Lecture 13 CS 1813 Discrete Mathematics. Induction Induction. CS 1813 Discrete Mathematics, Univ Oklahoma Copyright 2000 by Rex Page

Size: px
Start display at page:

Download "Lecture 13 CS 1813 Discrete Mathematics. Induction Induction. CS 1813 Discrete Mathematics, Univ Oklahoma Copyright 2000 by Rex Page"

Transcription

1 Lecture 13 CS 1813 Discrete Mathematics Induction Induction Induction 1

2 Concatenating Sequences (++) :: [a] -> [a] -> [a] (x: xs) ++ ys = x: (xs ++ ys) (++).: [ ] ++ ys = ys (++).[] Proposition P(n) (universe of discourse: n N ) length xs = n length(xs ++ ys) = length xs + length ys P(0): length xs = 0 length(xs++ys) = length xs + length ys length(xs ++ ys) = length([ ] ++ ys) len 0 [ ] = length ys (++).[] = 0 + length ys 2 nd -grade arithmetic = length xs + length ys hypothesis of implication Next, prove P(n) P(n+1) next slide 2

3 Concatenating Sequences the inductive case P(n+1): length xs = n+1 length(xs++ys) = (length xs) + (length ys) length(xs++ys) = length((z:zs) ++ ys) xs = (z: zs) {see note} = length(z: (zs ++ ys)) (++).: = 1 + length(zs ++ ys) (length).: = 1 + length zs + length ys P(n), since length zs = n = 1 + n + length ys (length zs) = n {see note} = n length ys +comm = length xs + length ys hypothesis in P(n+1) Note: z. zs. (xs = (z: zs)) ((length zs) = n) (:len) corollary 3

4 Proved: P(0) Concatenating Sequences applying the principle of induction Proved: P(n) P(n+1) Conclude n N. P(n) by the principle of induction P(n): length xs = n length(xs ++ ys) = length xs + length ys qed 4

5 Concatenating a List of Sequences the big ++ concat :: [[a]] -> [a] concat(xs: xss) = xs ++ concat xss concat[ ] = [ ] (concat).: (concat).[] Theorem: n N. P(n) where P(n) is defined as follows: P(n) ( k {1, 2, n}. length(xs k ) N ) length(concat [xs 1, xs 2, xs n ]) = sum[length xs 1, length xs 2, length xs n ] List Comprehension like set comprehension, but for sequences [sequence-element generator, optional-constraint] [x - 2 x <- [12, 9, 27, 19, 13]] = [10, 7, 25, 17, 11] [x x <- [12, 9, 27, 19, 13], x < 15] = [12, 9, 13] [x + 3 x <- [12, 9, 27, 19, 13], x < 15] = [15, 12, 16] Proof Induction on n All this stuff is starting to look alike, isn t it? 5

6 shuffle shuffle :: [a] -> [a] -> [a] Examples shuffle [1, 2, 3, 4, 5] [6, 7, 8, 9, 10] = [1, 6, 2, 7, 3, 8, 4, 9, 5, 10] shuffle [1, 2, 3, 4, 5] [6, 7, 8] = [1, 6, 2, 7, 3, 8, 4, 5] shuffle [1, 2, 3, 4] [6, 7, 8, 9, 10] = [1, 6, 2, 7, 3, 8, 4, 9, 10] Pattern of computation shuffle [x 1, x 2, x n ] [y 1, y 2, y n ] = [x 1, y 1, x 2, y 2, x n, y n ] Note: extra elements in either sequence appended to the end Definition shuffle (x: xs) (y: ys) = [x, y] ++ shuffle xs ys shuffle [ ] ys = shuffle xs [ ] = ys xs 6

7 shuffle :: [a] -> [a] -> [a] shuffle Works shuffle (x: xs) (y: ys) = [x, y] ++ shuffle xs ys shuffle [ ] ys = ys (shf).[] L shuffle xs [ ] = xs (shf).[] R Theorem (shuffle works) n N.P(n) where P(n) shuffle [x 1, x 2, x n ] [y 1, y 2, y n ] = [x 1, y 1, x 2, y 2, x n,y n ] P(0) = shuffle [ ] [ ] = [ ] Why? Because (shf).[] L That s why! P(n+1) shuffle [x 1, x 2, x n+1 ] [y 1, y 2, y n+1 ]=[x 1, y 1, x 2, y 2, x n+1, y n+1 ] Proof of P(n+1) shuffle [x 1, x 2, x n+1 ] [y 1, y 2, y n+1 ] = shuffle (x 1 : [x 2, x 3, x n+1 ] ) (y 1 : [y 2, y 3, y n+1 ] ) (: ) (twice) = [x 1, y 1 ] ++ shuffle [x 2, x 3, x n+1 ] [y 2, y 3, y n+1 ] (shf).: = [x 1, y 1 ] ++ [x 2, y 2, x 3, y 3, x n+1, y n+1 ] P(n) = x 1 : (y 1 : [x 2, y 2, x 3, y 3, x n+1,y n+1 ] ) (++).: (twice) = [x 1, y 1, x 2, y 2, x n+1,y n+1 ] (: ) (twice) (shf).: 7

