PROBLEM SET Explain the difference between mutual knowledge and common knowledge.

Size: px
Start display at page:

Download "PROBLEM SET Explain the difference between mutual knowledge and common knowledge."

Transcription

1 PROBLEM SET 1 1. Define Pareto Optimality. 2. Explain the difference between mutual knowledge and common knowledge. 3. Define strategy. Why is it possible for a player in a sequential game to have more than n strategies even if he has only n available actions? 4. (Geanokoplos, 1992) An honest but mischievous father tells his two sons that he has placed dollars in one envelope and dollars in the other envelope, where n is chosen with equal probability among the integers between 1 and 6. The sons completely believe their father. He randomly hands each son an envelope. The first son looks inside his envelope and finds $10,000. Disappointed at the meager amount, he calculates that the odds are fifty-fifty that he has the smaller amount in his envelope. Since the other envelope contains either $1,000 or $100,000 with equal probability, the first son realizes that the expected amount in the other envelope is $50,500. The second son finds only $1,000 in his envelope. Based on his information, he expects to find either $100 or $10,000 in the first son s envelope, which at equal odds come to an expectation of $5,050. The father privately asks each son whether he would be willing to pay $1 to switch envelopes, in effect betting that the other envelope has more money. Both sons say yes. The father then tells each son what his brother said and repeats the question. Again both say yes. The father relays the brothers answers and asks each a third time whether he is willing to pay $1 to switch envelopes. Again both say yes. But if the father relays their answers and asks each a fourth time, the son with $1,000 will say yes, but the son with $10,000 will say no. Why? 5. There once was a small island whose inhabitants had a strange tradition: anyone who discovered his or her own eye color was obligated to commit ritual suicide by jumping off a cliff at midnight on the day the discovery was made. Due to this tradition, the topic of eye color on the island was taboo. Everyone on the island knew everyone else s eye color, and they all knew that only three possible colors are possible: blue, green, and brown. But no one knew his or her own eye color, and so the island s seven blue-eyed inhabitants lived in peace and happiness with their fifteen green-eyed compatriots and their three hundred brown-eyed compatriots. All went smoothly until one visiting stranger, unfamiliar with the taboos of the island, made a shocking declaration: Some of you have blue eyes. The stranger spoke loudly, in the middle of the town square, where it was clear everyone could hear. What the stranger said wasn t news: even before he spoke, everyone knew that some of the island s inhabitants had blue eyes. Describe what happened during the first thirty days that followed the stranger s announcement. (You may assume that strangers are commonly known to be truthful.) 6. Find the Nash Equilibrium of the game below. Is the equilibrium Pareto Optimal?

2 7. Two distinct proposals, A and B, are being debated in Washington. The Congress likes A and the President likes B. The proposals are not mutually exclusive; either or both or neither may become law. Congress and the President receive the following payoffs from the four possible alternatives: Congress President A becomes law (4 for congress) (1 for president) B becomes law (1 for congress) (4 for president) Both A and B become law (3 for congress) (3 for president) Neither A nor B become law (2 for congress) (2 for president) (a) Suppose the game has the following structure. First, Congress decides whether to pass a bill and whether it contains just A, just B, or both. Then the President decides whether to sign the bill into law or to veto the bill. Congress does not have enough votes to override a veto. Draw the game tree. Find the Nash equilibrium in this game. (b) Now suppose the President is given the extra power of a line item veto. Thus the President can sign an entire bill into law, veto an entire bill, or veto just part of a bill and sign the other part into law. As before, Congress does not have enough votes to override a veto. Draw the game tree. Find the Nash equilibrium in this game. 8. (Alternating-Offer Bargaining) In this game, Players 1 and 2 take turns. Similarly to what happens in the Ultimatum Game, Player 1 receives a certain endowment, and has to make an offer to Player 2. The difference now is that, if Player 2 rejects the offer, instead of both getting zero, the size of the pie being divided shrinks, and Player 2 makes a counteroffer to Player 1. If

