Repeated Games. Economics Microeconomic Theory II: Strategic Behavior. Shih En Lu. Simon Fraser University (with thanks to Anke Kessler)

Size: px
Start display at page:

Download "Repeated Games. Economics Microeconomic Theory II: Strategic Behavior. Shih En Lu. Simon Fraser University (with thanks to Anke Kessler)"

Transcription

1 Repeated Games Economics Microeconomic Theory II: Strategic Behavior Shih En Lu Simon Fraser University (with thanks to Anke Kessler) ECON 302 (SFU) Repeated Games 1 / 25

2 Topics 1 Information Sets and Game Trees 2 Subgames in Repeated Games 3 Time Discounting 4 Equilibrium in Repeated Games 5 Some Strategies in the Repeated Prisoner s Dilemma ECON 302 (SFU) Repeated Games 2 / 25

3 Most Important Things to Learn 1 Know what an "information set" is, and be able to draw a game tree even if the game does not have perfect information. 2 Know what a "subgame" is in a repeated game. 3 How to work with discount factors 4 Understand why, in a repeated game, a NE of the stage game might not have to be played in all stages. 5 Understand the similarities and differences between finitely and infinitely repeated games. 6 Know what "grim trigger" and "tit-for-tat" strategies entail. 7 How to find conditions on the discount factor for cooperation to be sustainable in a prisoner s dilemma. ECON 302 (SFU) Repeated Games 3 / 25

4 Introduction to Repeated Games Games formed by playing a stage game over and over again. Much studied due to numerous applications: competition (and potential collusion) in an oligopoly, customer relations, cleaning a shared apartment, etc. We will focus on SPEs (and not worry too much about other NEs) of repeated games where: the stage game has simultaneous moves, and actions are perfectly observed after each stage. 1 Finitely many stages, unique NE in stage game 2 Infinitely many stages, unique NE in stage game 3 Finitely many stages, multiple NEs in stage game ECON 302 (SFU) Repeated Games 4 / 25

5 Perfect Information? Recall the definition of SPE: strategy profile where a Nash equilibrium is played in every subgame. We ve defined "subgame" for games of perfect information. But are repeated games such games? Usually not! In fact, as long as there are at least two players, any game where the players sometimes play simultaneously doesn t have perfect information. Therefore, we need to use a more general definition of subgames. First step: How to draw a game tree if a game doesn t have perfect information? For example, in a prisoner s dilemma? Cooperate Defect Cooperate -1,-1-10,0 Defect 0,-10-8,-8 ECON 302 (SFU) Repeated Games 5 / 25

6 Information Set An information set is a set of nodes where: 1 the same player is acting at all nodes in the set; and 2 the player that is acting knows that she is at the information set, but cannot distinguish between the nodes within the information set. Note: If a player knows that she is at a particular node, then that node is the only element in its information set. Now, a player s strategy must specify a course of action for each information set (rather than each node) where he/she acts: you can t play differently at nodes that you can t tell apart! ECON 302 (SFU) Repeated Games 6 / 25

7 Example 1 Player 1 first plays Top, Middle or Bottom. Player 2 only finds out whether player 1 has played Bottom. If so, he plays Left or Right; if not, he plays In or Out Let s draw the game tree. ECON 302 (SFU) Repeated Games 7 / 25

8 Example 2 Players 1 and 2 first simultaneously pick Big or Small. They observe each other s choice, and then again simultaneously pick Big or Small. Let s draw a partial game tree. If you were to draw the whole game tree, how many terminal nodes (i.e. outcomes) would there be? What if there are 3 possible actions each time (e.g. Big, Middle, Small)? What if they pick Big or Small k times instead of two? ECON 302 (SFU) Repeated Games 8 / 25

9 Subgames in Repeated Games Subgames are parts of the game tree can stand alone as a game. For the full definition, see the Supplementary Material at the end of this set of slides. For repeated games, a subgame starts with a single node at the beginning of a stage, and includes everything following that node, up to the end of the game tree. Why can t it start with some other node? How many subgames are there in Example 2? ECON 302 (SFU) Repeated Games 9 / 25

10 Discount Factors (I) Often, stages correspond to time periods, and the payoffs from each stage are realized at the end of the stage (rather than the end of the game). How can we derive the payoffs for each outcome of the whole game from the payoffs within each stage? We need to know the relative value of payoffs from different time periods. Definition: The discount factor between periods t and t + 1 is the value of a unit of payoff in period t + 1 relative to the value of a unit of payoff in period t. Assumption: For a given player, the discount factor between periods t and t + 1 is the same for all t. The discount factor is often denoted δ (or β). This implies that the "present discounted value" of a unit of payoff n periods from today is δ n. That is, we assume exponential discounting. ECON 302 (SFU) Repeated Games 10 / 25

11 Discount Factors (II) We will usually assume δ [0, 1). People are impatient. You have a small chance of dying each day. Firms (whose payoffs are usually assumed to be their profits) can invest $1 today to get more than $1 (on average) tomorrow. If a player has discount factor δ and a payoff stream u 0, u 1, u 2,... in periods 0, 1, 2,..., then the value of that payoff stream from period 0 s point of view is: δ t u t = u 0 + δu 1 + δ 2 u t=0 Aside: Exponential discounting is a common assumption in economics, but there is evidence that on top of it, people place an extra premium on present payoffs. Search for "hyperbolic discounting" and "behavioral economics" for more information. ECON 302 (SFU) Repeated Games 11 / 25

12 Finitely Repeated Games with Unique NE in Stage Game (I) Let s go back to the prisoner s dilemma: Cooperate Defect Cooperate -1,-1-10,0 Defect 0,-10-8,-8 Unique NE is (Defect, Defect). Suppose the game is played twice, and players have discount factor δ. Let s draw the (incomplete) game tree. In SPE, what must happen in the last stage? So what will players do in the first stage? ECON 302 (SFU) Repeated Games 12 / 25