8 Indexing (!!) (!!):: [a] -> Int -> a (x: xs)!! 0 = x (!!).0 (x: xs)!! (n+1) = xs!! n (!!).n+1 Note: n N N = {0, 1, 2, } Pattern of computation [x 0, x 1, x 2, ]!! k = x k What do the (!!)-equations say about the following formula? [ ]!! 0 How about this formula? [ ]!! k How about these? (x: xs)!! (-1) xs!! (-1) 8

9 shuffle Works more formally shuffle (x: xs) (y: ys) = [x, y] ++ shuffle xs ys (shf).: Theorem (shuffle works) n N.P(n) where P(n) ( ((length xs) > n) ((length ys) > n) ) ( k, 0 k n. (((shuffle xs ys)!! (2*k)) = (xs!! k)) (((shuffle xs ys)!! (2*k + 1)) = (ys!! k)) ) P(0) ( ((length xs) > 0) ((length ys) > 0) ) ( k, 0 k 0. (((shuffle xs ys)!! (2*k)) = (xs!! k)) (((shuffle xs ys)!! (2*k + 1)) = (ys!! k)) ) = ( ((length xs) > 0) ((length ys) > 0) ) ( (((shuffle xs ys)!! 0) = (xs!! 0)) (((shuffle xs ys)!! 1) = (ys!! 0)) ) {finite -universe} = ( ( x. ws. xs = (x: ws)) ( y. zs. ys = (y: zs)) ) ( (((shuffle (x: ws) (y: zs))!! 0) = ((x: ws)!! 0)) (((shuffle (x: ws) (y: zs))!! 1) = ((y: zs)!! 0)) ) {(:), len 0 [ ], arith} = ( ( x. ws. xs = (x: ws)) ( y. zs. ys = (y: zs)) ) ( ((([x, y] ++ shuffle ws zs)!! 0) = ((x: ws)!! 0)) ((([x, y] ++ shuffle ws zs)!! 1) = ((y: zs)!! 0)) ) {(shf).:} = ( ( x. ws. xs = (x: ws)) ( y. zs. ys = (y: zs)) ) ( (x = x ) (y = y) ) { (++).:,, (!!).n+1, (!!).0} = True {= reflexive, id, Thm: (a True) = True } end of base case 9

10 shuffle Works more formally inductive case P(n+1) ( ((length xs) > n+1) ((length ys) > n+1) ) ( k, 0 k n+1. (((shuffle xs ys)!! (2*k)) = (xs!! k)) (((shuffle xs ys)!! (2*k + 1)) = (ys!! k)) ) = ( ( x. ws.xs=(x:ws) ((length ws) > n) ) ( y. zs.ys=(y:zs) ((length zs) > n)) ) ( k, 0 k n+1. (((shuffle xs ys)!! (2*k)) = (xs!! k)) (((shuffle xs ys)!! (2*k + 1)) = (ys!! k)) ) {len 0 [ ], } = ( ( x. ws.xs=(x:ws) ((length ws) > n) ) ( y. zs.ys=(y:zs) ((length zs) > n)) ) (( k, 0 k n.( (((shuffle xs ys)!! (2*k)) = (xs!! k)) (((shuffle xs ys)!! (2*k + 1)) = (ys!! k)) ) (((shuffle (x:ws) (y:zs))!!(2*(n+1))) = ((x:ws)!!(n+1))) (((shuffle (x:ws) (y:zs))!!(2*(n+1)+1)) = ((y:zs)!!(n+1))) ) {subst, finite -univ} = ( ( x. ws.xs=(x: ws) ((length ws) > n)) ( y. zs.ys=(y: zs) ((length zs) > n))) ( k, 0 k n.( (((shuffle xs ys)!! (2*k)) = (xs!! k)) (((shuffle xs ys)!! (2*k + 1)) = (ys!! k)) ) (((shuffle ws zs)!!(2*n)) = (ws!!n)) (((shuffle ws zs)!!(2*n+1)) = (zs!!n)) ) {(shf).:, (++).:,, (!!).n+1} = ( ( x. ws.xs=(x: ws) ((length ws) > n)) ( y. zs.ys=(y: zs) ((length zs) > n))) (True True True) {P(n)} = True { id, Thm: (a True) = True} qed 10

11 End of Lecture 11

CSE 20: Discrete Mathematics for Computer Science. Prof. Miles Jones. Today s Topics: 3-cent and 5-cent coins. 1. Mathematical Induction Proof

CSE 20: Discrete Mathematics for Computer Science. Prof. Miles Jones. Today s Topics: 3-cent and 5-cent coins. 1. Mathematical Induction Proof 2 Today s Topics: CSE 20: Discrete Mathematics for Computer Science Prof. Miles Jones 1. Mathematical Induction Proof! 3-cents and 5-cents example! Our first algorithm! 3 4 3-cent and 5-cent coins! We

More information

CS 202, section 2 Final Exam 13 December Pledge: Signature:

CS 202, section 2 Final Exam 13 December Pledge: Signature: CS 22, section 2 Final Exam 3 December 24 Name: KEY E-mail ID: @virginia.edu Pledge: Signature: There are 8 minutes (3 hours) for this exam and 8 points on the test; don t spend too long on any one question!

