games vs. search problems. Minimax. Game tree (2-player, deterministic, turns) Games utline Games Game playing Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Chapter 6 Games of chance Games of imperfect information Chapter 6 Chapter 6 Games vs. search

More information

Local Search. Hill Climbing. Hill Climbing Diagram. Simulated Annealing. Simulated Annealing. Introduction to Artificial Intelligence

Local Search. Hill Climbing. Hill Climbing Diagram. Simulated Annealing. Simulated Annealing. Introduction to Artificial Intelligence Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 6: Adversarial Search Local Search Queue-based algorithms keep fallback options (backtracking) Local search: improve what you have

More information

School of EECS Washington State University. Artificial Intelligence

School of EECS Washington State University. Artificial Intelligence School of EECS Washington State University Artificial Intelligence 1 } Classic AI challenge Easy to represent Difficult to solve } Zero-sum games Total final reward to all players is constant } Perfect

More information

Adversarial search (game playing)

Adversarial search (game playing) Adversarial search (game playing) References Russell and Norvig, Artificial Intelligence: A modern approach, 2nd ed. Prentice Hall, 2003 Nilsson, Artificial intelligence: A New synthesis. McGraw Hill,

More information

Adversarial Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 9 Feb 2012

Adversarial Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 9 Feb 2012 1 Hal Daumé III (me@hal3.name) Adversarial Search Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 9 Feb 2012 Many slides courtesy of Dan

More information

Game Playing: Adversarial Search. Chapter 5

Game Playing: Adversarial Search. Chapter 5 Game Playing: Adversarial Search Chapter 5 Outline Games Perfect play minimax search α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Games vs. Search

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory AI Challenge One 140 Challenge 1 grades 120 100 80 60 AI Challenge One Transform to graph Explore the

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 6. Board Games Search Strategies for Games, Games with Chance, State of the Art Joschka Boedecker and Wolfram Burgard and Bernhard Nebel Albert-Ludwigs-Universität

More information

Games vs. search problems. Game playing Chapter 6. Outline. Game tree (2-player, deterministic, turns) Types of games. Minimax

Games vs. search problems. Game playing Chapter 6. Outline. Game tree (2-player, deterministic, turns) Types of games. Minimax Game playing Chapter 6 perfect information imperfect information Types of games deterministic chess, checkers, go, othello battleships, blind tictactoe chance backgammon monopoly bridge, poker, scrabble

More information

Artificial Intelligence Adversarial Search

Artificial Intelligence Adversarial Search Artificial Intelligence Adversarial Search Adversarial Search Adversarial search problems games They occur in multiagent competitive environments There is an opponent we can t control planning again us!

More information

A Generalized Heuristic for Can t Stop

A Generalized Heuristic for Can t Stop Proceedings of the Twenty-Second International FLAIRS Conference (009) A Generalized Heuristic for Can t Stop James Glenn and Christian Aloi Department of Computer Science Loyola College in Maryland Baltimore,

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 6. Board Games Search Strategies for Games, Games with Chance, State of the Art Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel Albert-Ludwigs-Universität

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.

More information

Computing Science (CMPUT) 496

Computing Science (CMPUT) 496 Computing Science (CMPUT) 496 Search, Knowledge, and Simulations Martin Müller Department of Computing Science University of Alberta mmueller@ualberta.ca Winter 2017 Part IV Knowledge 496 Today - Mar 9

More information

ADVERSARIAL SEARCH. Chapter 5

ADVERSARIAL SEARCH. Chapter 5 ADVERSARIAL SEARCH Chapter 5... every game of skill is susceptible of being played by an automaton. from Charles Babbage, The Life of a Philosopher, 1832. Outline Games Perfect play minimax decisions α

More information

Intuition Mini-Max 2

Intuition Mini-Max 2 Games Today Saying Deep Blue doesn t really think about chess is like saying an airplane doesn t really fly because it doesn t flap its wings. Drew McDermott I could feel I could smell a new kind of intelligence