13 Finitely Repeated Games with Unique NE in Stage Game (II) This reasoning applies whenever a stage game has just one NE, and whenever the number of stages is finite. In SPE, in the last stage, the unique stage-game NE must be played no matter what happened in earlier stages ("history"). But given that, what players do in the second-to-last stage does not impact what happens in the last stage. Therefore, the stage game s NE must be played in the second-to-last stage: no player has a reason not to play a best response. Can keep going with this reasoning. Conclusion: When a stage game with a unique NE is repeated finitely many times, the repeated game has a unique SPE where the stage game s NE is played at each stage, regardless of history. ECON 302 (SFU) Repeated Games 13 / 25

14 Mathematical Reminder Suppose you have discount factor δ [0, 1), and you get a payoff of K in every period starting today. What is the total present value of that payoff stream? x = K + K δ + K δ Note that xδ = K δ + K δ 2 + K δ = x K. Thus, x = K 1 δ. Note: Can t do this when x is infinite, i.e. when δ 1. ECON 302 (SFU) Repeated Games 14 / 25

15 Infinitely Repeated Games Doesn t mean that game never ends. But there is no time where it ends for sure. Discount factor captures probability of game ending at each period in addition to impatience. Useful for thinking about many kinds of interactions: personal, professional, between organizations, etc. Sometimes called "supergames." There are infinitely many subgames, and they all look the same! ECON 302 (SFU) Repeated Games 15 / 25

16 Repeated Prisoner s Dilemma C D C -1,-1-10,0 D 0,-10-8,-8 When this game is finitely repeated, what is the SPE? When the game is infinitely repeated, is (D, D) every period still an SPE? As we will see, many other SPEs may be possible: there is no last period where (D, D) has to happen. Can be viewed as model of duopoly: "C" might be "Produce half the monopoly quantity" and "D" might be "Produce the Cournot quantity." ECON 302 (SFU) Repeated Games 16 / 25

17 Grim Trigger Strategy (I) One way to provide incentives for cooperation is to use the grim trigger strategy. "Play C in the first period. Then play C if the outcome of all previous stages was (C, C) (i.e. the "history" is "(C, C) every period"); otherwise, play D." The grim strategy of defecting is triggered by any previous defection, including own defections. Is a strategy profile where both players use this strategy subgame-perfect? Clearly, it is subgame-perfect in subgames where players always play D. ECON 302 (SFU) Repeated Games 17 / 25

18 Grim Trigger Strategy (II) In subgames where players play C, we need to check that they aren t better off playing a different strategy. Payoff from playing according to profile: 1 1 δ. If they deviate and play D, their opponent will play D forever, in which case their best response is to play D forever. Best possible payoff from deviation: 0 + δ 8 1 δ. Thus, for following Grim Trigger to be optimal, we need: 1 1 δ 8δ 1 δ δ 1 8 ECON 302 (SFU) Repeated Games 18 / 25

19 Exercise Consider the following game, and assume that both players have discount factor δ: Left Right Top 6,10-1,14 Bottom 8,-1 0,0 Describe the grim trigger strategy. For what values of δ does both players using a grim trigger constitute a SPE? ECON 302 (SFU) Repeated Games 19 / 25

20 Tit-for-Tat Strategy Another strategy that may sustain cooperation in a prisoner s dilemma is "tit-for-tat." "Play C in the first period. Then play the opponent s action in the previous period." Are incentives to cooperate stronger or weaker than under grim trigger? But forgiving may be useful in a world where people make mistakes, or where observed outcomes imperfectly correlate with unobserved actions. Note: even when players are very patient (δ close to 1), both playing tit-for-tat usually does not form an SPE because you may be better off playing C even when your opponent played D in the previous period. But it will form a NE if the payoffs and δ are such that a one-period punishment is suffi cient. ECON 302 (SFU) Repeated Games 20 / 25

21 Recap of Repeated Games with Unique NE in Stage Game If finitely repeated, in SPE, unique NE of stage game must be played at each stage, regardless of history. If infinitely repeated, there is no last stage where, in SPE, players have to play the NE of the stage game. This means that even when the stage game has a unique NE, there can be SPE where the stage-game NE is not always played. Specifically, players may not maximize their current-stage payoff because their actions may impact play in future stages. For example, in the prisoner s dilemma, when δ is high enough, there exists a SPE where the outcome is cooperation in every period. This result can be generalized to other games: if an outcome is better for all players than a NE of the stage game, then when δ is high enough, that outcome can be sustained in SPE. This is (a weak version of) the "Folk Theorem." High δ, i.e. patience, is important: for players not to play the action that maximizes their current-stage payoff, they need to care enough about the future to play another action. ECON 302 (SFU) Repeated Games 21 / 25

22 Finitely Repeated Games with Multiple NEs in Stage Game It s still true that an NE must be played in the last stage. But now, which NE is played can depend on what has happened before. Example: if a NE of the stage game Pareto dominates another one, then players might play the "good" NE if they have never deviated, and the "bad" NE otherwise. This gives an incentive not to deviate in earlier period(s). If the incentive is strong enough and players are patient enough, might not play a NE of the stage game in earlier period(s). (Note that this is allowed in SPE: any stage game but the last one, taken by itself, is NOT a subgame.) Reasoning much like in infinitely repeated games, with the difference that a NE must be played in the last period. ECON 302 (SFU) Repeated Games 22 / 25

23 Example (Required Reading if Not Covered in Class) Suppose that the following stage game is played twice, and the discount factor is 1: Nice Mean Polite 5,0 0,0 Rude 6,-1 1,-1 Note that there are two pure-strategy NEs in the stage game: (Rude, Nice) and (Rude, Mean). Convince yourself that the following is an SPE, even though (Polite, Nice), which is not a stage-game NE, is played in stage 1: 1 Player 1: In stage 1, Polite; in stage 2, Rude 2 Player 2: In stage 1, Nice; in stage 2, Nice if player 1 was polite in stage 1, Mean if player 1 was rude in stage 1 What if the discount factor is 0.1 instead? ECON 302 (SFU) Repeated Games 23 / 25