More information

DVA325 Formal Languages, Automata and Models of Computation (FABER)

DVA325 Formal Languages, Automata and Models of Computation (FABER) DVA325 Formal Languages, Automata and Models of Computation (FABER) Lecture 1 - Introduction School of Innovation, Design and Engineering Mälardalen University 11 November 2014 Abu Naser Masud FABER November

More information

ON SPLITTING UP PILES OF STONES

ON SPLITTING UP PILES OF STONES ON SPLITTING UP PILES OF STONES GREGORY IGUSA Abstract. In this paper, I describe the rules of a game, and give a complete description of when the game can be won, and when it cannot be won. The first

More information

The Cauchy Criterion

The Cauchy Criterion The Cauchy Criterion MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Cauchy Sequences Definition A sequence X = (x n ) of real numbers is a Cauchy sequence if it satisfies

More information

Monotone Sequences & Cauchy Sequences Philippe B. Laval

Monotone Sequences & Cauchy Sequences Philippe B. Laval Monotone Sequences & Cauchy Sequences Philippe B. Laval Monotone Sequences & Cauchy Sequences 2 1 Monotone Sequences and Cauchy Sequences 1.1 Monotone Sequences The techniques we have studied so far require

More information

Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 3 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 3 Notes Goal for today: CL Section 3 Subsets,

More information

Tangent: Boromean Rings. The Beer Can Game. Plan. A Take-Away Game. Mathematical Games I. Introduction to Impartial Combinatorial Games

Tangent: Boromean Rings. The Beer Can Game. Plan. A Take-Away Game. Mathematical Games I. Introduction to Impartial Combinatorial Games K. Sutner D. Sleator* Great Theoretical Ideas In Computer Science CS 15-251 Spring 2014 Lecture 110 Feb 4, 2014 Carnegie Mellon University Tangent: Boromean Rings Mathematical Games I Challenge for next

More information

1. Functions and set sizes 2. Infinite set sizes. ! Let X,Y be finite sets, f:x!y a function. ! Theorem: If f is injective then X Y.

1. Functions and set sizes 2. Infinite set sizes. ! Let X,Y be finite sets, f:x!y a function. ! Theorem: If f is injective then X Y. 2 Today s Topics: CSE 20: Discrete Mathematics for Computer Science Prof. Miles Jones 1. Functions and set sizes 2. 3 4 1. Functions and set sizes! Theorem: If f is injective then Y.! Try and prove yourself

More information

DISCRETE STRUCTURES COUNTING

DISCRETE STRUCTURES COUNTING DISCRETE STRUCTURES COUNTING LECTURE2 The Pigeonhole Principle The generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least N/k of the

More information

Massachusetts Institute of Technology 6.042J/18.062J, Spring 04: Mathematics for Computer Science April 16 Prof. Albert R. Meyer and Dr.

Massachusetts Institute of Technology 6.042J/18.062J, Spring 04: Mathematics for Computer Science April 16 Prof. Albert R. Meyer and Dr. Massachusetts Institute of Technology 6.042J/18.062J, Spring 04: Mathematics for Computer Science April 16 Prof. Albert R. Meyer and Dr. Eric Lehman revised April 16, 2004, 202 minutes Solutions to Quiz

More information

Stanford University CS261: Optimization Handout 9 Luca Trevisan February 1, 2011

Stanford University CS261: Optimization Handout 9 Luca Trevisan February 1, 2011 Stanford University CS261: Optimization Handout 9 Luca Trevisan February 1, 2011 Lecture 9 In which we introduce the maximum flow problem. 1 Flows in Networks Today we start talking about the Maximum Flow

More information

Arithmetic Sequences Read 8.2 Examples 1-4

Arithmetic Sequences Read 8.2 Examples 1-4 CC Algebra II HW #8 Name Period Row Date Arithmetic Sequences Read 8.2 Examples -4 Section 8.2 In Exercises 3 0, tell whether the sequence is arithmetic. Explain your reasoning. (See Example.) 4. 2, 6,

More information

Notes for Recitation 3

Notes for Recitation 3 6.042/18.062J Mathematics for Computer Science September 17, 2010 Tom Leighton, Marten van Dijk Notes for Recitation 3 1 State Machines Recall from Lecture 3 (9/16) that an invariant is a property of a

More information

Greedy Flipping of Pancakes and Burnt Pancakes

Greedy Flipping of Pancakes and Burnt Pancakes Greedy Flipping of Pancakes and Burnt Pancakes Joe Sawada a, Aaron Williams b a School of Computer Science, University of Guelph, Canada. Research supported by NSERC. b Department of Mathematics and Statistics,

More information

Modal logic. Benzmüller/Rojas, 2014 Artificial Intelligence 2

Modal logic. Benzmüller/Rojas, 2014 Artificial Intelligence 2 Modal logic Benzmüller/Rojas, 2014 Artificial Intelligence 2 What is Modal Logic? Narrowly, traditionally: modal logic studies reasoning that involves the use of the expressions necessarily and possibly.

More information

October 16, proving lines parallel ink.notebook. page Prove Lines Parallel. page 113. Standards. page 115.