More information

4. Games and search. Lecture Artificial Intelligence (4ov / 8op)

4. Games and search. Lecture Artificial Intelligence (4ov / 8op) 4. Games and search 4.1 Search problems State space search find a (shortest) path from the initial state to the goal state. Constraint satisfaction find a value assignment to a set of variables so that

More information

6. Games. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Mechanical Turk. Origins. origins. motivation. minimax search

6. Games. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Mechanical Turk. Origins. origins. motivation. minimax search COMP9414/9814/3411 16s1 Games 1 COMP9414/ 9814/ 3411: Artificial Intelligence 6. Games Outline origins motivation Russell & Norvig, Chapter 5. minimax search resource limits and heuristic evaluation α-β

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Instructor: Stuart Russell University of California, Berkeley Game Playing State-of-the-Art Checkers: 1950: First computer player. 1959: Samuel s self-taught

More information

Games vs. search problems. Adversarial Search. Types of games. Outline

Games vs. search problems. Adversarial Search. Types of games. Outline Games vs. search problems Unpredictable opponent solution is a strategy specifying a move for every possible opponent reply dversarial Search Chapter 5 Time limits unlikely to find goal, must approximate

More information

K-means separated neural networks training with application to backgammon evaluations

K-means separated neural networks training with application to backgammon evaluations K-means separated neural networks training with application to backgammon evaluations Øystein Johansen December 19, 2007 Abstract This study examines whether a k-means clustering method can be utilied

More information

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster / September 23, 2013

Chess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster / September 23, 2013 Chess Algorithms Theory and Practice Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2013 1 Content Complexity of a chess game History of computer chess Search trees

More information

Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA

Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA 5.1-5.2 Games: Outline of Unit Part I: Games as Search Motivation Game-playing AI successes Game Trees Evaluation

More information

Adversarial Search: Game Playing. Reading: Chapter

Adversarial Search: Game Playing. Reading: Chapter Adversarial Search: Game Playing Reading: Chapter 6.5-6.8 1 Games and AI Easy to represent, abstract, precise rules One of the first tasks undertaken by AI (since 1950) Better than humans in Othello and

More information

Announcements. CS 188: Artificial Intelligence Fall Local Search. Hill Climbing. Simulated Annealing. Hill Climbing Diagram

Announcements. CS 188: Artificial Intelligence Fall Local Search. Hill Climbing. Simulated Annealing. Hill Climbing Diagram CS 188: Artificial Intelligence Fall 2008 Lecture 6: Adversarial Search 9/16/2008 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 Announcements Project

More information

Algorithms for solving sequential (zero-sum) games. Main case in these slides: chess. Slide pack by Tuomas Sandholm

Algorithms for solving sequential (zero-sum) games. Main case in these slides: chess. Slide pack by Tuomas Sandholm Algorithms for solving sequential (zero-sum) games Main case in these slides: chess Slide pack by Tuomas Sandholm Rich history of cumulative ideas Game-theoretic perspective Game of perfect information

More information

Game playing. Chapter 5, Sections 1 6

Game playing. Chapter 5, Sections 1 6 Game playing Chapter 5, Sections 1 6 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1 6 1 Outline Games Perfect play

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH 10/23/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Recall: Problem Solving Idea: represent

More information

Last update: March 9, Game playing. CMSC 421, Chapter 6. CMSC 421, Chapter 6 1

Last update: March 9, Game playing. CMSC 421, Chapter 6. CMSC 421, Chapter 6 1 Last update: March 9, 2010 Game playing CMSC 421, Chapter 6 CMSC 421, Chapter 6 1 Finite perfect-information zero-sum games Finite: finitely many agents, actions, states Perfect information: every agent

More information

TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play

TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play NOTE Communicated by Richard Sutton TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play Gerald Tesauro IBM Thomas 1. Watson Research Center, I? 0. Box 704, Yorktozon Heights, NY 10598