24 Supplementary Material: General Definition of Subgames (I) Definition: A node h s successors are all the nodes after h, all the way to the terminal nodes (end of the game tree). Definition: Suppose you have a game G. A subgame of G consists of the part of the extensive form of G containing a single non-terminal node and all its successors with the property that every information set of G is either entirely inside or entirely outside that set of nodes. The last part of the definition can be rephrased: no information set of G contains both nodes inside and nodes outside of a subgame. ECON 302 (SFU) Repeated Games 24 / 25

25 Supplementary Material: General Definition of Subgames (II) Way to remember the definition: think of information sets as spider webs. Subgames are parts of the tree (except for terminal nodes) that you can detach by snapping a single branch and without tearing a web. Note: The whole game is always a subgame. To solve for SPE, do what we have been doing! Start with the small subgames toward the end of the tree, and work backwards. As you work backwards, you will be solving bigger and bigger subgames. Backward induction is a special case of this procedure: in games of perfect information, every non-terminal node and its successors are a subgame. ECON 302 (SFU) Repeated Games 25 / 25

Backward Induction and Stackelberg Competition

Backward Induction and Stackelberg Competition Backward Induction and Stackelberg Competition Economics 302 - Microeconomic Theory II: Strategic Behavior Shih En Lu Simon Fraser University (with thanks to Anke Kessler) ECON 302 (SFU) Backward Induction

More information

Strategies and Game Theory

Strategies and Game Theory Strategies and Game Theory Prof. Hongbin Cai Department of Applied Economics Guanghua School of Management Peking University March 31, 2009 Lecture 7: Repeated Game 1 Introduction 2 Finite Repeated Game

More information

Games of Perfect Information and Backward Induction

Games of Perfect Information and Backward Induction Games of Perfect Information and Backward Induction Economics 282 - Introduction to Game Theory Shih En Lu Simon Fraser University ECON 282 (SFU) Perfect Info and Backward Induction 1 / 14 Topics 1 Basic

More information

ECON 282 Final Practice Problems

ECON 282 Final Practice Problems ECON 282 Final Practice Problems S. Lu Multiple Choice Questions Note: The presence of these practice questions does not imply that there will be any multiple choice questions on the final exam. 1. How

More information

Lecture 7. Repeated Games

Lecture 7. Repeated Games ecture 7 epeated Games 1 Outline of ecture: I Description and analysis of finitely repeated games. Example of a finitely repeated game with a unique equilibrium A general theorem on finitely repeated games.

More information

14.12 Game Theory Lecture Notes Lectures 10-11

14.12 Game Theory Lecture Notes Lectures 10-11 4.2 Game Theory Lecture Notes Lectures 0- Muhamet Yildiz Repeated Games In these notes, we ll discuss the repeated games, the games where a particular smaller game is repeated; the small game is called

More information

U strictly dominates D for player A, and L strictly dominates R for player B. This leaves (U, L) as a Strict Dominant Strategy Equilibrium.

U strictly dominates D for player A, and L strictly dominates R for player B. This leaves (U, L) as a Strict Dominant Strategy Equilibrium. Problem Set 3 (Game Theory) Do five of nine. 1. Games in Strategic Form Underline all best responses, then perform iterated deletion of strictly dominated strategies. In each case, do you get a unique

More information

Multiagent Systems: Intro to Game Theory. CS 486/686: Introduction to Artificial Intelligence

Multiagent Systems: Intro to Game Theory. CS 486/686: Introduction to Artificial Intelligence Multiagent Systems: Intro to Game Theory CS 486/686: Introduction to Artificial Intelligence 1 Introduction So far almost everything we have looked at has been in a single-agent setting Today - Multiagent

More information

3 Game Theory II: Sequential-Move and Repeated Games

3 Game Theory II: Sequential-Move and Repeated Games 3 Game Theory II: Sequential-Move and Repeated Games Recognizing that the contributions you make to a shared computer cluster today will be known to other participants tomorrow, you wonder how that affects

More information

The extensive form representation of a game

The extensive form representation of a game The extensive form representation of a game Nodes, information sets Perfect and imperfect information Addition of random moves of nature (to model uncertainty not related with decisions of other players).

More information

Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016

Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016 Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016 1 Games in extensive form So far, we have only considered games where players

More information

ECON 312: Games and Strategy 1. Industrial Organization Games and Strategy

ECON 312: Games and Strategy 1. Industrial Organization Games and Strategy ECON 312: Games and Strategy 1 Industrial Organization Games and Strategy A Game is a stylized model that depicts situation of strategic behavior, where the payoff for one agent depends on its own actions

More information

Games in Extensive Form, Backward Induction, and Subgame Perfection:

Games in Extensive Form, Backward Induction, and Subgame Perfection: Econ 460 Game Theory Assignment 4 Games in Extensive Form, Backward Induction, Subgame Perfection (Ch. 14,15), Bargaining (Ch. 19), Finitely Repeated Games (Ch. 22) Games in Extensive Form, Backward Induction,

More information

International Economics B 2. Basics in noncooperative game theory

International Economics B 2. Basics in noncooperative game theory International Economics B 2 Basics in noncooperative game theory Akihiko Yanase (Graduate School of Economics) October 11, 2016 1 / 34 What is game theory? Basic concepts in noncooperative game theory

More information

Repeated games. Felix Munoz-Garcia. Strategy and Game Theory - Washington State University

Repeated games. Felix Munoz-Garcia. Strategy and Game Theory - Washington State University Repeated games Felix Munoz-Garcia Strategy and Game Theory - Washington State University Repeated games are very usual in real life: 1 Treasury bill auctions (some of them are organized monthly, but some