October 16, proving lines parallel ink.notebook. page Prove Lines Parallel. page 113. Standards. page 115. 3.5 proving lines parallel ink.notebook page 113 page 114 3.5 Prove Lines Parallel Lesson Objectives page 115 Standards Lesson Notes page 116 3.5 Proving Lines Parallel Press the tabs to view details.

More information

How to Become a Mathemagician: Mental Calculations and Math Magic

How to Become a Mathemagician: Mental Calculations and Math Magic How to Become a Mathemagician: Mental Calculations and Math Magic Adam Gleitman (amgleit@mit.edu) Splash 2012 A mathematician is a conjurer who gives away his secrets. John H. Conway This document describes

More information

Dealing with some maths

Dealing with some maths Dealing with some maths Hayden Tronnolone School of Mathematical Sciences University of Adelaide August 20th, 2012 To call a spade a spade First, some dealing... Hayden Tronnolone (University of Adelaide)

More information

Plan. Related courses. A Take-Away Game. Mathematical Games , (21-801) - Mathematical Games Look for it in Spring 11

Plan. Related courses. A Take-Away Game. Mathematical Games , (21-801) - Mathematical Games Look for it in Spring 11 V. Adamchik D. Sleator Great Theoretical Ideas In Computer Science Mathematical Games CS 5-25 Spring 2 Lecture Feb., 2 Carnegie Mellon University Plan Introduction to Impartial Combinatorial Games Related

More information

ECS 20 (Spring 2013) Phillip Rogaway Lecture 1

ECS 20 (Spring 2013) Phillip Rogaway Lecture 1 ECS 20 (Spring 2013) Phillip Rogaway Lecture 1 Today: Introductory comments Some example problems Announcements course information sheet online (from my personal homepage: Rogaway ) first HW due Wednesday

More information

Ramanujan-type Congruences for Overpartitions Modulo 5. Nankai University, Tianjin , P. R. China

Ramanujan-type Congruences for Overpartitions Modulo 5. Nankai University, Tianjin , P. R. China Ramanujan-type Congruences for Overpartitions Modulo 5 William Y.C. Chen a,b, Lisa H. Sun a,, Rong-Hua Wang a and Li Zhang a a Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.

More information

With Question/Answer Animations. Chapter 6

With Question/Answer Animations. Chapter 6 With Question/Answer Animations Chapter 6 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and

More information

Warm-Up Up Exercises. 1. Find the value of x. ANSWER 32

Warm-Up Up Exercises. 1. Find the value of x. ANSWER 32 Warm-Up Up Exercises 1. Find the value of x. ANSWER 32 2. Write the converse of the following statement. If it is raining, then Josh needs an umbrella. ANSWER If Josh needs an umbrella, then it is raining.

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

A Proof of the Invalidity of Proposition in Acemoglu(2009)

A Proof of the Invalidity of Proposition in Acemoglu(2009) MPRA Munich Personal RePEc Archive A Proof of the Invalidity of Proposition 15.12 in Acemoglu(2009) Defu Li School of Economics and Management, Tongji University 29 November 2016 Online at https://mpra.ub.uni-muenchen.de/75329/

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Midterm 1. Exam location: 1 Pimentel, back half: SIDs ending in X or Y

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Midterm 1. Exam location: 1 Pimentel, back half: SIDs ending in X or Y EECS 70 Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Midterm 1 Exam location: 1 Pimentel, back half: SIDs ending in X or Y PRINT your student ID: 00000000 PRINT AND SIGN your name:,

More information

Round and Round. - Circle Theorems 1: The Chord Theorem -

Round and Round. - Circle Theorems 1: The Chord Theorem - - Circle Theorems 1: The Chord Theorem - A Historic Note The main ideas about plane geometry were developed by Greek scholars during the period between 600 and 300 B.C.E. Euclid established a school of

More information

18 Completeness and Compactness of First-Order Tableaux

18 Completeness and Compactness of First-Order Tableaux CS 486: Applied Logic Lecture 18, March 27, 2003 18 Completeness and Compactness of First-Order Tableaux 18.1 Completeness Proving the completeness of a first-order calculus gives us Gödel s famous completeness

More information

Reading 14 : Counting

Reading 14 : Counting CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 14 : Counting In this reading we discuss counting. Often, we are interested in the cardinality

More information

ABSTRACT INTERPRETATION USING LAZINESS: PROVING CONWAY S LOST COSMOLOGICAL THEOREM

ABSTRACT INTERPRETATION USING LAZINESS: PROVING CONWAY S LOST COSMOLOGICAL THEOREM ABSTRACT INTERPRETATION USING LAZINESS: PROVING CONWAY S LOST COSMOLOGICAL THEOREM KEVIN WATKINS Abstract. The paper describes an abstract interpretation technique based on lazy functional programming,

More information

Pattern Avoidance in Unimodal and V-unimodal Permutations

Pattern Avoidance in Unimodal and V-unimodal Permutations Pattern Avoidance in Unimodal and V-unimodal Permutations Dido Salazar-Torres May 16, 2009 Abstract A characterization of unimodal, [321]-avoiding permutations and an enumeration shall be given.there is