More information

Optimal Yahtzee performance in multi-player games

Optimal Yahtzee performance in multi-player games Optimal Yahtzee performance in multi-player games Andreas Serra aserra@kth.se Kai Widell Niigata kaiwn@kth.se April 12, 2013 Abstract Yahtzee is a game with a moderately large search space, dependent on

More information

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH Santiago Ontañón so367@drexel.edu Recall: Problem Solving Idea: represent the problem we want to solve as: State space Actions Goal check Cost function

More information

Contents. List of Figures

Contents. List of Figures 1 Contents 1 Introduction....................................... 3 1.1 Rules of the game............................... 3 1.2 Complexity of the game............................ 4 1.3 History of self-learning

More information

Game Playing. Dr. Richard J. Povinelli. Page 1. rev 1.1, 9/14/2003

Game Playing. Dr. Richard J. Povinelli. Page 1. rev 1.1, 9/14/2003 Game Playing Dr. Richard J. Povinelli rev 1.1, 9/14/2003 Page 1 Objectives You should be able to provide a definition of a game. be able to evaluate, compare, and implement the minmax and alpha-beta algorithms,

More information

Algorithms for solving sequential (zero-sum) games. Main case in these slides: chess! Slide pack by " Tuomas Sandholm"

Algorithms for solving sequential (zero-sum) games. Main case in these slides: chess! Slide pack by  Tuomas Sandholm Algorithms for solving sequential (zero-sum) games Main case in these slides: chess! Slide pack by " Tuomas Sandholm" Rich history of cumulative ideas Game-theoretic perspective" Game of perfect information"

More information

Adversarial Search. Chapter 5. Mausam (Based on slides of Stuart Russell, Andrew Parks, Henry Kautz, Linda Shapiro) 1

Adversarial Search. Chapter 5. Mausam (Based on slides of Stuart Russell, Andrew Parks, Henry Kautz, Linda Shapiro) 1 Adversarial Search Chapter 5 Mausam (Based on slides of Stuart Russell, Andrew Parks, Henry Kautz, Linda Shapiro) 1 Game Playing Why do AI researchers study game playing? 1. It s a good reasoning problem,

More information

Reinforcement Learning in Games Autonomous Learning Systems Seminar

Reinforcement Learning in Games Autonomous Learning Systems Seminar Reinforcement Learning in Games Autonomous Learning Systems Seminar Matthias Zöllner Intelligent Autonomous Systems TU-Darmstadt zoellner@rbg.informatik.tu-darmstadt.de Betreuer: Gerhard Neumann Abstract

More information

Adversarial Search and Game Playing. Russell and Norvig: Chapter 5

Adversarial Search and Game Playing. Russell and Norvig: Chapter 5 Adversarial Search and Game Playing Russell and Norvig: Chapter 5 Typical case 2-person game Players alternate moves Zero-sum: one player s loss is the other s gain Perfect information: both players have

More information

Game Engineering CS F-24 Board / Strategy Games

Game Engineering CS F-24 Board / Strategy Games Game Engineering CS420-2014F-24 Board / Strategy Games David Galles Department of Computer Science University of San Francisco 24-0: Overview Example games (board splitting, chess, Othello) /Max trees

More information

To progress from beginner to intermediate to champion, you have

To progress from beginner to intermediate to champion, you have backgammon is as easy as... By Steve Sax STAR OF CHICAGO Amelia Grace Pascar brightens the Chicago Open directed by her father Rory Pascar. She's attended tournaments there from a young age. To progress

More information

CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5

CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5 CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5 Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Topics Game playing Game trees

More information

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter , 5.7,5.8

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter , 5.7,5.8 ADVERSARIAL SEARCH Today Reading AIMA Chapter 5.1-5.5, 5.7,5.8 Goals Introduce adversarial games Minimax as an optimal strategy Alpha-beta pruning (Real-time decisions) 1 Questions to ask Were there any