More information

Repeated Games. ISCI 330 Lecture 16. March 13, Repeated Games ISCI 330 Lecture 16, Slide 1

Repeated Games. ISCI 330 Lecture 16. March 13, Repeated Games ISCI 330 Lecture 16, Slide 1 Repeated Games ISCI 330 Lecture 16 March 13, 2007 Repeated Games ISCI 330 Lecture 16, Slide 1 Lecture Overview Repeated Games ISCI 330 Lecture 16, Slide 2 Intro Up to this point, in our discussion of extensive-form

More information

ECON 301: Game Theory 1. Intermediate Microeconomics II, ECON 301. Game Theory: An Introduction & Some Applications

ECON 301: Game Theory 1. Intermediate Microeconomics II, ECON 301. Game Theory: An Introduction & Some Applications ECON 301: Game Theory 1 Intermediate Microeconomics II, ECON 301 Game Theory: An Introduction & Some Applications You have been introduced briefly regarding how firms within an Oligopoly interacts strategically

More information

Economics 201A - Section 5

Economics 201A - Section 5 UC Berkeley Fall 2007 Economics 201A - Section 5 Marina Halac 1 What we learnt this week Basics: subgame, continuation strategy Classes of games: finitely repeated games Solution concepts: subgame perfect

More information

Non-Cooperative Game Theory

Non-Cooperative Game Theory Notes on Microeconomic Theory IV 3º - LE-: 008-009 Iñaki Aguirre epartamento de Fundamentos del Análisis Económico I Universidad del País Vasco An introduction to. Introduction.. asic notions.. Extensive

More information

Appendix A A Primer in Game Theory

Appendix A A Primer in Game Theory Appendix A A Primer in Game Theory This presentation of the main ideas and concepts of game theory required to understand the discussion in this book is intended for readers without previous exposure to

More information

final examination on May 31 Topics from the latter part of the course (covered in homework assignments 4-7) include:

final examination on May 31 Topics from the latter part of the course (covered in homework assignments 4-7) include: The final examination on May 31 may test topics from any part of the course, but the emphasis will be on topic after the first three homework assignments, which were covered in the midterm. Topics from

More information

CS510 \ Lecture Ariel Stolerman

CS510 \ Lecture Ariel Stolerman CS510 \ Lecture04 2012-10-15 1 Ariel Stolerman Administration Assignment 2: just a programming assignment. Midterm: posted by next week (5), will cover: o Lectures o Readings A midterm review sheet will

More information

ECON 2100 Principles of Microeconomics (Summer 2016) Game Theory and Oligopoly

ECON 2100 Principles of Microeconomics (Summer 2016) Game Theory and Oligopoly ECON 2100 Principles of Microeconomics (Summer 2016) Game Theory and Oligopoly Relevant readings from the textbook: Mankiw, Ch. 17 Oligopoly Suggested problems from the textbook: Chapter 17 Questions for

More information

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 6 Games and Strategy (ch.4)-continue

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 6 Games and Strategy (ch.4)-continue Introduction to Industrial Organization Professor: Caixia Shen Fall 014 Lecture Note 6 Games and Strategy (ch.4)-continue Outline: Modeling by means of games Normal form games Dominant strategies; dominated

More information

Dynamic games: Backward induction and subgame perfection

Dynamic games: Backward induction and subgame perfection Dynamic games: Backward induction and subgame perfection ectures in Game Theory Fall 04, ecture 3 0.0.04 Daniel Spiro, ECON300/400 ecture 3 Recall the extensive form: It specifies Players: {,..., i,...,

More information

Advanced Microeconomics: Game Theory

Advanced Microeconomics: Game Theory Advanced Microeconomics: Game Theory P. v. Mouche Wageningen University 2018 Outline 1 Motivation 2 Games in strategic form 3 Games in extensive form What is game theory? Traditional game theory deals

More information

Sequential Games When there is a sufficient lag between strategy choices our previous assumption of simultaneous moves may not be realistic. In these

Sequential Games When there is a sufficient lag between strategy choices our previous assumption of simultaneous moves may not be realistic. In these When there is a sufficient lag between strategy choices our previous assumption of simultaneous moves may not be realistic. In these settings, the assumption of sequential decision making is more realistic.

More information

Session Outline. Application of Game Theory in Economics. Prof. Trupti Mishra, School of Management, IIT Bombay

Session Outline. Application of Game Theory in Economics. Prof. Trupti Mishra, School of Management, IIT Bombay 36 : Game Theory 1 Session Outline Application of Game Theory in Economics Nash Equilibrium It proposes a strategy for each player such that no player has the incentive to change its action unilaterally,

More information

February 11, 2015 :1 +0 (1 ) = :2 + 1 (1 ) =3 1. is preferred to R iff

February 11, 2015 :1 +0 (1 ) = :2 + 1 (1 ) =3 1. is preferred to R iff February 11, 2015 Example 60 Here s a problem that was on the 2014 midterm: Determine all weak perfect Bayesian-Nash equilibria of the following game. Let denote the probability that I assigns to being

More information

Microeconomics of Banking: Lecture 4

Microeconomics of Banking: Lecture 4 Microeconomics of Banking: Lecture 4 Prof. Ronaldo CARPIO Oct. 16, 2015 Administrative Stuff Homework 1 is due today at the end of class. I will upload the solutions and Homework 2 (due in two weeks) later

More information

EconS Sequential Move Games

EconS Sequential Move Games EconS 425 - Sequential Move Games Eric Dunaway Washington State University eric.dunaway@wsu.edu Industrial Organization Eric Dunaway (WSU) EconS 425 Industrial Organization 1 / 57 Introduction Today, we

More information

CHAPTER LEARNING OUTCOMES. By the end of this section, students will be able to:

CHAPTER LEARNING OUTCOMES. By the end of this section, students will be able to: CHAPTER 4 4.1 LEARNING OUTCOMES By the end of this section, students will be able to: Understand what is meant by a Bayesian Nash Equilibrium (BNE) Calculate the BNE in a Cournot game with incomplete information

More information

Game Theory. Wolfgang Frimmel. Dominance

Game Theory. Wolfgang Frimmel. Dominance Game Theory Wolfgang Frimmel Dominance 1 / 13 Example: Prisoners dilemma Consider the following game in normal-form: There are two players who both have the options cooperate (C) and defect (D) Both players

More information

Multiagent Systems: Intro to Game Theory. CS 486/686: Introduction to Artificial Intelligence

Multiagent Systems: Intro to Game Theory. CS 486/686: Introduction to Artificial Intelligence Multiagent Systems: Intro to Game Theory CS 486/686: Introduction to Artificial Intelligence 1 1 Introduction So far almost everything we have looked at has been in a single-agent setting Today - Multiagent

More information

Game Theory. Wolfgang Frimmel. Subgame Perfect Nash Equilibrium

Game Theory. Wolfgang Frimmel. Subgame Perfect Nash Equilibrium Game Theory Wolfgang Frimmel Subgame Perfect Nash Equilibrium / Dynamic games of perfect information We now start analyzing dynamic games Strategic games suppress the sequential structure of decision-making

More information

Game Theory -- Lecture 6. Patrick Loiseau EURECOM Fall 2016

Game Theory -- Lecture 6. Patrick Loiseau EURECOM Fall 2016 Game Theory -- Lecture 6 Patrick Loiseau EURECOM Fall 06 Outline. Stackelberg duopoly and the first mover s advantage. Formal definitions 3. Bargaining and discounted payoffs Outline. Stackelberg duopoly

More information

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition SF2972: Game theory Mark Voorneveld, mark.voorneveld@hhs.se Topic 1: defining games and strategies Drawing a game tree is usually the most informative way to represent an extensive form game. Here is one

More information

Extensive Form Games. Mihai Manea MIT

Extensive Form Games. Mihai Manea MIT Extensive Form Games Mihai Manea MIT Extensive-Form Games N: finite set of players; nature is player 0 N tree: order of moves payoffs for every player at the terminal nodes information partition actions

More information

(a) Left Right (b) Left Right. Up Up 5-4. Row Down 0-5 Row Down 1 2. (c) B1 B2 (d) B1 B2 A1 4, 2-5, 6 A1 3, 2 0, 1

(a) Left Right (b) Left Right. Up Up 5-4. Row Down 0-5 Row Down 1 2. (c) B1 B2 (d) B1 B2 A1 4, 2-5, 6 A1 3, 2 0, 1 Economics 109 Practice Problems 2, Vincent Crawford, Spring 2002 In addition to these problems and those in Practice Problems 1 and the midterm, you may find the problems in Dixit and Skeath, Games of

More information

Extensive-Form Games with Perfect Information

Extensive-Form Games with Perfect Information Extensive-Form Games with Perfect Information Yiling Chen September 22, 2008 CS286r Fall 08 Extensive-Form Games with Perfect Information 1 Logistics In this unit, we cover 5.1 of the SLB book. Problem

More information

Strategic Bargaining. This is page 1 Printer: Opaq

Strategic Bargaining. This is page 1 Printer: Opaq 16 This is page 1 Printer: Opaq Strategic Bargaining The strength of the framework we have developed so far, be it normal form or extensive form games, is that almost any well structured game can be presented

More information

Game Theory Refresher. Muriel Niederle. February 3, A set of players (here for simplicity only 2 players, all generalized to N players).

Game Theory Refresher. Muriel Niederle. February 3, A set of players (here for simplicity only 2 players, all generalized to N players). Game Theory Refresher Muriel Niederle February 3, 2009 1. Definition of a Game We start by rst de ning what a game is. A game consists of: A set of players (here for simplicity only 2 players, all generalized

More information

Imperfect Information Extensive Form Games

Imperfect Information Extensive Form Games Imperfect Information Extensive Form Games ISCI 330 Lecture 15 March 6, 2007 Imperfect Information Extensive Form Games ISCI 330 Lecture 15, Slide 1 Lecture Overview 1 Recap 2 Imperfect Information Extensive

More information

Advanced Microeconomics (Economics 104) Spring 2011 Strategic games I

Advanced Microeconomics (Economics 104) Spring 2011 Strategic games I Advanced Microeconomics (Economics 104) Spring 2011 Strategic games I Topics The required readings for this part is O chapter 2 and further readings are OR 2.1-2.3. The prerequisites are the Introduction

More information

Chapter 13. Game Theory

Chapter 13. Game Theory Chapter 13 Game Theory A camper awakens to the growl of a hungry bear and sees his friend putting on a pair of running shoes. You can t outrun a bear, scoffs the camper. His friend coolly replies, I don

More information

1\2 L m R M 2, 2 1, 1 0, 0 B 1, 0 0, 0 1, 1

1\2 L m R M 2, 2 1, 1 0, 0 B 1, 0 0, 0 1, 1 Chapter 1 Introduction Game Theory is a misnomer for Multiperson Decision Theory. It develops tools, methods, and language that allow a coherent analysis of the decision-making processes when there are

More information

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi CSCI 699: Topics in Learning and Game Theory Fall 217 Lecture 3: Intro to Game Theory Instructor: Shaddin Dughmi Outline 1 Introduction 2 Games of Complete Information 3 Games of Incomplete Information

More information

Computational Methods for Non-Cooperative Game Theory

Computational Methods for Non-Cooperative Game Theory Computational Methods for Non-Cooperative Game Theory What is a game? Introduction A game is a decision problem in which there a multiple decision makers, each with pay-off interdependence Each decisions

More information

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility theorem (consistent decisions under uncertainty should