More information

Assignment 2. Due: Monday Oct. 15, :59pm

Assignment 2. Due: Monday Oct. 15, :59pm Introduction To Discrete Math Due: Monday Oct. 15, 2012. 11:59pm Assignment 2 Instructor: Mohamed Omar Math 6a For all problems on assignments, you are allowed to use the textbook, class notes, and other

More information

CS 3233 Discrete Mathematical Structure Midterm 2 Exam Solution Tuesday, April 17, :30 1:45 pm. Last Name: First Name: Student ID:

CS 3233 Discrete Mathematical Structure Midterm 2 Exam Solution Tuesday, April 17, :30 1:45 pm. Last Name: First Name: Student ID: CS Discrete Mathematical Structure Midterm Exam Solution Tuesday, April 17, 007 1:0 1:4 pm Last Name: First Name: Student ID: Problem No. Points Score 1 10 10 10 4 1 10 6 10 7 1 Total 80 1 This is a closed

More information

Chapter 6.2: Trig Proofs

Chapter 6.2: Trig Proofs Chapter 6.2: Trig Proofs Proofs are fun, simply because they can be so challenging. No two are alike. While there are several common strategies for analytically proofing non-fundamental trig identities,

More information

Problem Set 8 Solutions R Y G R R G

Problem Set 8 Solutions R Y G R R G 6.04/18.06J Mathematics for Computer Science April 5, 005 Srini Devadas and Eric Lehman Problem Set 8 Solutions Due: Monday, April 11 at 9 PM in Room 3-044 Problem 1. An electronic toy displays a 4 4 grid

More information

1 Fisher Yates shuffle 2

1 Fisher Yates shuffle 2 The Fisher Yates shuffle Manuel Eberl October 11, 2017 Abstract This work defines and proves the correctness of the Fisher Yates shuffle [1, 2, 3] for shuffling i. e. producing a random permutation of

More information

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6

CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6 CS100: DISCRETE STRUCTURES Lecture 8 Counting - CH6 Lecture Overview 2 6.1 The Basics of Counting: THE PRODUCT RULE THE SUM RULE THE SUBTRACTION RULE THE DIVISION RULE 6.2 The Pigeonhole Principle. 6.3

More information

CAP 5415 Computer Vision. Marshall Tappen Fall Lecture 1

CAP 5415 Computer Vision. Marshall Tappen Fall Lecture 1 CAP 5415 Computer Vision Marshall Tappen Fall 21 Lecture 1 Welcome! About Me Interested in Machine Vision and Machine Learning Happy to chat with you at almost any time May want to e-mail me first Office

More information

Congruences Modulo Small Powers of 2 and 3 for Partitions into Odd Designated Summands

Congruences Modulo Small Powers of 2 and 3 for Partitions into Odd Designated Summands 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 0 (017), Article 17.4.3 Congruences Modulo Small Powers of 3 for Partitions into Odd Designated Summs B. Hemanthkumar Department of Mathematics M. S. Ramaiah

More information

Counting. Chapter 6. With Question/Answer Animations

Counting. Chapter 6. With Question/Answer Animations . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Counting Chapter

More information

Counting constrained domino tilings of Aztec diamonds

Counting constrained domino tilings of Aztec diamonds Counting constrained domino tilings of Aztec diamonds Ira Gessel, Alexandru Ionescu, and James Propp Note: The results described in this presentation will appear in several different articles. Overview

More information

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Thursday, 4/17/14 The Addition Principle The Inclusion-Exclusion Principle The Pigeonhole Principle Reading: [J] 6.1, 6.8 [H] 3.5, 12.3 Exercises:

More information

arxiv: v1 [math.co] 24 Nov 2018

arxiv: v1 [math.co] 24 Nov 2018 The Problem of Pawns arxiv:1811.09606v1 [math.co] 24 Nov 2018 Tricia Muldoon Brown Georgia Southern University Abstract Using a bijective proof, we show the number of ways to arrange a maximum number of

More information

CDT314 FABER Formal Languages, Automata and Models of Computation MARK BURGIN INDUCTIVE TURING MACHINES

CDT314 FABER Formal Languages, Automata and Models of Computation MARK BURGIN INDUCTIVE TURING MACHINES CDT314 FABER Formal Languages, Automata and Models of Computation MARK BURGIN INDUCTIVE TURING MACHINES 2012 1 Inductive Turing Machines Burgin, M. Inductive Turing Machines, Notices of the Academy of

More information

THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM

THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM CREATING PRODUCTIVE LEARNING ENVIRONMENTS WEDNESDAY, FEBRUARY 7, 2018

More information

8.2 Slippery Slopes. A Solidify Understanding Task

8.2 Slippery Slopes. A Solidify Understanding Task 7 8.2 Slippery Slopes A Solidify Understanding Task CC BY https://flic.kr/p/kfus4x While working on Is It Right? in the previous module you looked at several examples that lead to the conclusion that the

More information

Lecture 18 - Counting

Lecture 18 - Counting Lecture 18 - Counting 6.0 - April, 003 One of the most common mathematical problems in computer science is counting the number of elements in a set. This is often the core difficulty in determining a program