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic So far we assumed a single-agent environment, but what if there are more agents and

More information

5.4 Imperfect, Real-Time Decisions

5.4 Imperfect, Real-Time Decisions 116 5.4 Imperfect, Real-Time Decisions Searching through the whole (pruned) game tree is too inefficient for any realistic game Moves must be made in a reasonable amount of time One has to cut off the

More information

COMP219: Artificial Intelligence. Lecture 13: Game Playing

COMP219: Artificial Intelligence. Lecture 13: Game Playing CMP219: Artificial Intelligence Lecture 13: Game Playing 1 verview Last time Search with partial/no observations Belief states Incremental belief state search Determinism vs non-determinism Today We will

More information

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel Foundations of AI 6. Adversarial Search Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard & Bernhard Nebel Contents Game Theory Board Games Minimax Search Alpha-Beta Search

More information

Pengju

Pengju Introduction to AI Chapter05 Adversarial Search: Game Playing Pengju Ren@IAIR Outline Types of Games Formulation of games Perfect-Information Games Minimax and Negamax search α-β Pruning Pruning more Imperfect

More information

Contents. Foundations of Artificial Intelligence. Problems. Why Board Games?

Contents. Foundations of Artificial Intelligence. Problems. Why Board Games? Contents Foundations of Artificial Intelligence 6. Board Games Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller Albert-Ludwigs-Universität

More information

Adversarial Search. CMPSCI 383 September 29, 2011

Adversarial Search. CMPSCI 383 September 29, 2011 Adversarial Search CMPSCI 383 September 29, 2011 1 Why are games interesting to AI? Simple to represent and reason about Must consider the moves of an adversary Time constraints Russell & Norvig say: Games,

More information

Announcements. CS 188: Artificial Intelligence Spring Game Playing State-of-the-Art. Overview. Game Playing. GamesCrafters

Announcements. CS 188: Artificial Intelligence Spring Game Playing State-of-the-Art. Overview. Game Playing. GamesCrafters CS 188: Artificial Intelligence Spring 2011 Announcements W1 out and due Monday 4:59pm P2 out and due next week Friday 4:59pm Lecture 7: Mini and Alpha-Beta Search 2/9/2011 Pieter Abbeel UC Berkeley Many

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 7: Minimax and Alpha-Beta Search 2/9/2011 Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein 1 Announcements W1 out and due Monday 4:59pm P2

More information

Adversarial Search Lecture 7

Adversarial Search Lecture 7 Lecture 7 How can we use search to plan ahead when other agents are planning against us? 1 Agenda Games: context, history Searching via Minimax Scaling α β pruning Depth-limiting Evaluation functions Handling

More information

5.4 Imperfect, Real-Time Decisions

5.4 Imperfect, Real-Time Decisions 5.4 Imperfect, Real-Time Decisions Searching through the whole (pruned) game tree is too inefficient for any realistic game Moves must be made in a reasonable amount of time One has to cut off the generation

More information

CS 387: GAME AI BOARD GAMES

CS 387: GAME AI BOARD GAMES CS 387: GAME AI BOARD GAMES 5/28/2015 Instructor: Santiago Ontañón santi@cs.drexel.edu Class website: https://www.cs.drexel.edu/~santi/teaching/2015/cs387/intro.html Reminders Check BBVista site for the

More information

Chess: The Ultimate Guide To Chess Tactics & Great Openings, Chess Strategies, Turn Chess Pro From Beginner, Be A Chess Master And Dominate Every

Chess: The Ultimate Guide To Chess Tactics & Great Openings, Chess Strategies, Turn Chess Pro From Beginner, Be A Chess Master And Dominate Every Chess: The Ultimate Guide To Chess Tactics & Great Openings, Chess Strategies, Turn Chess Pro From Beginner, Be A Chess Master And Dominate Every Game!... Checkmate, Checkers, Puzzles& Games) Download