More information

Introduction to Game Theory I

Introduction to Game Theory I Nicola Dimitri University of Siena (Italy) Rome March-April 2014 Introduction to Game Theory 1/3 Game Theory (GT) is a tool-box useful to understand how rational people choose in situations of Strategic

More information

Minmax and Dominance

Minmax and Dominance Minmax and Dominance CPSC 532A Lecture 6 September 28, 2006 Minmax and Dominance CPSC 532A Lecture 6, Slide 1 Lecture Overview Recap Maxmin and Minmax Linear Programming Computing Fun Game Domination Minmax

More information

DYNAMIC GAMES. Lecture 6

DYNAMIC GAMES. Lecture 6 DYNAMIC GAMES Lecture 6 Revision Dynamic game: Set of players: Terminal histories: all possible sequences of actions in the game Player function: function that assigns a player to every proper subhistory

More information

Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination. Game Theory Week 3. Kevin Leyton-Brown

Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination. Game Theory Week 3. Kevin Leyton-Brown Game Theory Week 3 Kevin Leyton-Brown Game Theory Week 3 Kevin Leyton-Brown, Slide 1 Lecture Overview 1 Domination 2 Rationalizability 3 Correlated Equilibrium 4 Computing CE 5 Computational problems in

More information

The book goes through a lot of this stuff in a more technical sense. I ll try to be plain and clear about it.

The book goes through a lot of this stuff in a more technical sense. I ll try to be plain and clear about it. Economics 352: Intermediate Microeconomics Notes and Sample Questions Chapter 15: Game Theory Models of Pricing The book goes through a lot of this stuff in a more technical sense. I ll try to be plain

More information

2. The Extensive Form of a Game

2. The Extensive Form of a Game 2. The Extensive Form of a Game In the extensive form, games are sequential, interactive processes which moves from one position to another in response to the wills of the players or the whims of chance.

More information

Extensive Games with Perfect Information. Start by restricting attention to games without simultaneous moves and without nature (no randomness).

Extensive Games with Perfect Information. Start by restricting attention to games without simultaneous moves and without nature (no randomness). Extensive Games with Perfect Information There is perfect information if each player making a move observes all events that have previously occurred. Start by restricting attention to games without simultaneous

More information

Game Theory ( nd term) Dr. S. Farshad Fatemi. Graduate School of Management and Economics Sharif University of Technology.

Game Theory ( nd term) Dr. S. Farshad Fatemi. Graduate School of Management and Economics Sharif University of Technology. Game Theory 44812 (1393-94 2 nd term) Dr. S. Farshad Fatemi Graduate School of Management and Economics Sharif University of Technology Spring 2015 Dr. S. Farshad Fatemi (GSME) Game Theory Spring 2015

More information

Finite games: finite number of players, finite number of possible actions, finite number of moves. Canusegametreetodepicttheextensiveform.

Finite games: finite number of players, finite number of possible actions, finite number of moves. Canusegametreetodepicttheextensiveform. A game is a formal representation of a situation in which individuals interact in a setting of strategic interdependence. Strategic interdependence each individual s utility depends not only on his own

More information

THEORY: NASH EQUILIBRIUM

THEORY: NASH EQUILIBRIUM THEORY: NASH EQUILIBRIUM 1 The Story Prisoner s Dilemma Two prisoners held in separate rooms. Authorities offer a reduced sentence to each prisoner if he rats out his friend. If a prisoner is ratted out

More information

Dynamic Games: Backward Induction and Subgame Perfection

Dynamic Games: Backward Induction and Subgame Perfection Dynamic Games: Backward Induction and Subgame Perfection Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Jun 22th, 2017 C. Hurtado (UIUC - Economics)

More information

Extensive Form Games: Backward Induction and Imperfect Information Games

Extensive Form Games: Backward Induction and Imperfect Information Games Extensive Form Games: Backward Induction and Imperfect Information Games CPSC 532A Lecture 10 October 12, 2006 Extensive Form Games: Backward Induction and Imperfect Information Games CPSC 532A Lecture

More information

Dynamic Games of Complete Information

Dynamic Games of Complete Information Dynamic Games of Complete Information Dynamic Games of Complete and Perfect Information F. Valognes - Game Theory - Chp 13 1 Outline of dynamic games of complete information Dynamic games of complete information

More information

Multiagent Systems: Intro to Game Theory. CS 486/686: Introduction to Artificial Intelligence

Multiagent Systems: Intro to Game Theory. CS 486/686: Introduction to Artificial Intelligence Multiagent Systems: Intro to Game Theory CS 486/686: Introduction to Artificial Intelligence 1 Introduction So far almost everything we have looked at has been in a single-agent setting Today - Multiagent

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Game Theory

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Game Theory Resource Allocation and Decision Analysis (ECON 8) Spring 4 Foundations of Game Theory Reading: Game Theory (ECON 8 Coursepak, Page 95) Definitions and Concepts: Game Theory study of decision making settings

More information

LECTURE 26: GAME THEORY 1

LECTURE 26: GAME THEORY 1 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 26: GAME THEORY 1 INSTRUCTOR: GIANNI A. DI CARO ICE-CREAM WARS http://youtu.be/jilgxenbk_8 2 GAME THEORY Game theory is the formal study of conflict and cooperation

More information

BS2243 Lecture 3 Strategy and game theory

BS2243 Lecture 3 Strategy and game theory BS2243 Lecture 3 Strategy and game theory Spring 2012 (Dr. Sumon Bhaumik) Based on: Rasmusen, Eric (1992) Games and Information, Oxford, UK and Cambridge, Mass.: Blackwell; Chapters 1 & 2. Games what are

More information

Terry College of Business - ECON 7950

Terry College of Business - ECON 7950 Terry College of Business - ECON 7950 Lecture 5: More on the Hold-Up Problem + Mixed Strategy Equilibria Primary reference: Dixit and Skeath, Games of Strategy, Ch. 5. The Hold Up Problem Let there be

More information

Mohammad Hossein Manshaei 1394

Mohammad Hossein Manshaei 1394 Mohammad Hossein Manshaei manshaei@gmail.com 394 Some Formal Definitions . First Mover or Second Mover?. Zermelo Theorem 3. Perfect Information/Pure Strategy 4. Imperfect Information/Information Set 5.