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

The Tilings of Deficient Squares by Ribbon L-Tetrominoes Are Diagonally Cracked

The Tilings of Deficient Squares by Ribbon L-Tetrominoes Are Diagonally Cracked Open Journal of Discrete Mathematics, 217, 7, 165-176 http://wwwscirporg/journal/ojdm ISSN Online: 2161-763 ISSN Print: 2161-7635 The Tilings of Deficient Squares by Ribbon L-Tetrominoes Are Diagonally

More information

Evacuation and a Geometric Construction for Fibonacci Tableaux

Evacuation and a Geometric Construction for Fibonacci Tableaux Evacuation and a Geometric Construction for Fibonacci Tableaux Kendra Killpatrick Pepperdine University 24255 Pacific Coast Highway Malibu, CA 90263-4321 Kendra.Killpatrick@pepperdine.edu August 25, 2004

More information

Zhanjiang , People s Republic of China

Zhanjiang , People s Republic of China Math. Comp. 78(2009), no. 267, 1853 1866. COVERS OF THE INTEGERS WITH ODD MODULI AND THEIR APPLICATIONS TO THE FORMS x m 2 n AND x 2 F 3n /2 Ke-Jian Wu 1 and Zhi-Wei Sun 2, 1 Department of Mathematics,

More information

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext Cryptography Codes Lecture 3: The Times Cipher, Factors, Zero Divisors, and Multiplicative Inverses Spring 2015 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler New Cipher Times Enemy

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

Logical Agents (AIMA - Chapter 7)

Logical Agents (AIMA - Chapter 7) Logical Agents (AIMA - Chapter 7) CIS 391 - Intro to AI 1 Outline 1. Wumpus world 2. Logic-based agents 3. Propositional logic Syntax, semantics, inference, validity, equivalence and satifiability Next

More information

11/18/2015. Outline. Logical Agents. The Wumpus World. 1. Automating Hunt the Wumpus : A different kind of problem

11/18/2015. Outline. Logical Agents. The Wumpus World. 1. Automating Hunt the Wumpus : A different kind of problem Outline Logical Agents (AIMA - Chapter 7) 1. Wumpus world 2. Logic-based agents 3. Propositional logic Syntax, semantics, inference, validity, equivalence and satifiability Next Time: Automated Propositional

More information

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games May 17, 2011 Summary: We give a winning strategy for the counter-taking game called Nim; surprisingly, it involves computations

More information

Number Theory. Konkreetne Matemaatika

Number Theory. Konkreetne Matemaatika ITT9131 Number Theory Konkreetne Matemaatika Chapter Four Divisibility Primes Prime examples Factorial Factors Relative primality `MOD': the Congruence Relation Independent Residues Additional Applications

More information

Shuffling with ordered cards

Shuffling with ordered cards Shuffling with ordered cards Steve Butler (joint work with Ron Graham) Department of Mathematics University of California Los Angeles www.math.ucla.edu/~butler Combinatorics, Groups, Algorithms and Complexity

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic 1 Integers modulo n 1.1 Preliminaries Introduction to Modular Arithmetic Definition 1.1.1 (Equivalence relation). Let R be a relation on the set A. Recall that a relation R is a subset of the cartesian

More information

arxiv: v1 [cs.cc] 21 Jun 2017

arxiv: v1 [cs.cc] 21 Jun 2017 Solving the Rubik s Cube Optimally is NP-complete Erik D. Demaine Sarah Eisenstat Mikhail Rudoy arxiv:1706.06708v1 [cs.cc] 21 Jun 2017 Abstract In this paper, we prove that optimally solving an n n n Rubik

More information

THE GAME CREATION OPERATOR

THE GAME CREATION OPERATOR 2/6/17 THE GAME CREATION OPERATOR Joint work with Urban Larsson and Matthieu Dufour Silvia Heubach California State University Los Angeles SoCal-Nevada Fall 2016 Section Meeting October 22, 2016 Much of

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 7 1 Congruence Definition 2 Congruence is an Equivalence Relation (CER) 3 Properties of Congruence (PC) 4 Example 5 Congruences

More information

More Great Ideas in Theoretical Computer Science. Lecture 1: Sorting Pancakes

More Great Ideas in Theoretical Computer Science. Lecture 1: Sorting Pancakes 15-252 More Great Ideas in Theoretical Computer Science Lecture 1: Sorting Pancakes January 19th, 2018 Question If there are n pancakes in total (all in different sizes), what is the max number of flips

More information

Primitive Roots. Chapter Orders and Primitive Roots

Primitive Roots. Chapter Orders and Primitive Roots Chapter 5 Primitive Roots The name primitive root applies to a number a whose powers can be used to represent a reduced residue system modulo n. Primitive roots are therefore generators in that sense,

More information

Ideas beyond Number. Teacher s guide to Activity worksheets

Ideas beyond Number. Teacher s guide to Activity worksheets Ideas beyond Number Teacher s guide to Activity worksheets Learning objectives To explore reasoning, logic and proof through practical, experimental, structured and formalised methods of communication

More information

Counting Permutations by Putting Balls into Boxes

Counting Permutations by Putting Balls into Boxes Counting Permutations by Putting Balls into Boxes Ira M. Gessel Brandeis University C&O@40 Conference June 19, 2007 I will tell you shamelessly what my bottom line is: It is placing balls into boxes. Gian-Carlo