More information

Texas Hold em Inference Bot Proposal. By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005

Texas Hold em Inference Bot Proposal. By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005 Texas Hold em Inference Bot Proposal By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005 1 Introduction One of the key goals in Artificial Intelligence is to create cognitive systems that

More information

DELUXE 3 IN 1 GAME SET

DELUXE 3 IN 1 GAME SET Chess, Checkers and Backgammon August 2012 UPC Code 7-19265-51276-9 HOW TO PLAY CHESS Chess Includes: 16 Dark Chess Pieces 16 Light Chess Pieces Board Start Up Chess is a game played by two players. One

More information

Data Analysis and Numerical Occurrence

Data Analysis and Numerical Occurrence Data Analysis and Numerical Occurrence Directions This game is for two players. Each player receives twelve counters to be placed on the game board. The arrangement of the counters is completely up to

More information

The Game of Hog. Scott Lee

The Game of Hog. Scott Lee The Game of Hog Scott Lee The Game 100 The Game 100 The Game 100 The Game 100 The Game Pig Out: If any of the dice outcomes is a 1, the current player's score for the turn is the number of 1's rolled.

More information

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search CSE 473: Artificial Intelligence Fall 2017 Adversarial Search Mini, pruning, Expecti Dieter Fox Based on slides adapted Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Dan Weld, Stuart Russell or Andrew Moore

More information

Presentation by Toy Designers: Max Ashley

Presentation by Toy Designers: Max Ashley A new game for your toy company Presentation by Toy Designers: Shawntee Max Ashley As game designers, we believe that the new game for your company should: Be equally likely, giving each player an equal

More information

Training a Back-Propagation Network with Temporal Difference Learning and a database for the board game Pente

Training a Back-Propagation Network with Temporal Difference Learning and a database for the board game Pente Training a Back-Propagation Network with Temporal Difference Learning and a database for the board game Pente Valentijn Muijrers 3275183 Valentijn.Muijrers@phil.uu.nl Supervisor: Gerard Vreeswijk 7,5 ECTS

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificial Intelligence Spring 2007 Lecture 7: CSP-II and Adversarial Search 2/6/2007 Srini Narayanan ICSI and UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell or

More information

Adversarial Search and Game Playing

Adversarial Search and Game Playing Games Adversarial Search and Game Playing Russell and Norvig, 3 rd edition, Ch. 5 Games: multi-agent environment q What do other agents do and how do they affect our success? q Cooperative vs. competitive

More information

CS440/ECE448 Lecture 9: Minimax Search. Slides by Svetlana Lazebnik 9/2016 Modified by Mark Hasegawa-Johnson 9/2017

CS440/ECE448 Lecture 9: Minimax Search. Slides by Svetlana Lazebnik 9/2016 Modified by Mark Hasegawa-Johnson 9/2017 CS440/ECE448 Lecture 9: Minimax Search Slides by Svetlana Lazebnik 9/2016 Modified by Mark Hasegawa-Johnson 9/2017 Why study games? Games are a traditional hallmark of intelligence Games are easy to formalize

More information

Retrograde Analysis of Woodpush

Retrograde Analysis of Woodpush Retrograde Analysis of Woodpush Tristan Cazenave 1 and Richard J. Nowakowski 2 1 LAMSADE Université Paris-Dauphine Paris France cazenave@lamsade.dauphine.fr 2 Dept. of Mathematics and Statistics Dalhousie

More information

Universiteit Leiden Computer Science

Universiteit Leiden Computer Science Universiteit Leiden Computer Science Retrograde Analysis and Proof Number Search Applied to Jungle Checkers Name: Michiel Sebastiaan Vos Date: 24/02/2016 1st supervisor: Prof. Dr. A. (Aske) Plaat 2nd supervisor:

More information