More information

Partial Answers to the 2005 Final Exam

Partial Answers to the 2005 Final Exam Partial Answers to the 2005 Final Exam Econ 159a/MGT522a Ben Polak Fall 2007 PLEASE NOTE: THESE ARE ROUGH ANSWERS. I WROTE THEM QUICKLY SO I AM CAN'T PROMISE THEY ARE RIGHT! SOMETIMES I HAVE WRIT- TEN

More information

Game Theory: Introduction. Game Theory. Game Theory: Applications. Game Theory: Overview

Game Theory: Introduction. Game Theory. Game Theory: Applications. Game Theory: Overview Game Theory: Introduction Game Theory Game theory A means of modeling strategic behavior Agents act to maximize own welfare Agents understand their actions affect actions of other agents ECON 370: Microeconomic

More information

Econ 302: Microeconomics II - Strategic Behavior. Problem Set #5 June13, 2016

Econ 302: Microeconomics II - Strategic Behavior. Problem Set #5 June13, 2016 Econ 302: Microeconomics II - Strategic Behavior Problem Set #5 June13, 2016 1. T/F/U? Explain and give an example of a game to illustrate your answer. A Nash equilibrium requires that all players are

More information

Game Theory: The Basics. Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943)

Game Theory: The Basics. Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943) Game Theory: The Basics The following is based on Games of Strategy, Dixit and Skeath, 1999. Topic 8 Game Theory Page 1 Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943)

More information

ECO 199 B GAMES OF STRATEGY Spring Term 2004 B February 24 SEQUENTIAL AND SIMULTANEOUS GAMES. Representation Tree Matrix Equilibrium concept

ECO 199 B GAMES OF STRATEGY Spring Term 2004 B February 24 SEQUENTIAL AND SIMULTANEOUS GAMES. Representation Tree Matrix Equilibrium concept CLASSIFICATION ECO 199 B GAMES OF STRATEGY Spring Term 2004 B February 24 SEQUENTIAL AND SIMULTANEOUS GAMES Sequential Games Simultaneous Representation Tree Matrix Equilibrium concept Rollback (subgame

More information

First Prev Next Last Go Back Full Screen Close Quit. Game Theory. Giorgio Fagiolo

First Prev Next Last Go Back Full Screen Close Quit. Game Theory. Giorgio Fagiolo Game Theory Giorgio Fagiolo giorgio.fagiolo@univr.it https://mail.sssup.it/ fagiolo/welcome.html Academic Year 2005-2006 University of Verona Web Resources My homepage: https://mail.sssup.it/~fagiolo/welcome.html

More information

1. Introduction to Game Theory

1. Introduction to Game Theory 1. Introduction to Game Theory What is game theory? Important branch of applied mathematics / economics Eight game theorists have won the Nobel prize, most notably John Nash (subject of Beautiful mind

More information

Signaling Games

Signaling Games 46. Signaling Games 3 This is page Printer: Opaq Building a eputation 3. Driving a Tough Bargain It is very common to use language such as he has a reputation for driving a tough bargain or he s known

More information

8.F The Possibility of Mistakes: Trembling Hand Perfection

8.F The Possibility of Mistakes: Trembling Hand Perfection February 4, 2015 8.F The Possibility of Mistakes: Trembling Hand Perfection back to games of complete information, for the moment refinement: a set of principles that allow one to select among equilibria.

More information

CMU-Q Lecture 20:

CMU-Q Lecture 20: CMU-Q 15-381 Lecture 20: Game Theory I Teacher: Gianni A. Di Caro ICE-CREAM WARS http://youtu.be/jilgxenbk_8 2 GAME THEORY Game theory is the formal study of conflict and cooperation in (rational) multi-agent

More information

ECO 220 Game Theory. Objectives. Agenda. Simultaneous Move Games. Be able to structure a game in normal form Be able to identify a Nash equilibrium

ECO 220 Game Theory. Objectives. Agenda. Simultaneous Move Games. Be able to structure a game in normal form Be able to identify a Nash equilibrium ECO 220 Game Theory Simultaneous Move Games Objectives Be able to structure a game in normal form Be able to identify a Nash equilibrium Agenda Definitions Equilibrium Concepts Dominance Coordination Games

More information

EconS 424- Strategy and Game Theory Reputation and Incomplete information in a public good project How to nd Semi-separating equilibria?

EconS 424- Strategy and Game Theory Reputation and Incomplete information in a public good project How to nd Semi-separating equilibria? EconS 424- Strategy and Game Theory Reputation and Incomplete information in a public good project How to nd Semi-separating equilibria? April 14, 2014 1 A public good game Let us consider the following

More information

Sequential games. Moty Katzman. November 14, 2017

Sequential games. Moty Katzman. November 14, 2017 Sequential games Moty Katzman November 14, 2017 An example Alice and Bob play the following game: Alice goes first and chooses A, B or C. If she chose A, the game ends and both get 0. If she chose B, Bob

More information

Lecture 5: Subgame Perfect Equilibrium. November 1, 2006

Lecture 5: Subgame Perfect Equilibrium. November 1, 2006 Lecture 5: Subgame Perfect Equilibrium November 1, 2006 Osborne: ch 7 How do we analyze extensive form games where there are simultaneous moves? Example: Stage 1. Player 1 chooses between fin,outg If OUT,

More information

This is Games and Strategic Behavior, chapter 16 from the book Beginning Economic Analysis (index.html) (v. 1.0).