More information

SUDOKU Colorings of the Hexagonal Bipyramid Fractal

SUDOKU Colorings of the Hexagonal Bipyramid Fractal SUDOKU Colorings of the Hexagonal Bipyramid Fractal Hideki Tsuiki Kyoto University, Sakyo-ku, Kyoto 606-8501,Japan tsuiki@i.h.kyoto-u.ac.jp http://www.i.h.kyoto-u.ac.jp/~tsuiki Abstract. The hexagonal

More information

Enumeration of Two Particular Sets of Minimal Permutations

Enumeration of Two Particular Sets of Minimal Permutations 3 47 6 3 Journal of Integer Sequences, Vol. 8 (05), Article 5.0. Enumeration of Two Particular Sets of Minimal Permutations Stefano Bilotta, Elisabetta Grazzini, and Elisa Pergola Dipartimento di Matematica

More information

CLASS NOTES. A mathematical proof is an argument which convinces other people that something is true.

CLASS NOTES. A mathematical proof is an argument which convinces other people that something is true. Propositional Statements A mathematical proof is an argument which convinces other people that something is true. The implication If p then q written as p q means that if p is true, then q must also be

More information

Edge-disjoint tree representation of three tree degree sequences

Edge-disjoint tree representation of three tree degree sequences Edge-disjoint tree representation of three tree degree sequences Ian Min Gyu Seong Carleton College seongi@carleton.edu October 2, 208 Ian Min Gyu Seong (Carleton College) Trees October 2, 208 / 65 Trees

More information

Topics to be covered

Topics to be covered Basic Counting 1 Topics to be covered Sum rule, product rule, generalized product rule Permutations, combinations Binomial coefficients, combinatorial proof Inclusion-exclusion principle Pigeon Hole Principle

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Permutations and Combinations February 20, 2017 1 Two Counting Principles Addition Principle. Let S 1, S 2,..., S m be disjoint subsets of a finite set S. If S = S 1 S 2 S m, then S = S 1 + S

More information

Playing with Permutations: Examining Mathematics in Children s Toys

Playing with Permutations: Examining Mathematics in Children s Toys Western Oregon University Digital Commons@WOU Honors Senior Theses/Projects Student Scholarship -0 Playing with Permutations: Examining Mathematics in Children s Toys Jillian J. Johnson Western Oregon

More information

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n Chapter 5 Chapter Summary 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.5 Generalized Permutations and Combinations Section 5.1 The Product Rule The Product

More information

Formidable Fourteen Puzzle = 6. Boxing Match Example. Part II - Sums of Games. Sums of Games. Example Contd. Mathematical Games II Sums of Games

Formidable Fourteen Puzzle = 6. Boxing Match Example. Part II - Sums of Games. Sums of Games. Example Contd. Mathematical Games II Sums of Games K. Sutner D. Sleator* Great Theoretical Ideas In Computer Science Mathematical Games II Sums of Games CS 5-25 Spring 24 Lecture February 6, 24 Carnegie Mellon University + 4 2 = 6 Formidable Fourteen Puzzle

More information

Honors Precalculus Chapter 9 Summary Basic Combinatorics

Honors Precalculus Chapter 9 Summary Basic Combinatorics Honors Precalculus Chapter 9 Summary Basic Combinatorics A. Factorial: n! means 0! = Why? B. Counting principle: 1. How many different ways can a license plate be formed a) if 7 letters are used and each

More information

Algorithms and Data Structures: Network Flows. 24th & 28th Oct, 2014

Algorithms and Data Structures: Network Flows. 24th & 28th Oct, 2014 Algorithms and Data Structures: Network Flows 24th & 28th Oct, 2014 ADS: lects & 11 slide 1 24th & 28th Oct, 2014 Definition 1 A flow network consists of A directed graph G = (V, E). Flow Networks A capacity

More information

6-3 Conditions for Parallelograms

6-3 Conditions for Parallelograms Warm Up Justify each statement. 1. 2. Reflex Prop. of Conv. of Alt. Int. s Thm. Evaluate each expression for x = 12 and y = 8.5. 3. 2x + 7 4. 16x 9 31 183 5. (8y + 5) 73 Objective Prove that a given quadrilateral

More information

Grades 7 & 8, Math Circles 27/28 February, 1 March, Mathematical Magic

Grades 7 & 8, Math Circles 27/28 February, 1 March, Mathematical Magic Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Card Tricks Grades 7 & 8, Math Circles 27/28 February, 1 March, 2018 Mathematical Magic Have you ever

More information

arxiv: v1 [math.gm] 29 Mar 2015

arxiv: v1 [math.gm] 29 Mar 2015 arxiv:1504.001v1 [math.gm] 9 Mar 015 New results on the stopping time behaviour of the Collatz 3x + 1 function Mike Winkler March 7, 015 Abstract Let σ n = 1 + n log 3. For the Collatz 3x + 1 function

More information

First Cycle Games. Benjamin Aminof (IST Austria) and Sasha Rubin (TU Wien) Strategic Reasoning /20

First Cycle Games. Benjamin Aminof (IST Austria) and Sasha Rubin (TU Wien) Strategic Reasoning /20 First Cycle Games Benjamin Aminof (IST Austria) and Sasha Rubin (TU Wien) Strategic Reasoning 2014 1/20 Games in computer science Examples geography, parity games, mean-payoff games, energy games,... Types

More information

Countability. Jason Filippou UMCP. Jason Filippou UMCP) Countability / 12

Countability. Jason Filippou UMCP. Jason Filippou UMCP) Countability / 12 Countability Jason Filippou CMSC250 @ UMCP 06-23-2016 Jason Filippou (CMSC250 @ UMCP) Countability 06-23-2016 1 / 12 Outline 1 Infinity 2 Countability of integers and rationals 3 Uncountability of R Jason

More information

REU 2006 Discrete Math Lecture 3

REU 2006 Discrete Math Lecture 3 REU 006 Discrete Math Lecture 3 Instructor: László Babai Scribe: Elizabeth Beazley Editors: Eliana Zoque and Elizabeth Beazley NOT PROOFREAD - CONTAINS ERRORS June 6, 006. Last updated June 7, 006 at :4

More information

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

More information

NIM Games: Handout 1

NIM Games: Handout 1 NIM Games: Handout 1 Based on notes by William Gasarch 1 One-Pile NIM Games Consider the following two-person game in which players alternate making moves. There are initially n stones on the board. During

More information

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = =

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = = Math 115 Discrete Math Final Exam December 13, 2000 Your name It is important that you show your work. 1. Use the Euclidean algorithm to solve the decanting problem for decanters of sizes 199 and 98. In

More information

A Study of Relationship Among Goldbach Conjecture, Twin prime and Fibonacci number

A Study of Relationship Among Goldbach Conjecture, Twin prime and Fibonacci number A Study of Relationship Among Goldbach Conjecture, Twin and Fibonacci number Chenglian Liu Department of Computer Science, Huizhou University, China chenglianliu@gmailcom May 4, 015 Version 48 1 Abstract

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic Jeremy R. Johnson 1 Introduction Objective: To become familiar with modular arithmetic and some key algorithmic constructions that

More information

NOT QUITE NUMBER THEORY

NOT QUITE NUMBER THEORY NOT QUITE NUMBER THEORY EMILY BARGAR Abstract. Explorations in a system given to me by László Babai, and conclusions about the importance of base and divisibility in that system. Contents. Getting started

More information

On uniquely k-determined permutations

On uniquely k-determined permutations On uniquely k-determined permutations Sergey Avgustinovich and Sergey Kitaev 16th March 2007 Abstract Motivated by a new point of view to study occurrences of consecutive patterns in permutations, we introduce

More information

132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers

132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers arxiv:math/0205206v1 [math.co] 19 May 2002 Eric S. Egge Department of Mathematics Gettysburg College Gettysburg, PA 17325

More information

Eric Duchêne (Univ. Claude Bernard Lyon 1) Michel Rigo (University of Liège)

Eric Duchêne (Univ. Claude Bernard Lyon 1) Michel Rigo (University of Liège) INVARIANT GAMES Eric Duchêne (Univ. Claude Bernard Lyon 1) Michel Rigo (University of Liège) http://www.discmath.ulg.ac.be/ Words 2009, Univ. of Salerno, 14th September 2009 COMBINATORIAL GAME THEORY FOR

More information

NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO NUMBER THEORY AMIN WITNO.. w w w. w i t n o. c o m Number Theory Outlines and Problem Sets Amin Witno Preface These notes are mere outlines for the course Math 313 given at Philadelphia

More information

To Your Hearts Content

To Your Hearts Content To Your Hearts Content Hang Chen University of Central Missouri Warrensburg, MO 64093 hchen@ucmo.edu Curtis Cooper University of Central Missouri Warrensburg, MO 64093 cooper@ucmo.edu Arthur Benjamin [1]

More information

Instructor Notes for Chapter 4

Instructor Notes for Chapter 4 Section 4.1 One to One Functions (Day 1) Instructor Notes for Chapter 4 Understand that an inverse relation undoes the original Understand why the line y = xis a line of symmetry for the graphs of relations

More information

QUOTIENT AND PSEUDO-OPEN IMAGES OF SEPARABLE METRIC SPACES

QUOTIENT AND PSEUDO-OPEN IMAGES OF SEPARABLE METRIC SPACES proceedings of the american mathematical society Volume 33, Number 2, June 1972 QUOTIENT AND PSEUDO-OPEN IMAGES OF SEPARABLE METRIC SPACES PAUL L. STRONG Abstract. Ernest A. Michael has given a characterization

More information

THE NUMBER OF PERMUTATIONS WHICH FORM ARITHMETIC PROGRESSIONS MODULO m

THE NUMBER OF PERMUTATIONS WHICH FORM ARITHMETIC PROGRESSIONS MODULO m ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LXI, 2015, f.2 THE NUMBER OF PERMUTATIONS WHICH FORM ARITHMETIC PROGRESSIONS MODULO m BY FLORIAN LUCA and AUGUSTINE O.

More information