This is Games and Strategic Behavior, chapter 16 from the book Beginning Economic Analysis (index.html) (v. 1.0). This is Games and Strategic Behavior, chapter 16 from the book Beginning Economic Analysis (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Economics of Strategy (ECON 4550) Maymester 2015 Foundations of Game Theory

Economics of Strategy (ECON 4550) Maymester 2015 Foundations of Game Theory Economics of Strategy (ECON 4550) Maymester 05 Foundations of Game Theory Reading: Game Theory (ECON 4550 Courseak, Page 95) Definitions and Concets: Game Theory study of decision making settings in which

More information

Game Theory: introduction and applications to computer networks

Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Lecture 3: two-person non zero-sum games Giovanni Neglia INRIA EPI Maestro 6 January 2010 Slides are based on a previous course with D. Figueiredo

More information

Extensive Games with Perfect Information A Mini Tutorial

Extensive Games with Perfect Information A Mini Tutorial Extensive Games withperfect InformationA Mini utorial p. 1/9 Extensive Games with Perfect Information A Mini utorial Krzysztof R. Apt (so not Krzystof and definitely not Krystof) CWI, Amsterdam, the Netherlands,

More information

Dominance and Best Response. player 2

Dominance and Best Response. player 2 Dominance and Best Response Consider the following game, Figure 6.1(a) from the text. player 2 L R player 1 U 2, 3 5, 0 D 1, 0 4, 3 Suppose you are player 1. The strategy U yields higher payoff than any

More information

Mixed Strategies; Maxmin

Mixed Strategies; Maxmin Mixed Strategies; Maxmin CPSC 532A Lecture 4 January 28, 2008 Mixed Strategies; Maxmin CPSC 532A Lecture 4, Slide 1 Lecture Overview 1 Recap 2 Mixed Strategies 3 Fun Game 4 Maxmin and Minmax Mixed Strategies;

More information

Chapter 7, 8, and 9 Notes

Chapter 7, 8, and 9 Notes Chapter 7, 8, and 9 Notes These notes essentially correspond to parts of chapters 7, 8, and 9 of Mas-Colell, Whinston, and Green. We are not covering Bayes-Nash Equilibria. Essentially, the Economics Nobel

More information

NORMAL FORM GAMES: invariance and refinements DYNAMIC GAMES: extensive form

NORMAL FORM GAMES: invariance and refinements DYNAMIC GAMES: extensive form 1 / 47 NORMAL FORM GAMES: invariance and refinements DYNAMIC GAMES: extensive form Heinrich H. Nax hnax@ethz.ch & Bary S. R. Pradelski bpradelski@ethz.ch March 19, 2018: Lecture 5 2 / 47 Plan Normal form

More information

Agenda. Intro to Game Theory. Why Game Theory. Examples. The Contractor. Games of Strategy vs other kinds

Agenda. Intro to Game Theory. Why Game Theory. Examples. The Contractor. Games of Strategy vs other kinds Agenda Intro to Game Theory AUECO 220 Why game theory Games of Strategy Examples Terminology Why Game Theory Provides a method of solving problems where each agent takes into account how others will react

More information

Chapter 30: Game Theory

Chapter 30: Game Theory Chapter 30: Game Theory 30.1: Introduction We have now covered the two extremes perfect competition and monopoly/monopsony. In the first of these all agents are so small (or think that they are so small)

More information

EconS Representation of Games and Strategies

EconS Representation of Games and Strategies EconS 424 - Representation of Games and Strategies Félix Muñoz-García Washington State University fmunoz@wsu.edu January 27, 2014 Félix Muñoz-García (WSU) EconS 424 - Recitation 1 January 27, 2014 1 /

More information

G5212: Game Theory. Mark Dean. Spring 2017

G5212: Game Theory. Mark Dean. Spring 2017 G5212: Game Theory Mark Dean Spring 2017 The Story So Far... Last week we Introduced the concept of a dynamic (or extensive form) game The strategic (or normal) form of that game In terms of solution concepts

More information

Game Theory. Department of Electronics EL-766 Spring Hasan Mahmood

Game Theory. Department of Electronics EL-766 Spring Hasan Mahmood Game Theory Department of Electronics EL-766 Spring 2011 Hasan Mahmood Email: hasannj@yahoo.com Course Information Part I: Introduction to Game Theory Introduction to game theory, games with perfect information,

More information

Dominant and Dominated Strategies

Dominant and Dominated Strategies Dominant and Dominated Strategies Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Junel 8th, 2016 C. Hurtado (UIUC - Economics) Game Theory On the

More information

Weeks 3-4: Intro to Game Theory

Weeks 3-4: Intro to Game Theory Prof. Bryan Caplan bcaplan@gmu.edu http://www.bcaplan.com Econ 82 Weeks 3-4: Intro to Game Theory I. The Hard Case: When Strategy Matters A. You can go surprisingly far with general equilibrium theory,

More information

DECISION MAKING GAME THEORY

DECISION MAKING GAME THEORY DECISION MAKING GAME THEORY THE PROBLEM Two suspected felons are caught by the police and interrogated in separate rooms. Three cases were presented to them. THE PROBLEM CASE A: If only one of you confesses,

More information

Introduction to Game Theory

Introduction to Game Theory Introduction to Game Theory Part 2. Dynamic games of complete information Chapter 4. Dynamic games of complete but imperfect information Ciclo Profissional 2 o Semestre / 2011 Graduação em Ciências Econômicas

More information

Lecture 13(ii) Announcements. Lecture on Game Theory. None. 1. The Simple Version of the Battle of the Sexes

Lecture 13(ii) Announcements. Lecture on Game Theory. None. 1. The Simple Version of the Battle of the Sexes Lecture 13(ii) Announcements None Lecture on Game Theory 1. The Simple Version of the Battle of the Sexes 2. The Battle of the Sexes with Some Strategic Moves 3. Rock Paper Scissors 4. Chicken 5. Duopoly

More information