3 Player 1 rejects the counteroffer, then the game is over and neither player gets anything. If the payoffs in each round of this two-round game are $5.00 and $2.75, what is the equilibrium of this game, assuming that both players are selfish? What if we had three rounds (player 1, player 2, player 1), with payoffs $5.00, $2.50, and $1.25? And what if we had five rounds (player 1, player 2, player 1, player 2, player 1) with payoffs of $5.00, $1.70, $0.58, $0.20, and $0.07? What if the initial endowment is 1, the discount factor in each period is δ, and the game is played for n rounds? 9. (Strategic Voting) Three legislators are voting to give themselves a pay raise. The raise is worth b, but each legislator who votes for the raise incurs a cost of voter resentment equal to c < b. The outcome is decided by majority rule. a) Draw a game tree for the problem, assuming the legislators vote sequentially and publicly. b) Find the equilibrium of this game using backward induction. Is it better to go first? 10. Three gangsters armed with pistols, Al, Bob, and Curly, are in a room with a suitcase containing 120,000 dollars. Al is the least accurate, with a 20% chance of killing his target. Bob has a 40% probability. Curly is slow but sure; he kills his target with 70% probability. For each, the value of his own life outweighs the value of any amount of money. Survivors split the money. a) Suppose each gangster has one bullet and the order of shooting is first Al, then Bob, then Curly. Assume also that each gangster must try to kill another gangster when his turn comes. What is an equilibrium strategy profile and what is the probability that each of them dies in equilibrium? b) Suppose now that each gangster has the additional option of shooting his gun at the ceiling, which may kill somebody upstairs but has no direct effect on his payoff. Does the strategy profile that you found was an equilibrium in part (a) remain an equilibrium? Why? Why not? c) Now generalize this game. Assume that Al kills his target with probability p, Bob kills his target with probability q, and Curly kills his target with probability r. The option of shooting the ceiling is available to all players. Find all the possible equilibria for this game. d) In the generalized game, what is the probability that each player dies in equilibrium? If you had to choose between being the first-mover, the second-mover, or the thirdmover in this game, what would you choose? e) What is the equilibrium of the generalized game if you add a fourth player, Dan, who moves after Curly if he is still alive and kills his target with probability s? What is the equilibrium of this game? What if you keep adding more players? f) In the generalized game with three players (Al, Bob, and Curly), what is the equilibrium if a second round is allowed for those who are still alive? And what is the equilibrium if the game continues until there is only one man standing? 11. The five Dukes of Earl are scheduled to arrive at the royal palace on each of the first five days of May. Duke One is scheduled to arrive on the first day of May, Duke Two on the second, etc. Each Duke, upon arrival, can either kill the king or support the king. If he kills the king, he

4 takes the king s place, becomes the new king, and awaits the next Duke s arrival. If he supports the king, all subsequent Dukes cancel their visits. A Duke s first priority is to remain alive, and his second priority is to become king. Who is king on May 6? 12. Three players have to guess the price x of an object. It is common knowledge that x is a random variable that is distributed uniformly over the integers 1, 2,, 9. The game runs as follows: First, player 1 chooses a number n1, which the other players observe. Then player 2 chooses a number n2 that is observed by the other players. Player 2 is not allowed to select the number already chosen by player 1. Player 3 then selects a number n3, where n3 must be different than n1 and n2. Finally, the number x is drawn and the player whose guess is closest to x without going over wins $1000; the other players get 0. Find the Nash equilibrium of this game. 13. Suppose Alice contemplates suing Bob over some purported ill Bob perpetrated upon her. Suppose Alice s court cost for initiating a suit is c, her legal costs for going to trial are p, and Bob s cost of defending himself is d. Suppose both sides know these costs and also share the knowledge that the probability that Alice will win the suit is γ and the expected amount of the settlement is x. We assume γ x < p, so the suit is a frivolous nuisance suit that Alice would not pursue if her goal were to win the case. Finally, suppose that before the case goes to trial (but after the suit is initiated), the parties can settle out of court for an amount s. We assume s is given. a) Draw the game tree and find the Nash Equilibrium using backward induction. b) Now suppose the plaintiff puts his lawyer on retainer, meaning that he pays the amount p in advance, whether or not the suit is taken to trial. What is the equilibrium? Explain the intuition. 14. (Brams and Straffin, 1979) In the draft system used in football, basketball, and other professional sports in the United States, the teams having the worst win-loss records in the previous season get first pick of the new players in the draft. The worst team gets first choice, the next-worst team second choice, and so on. After each team has made a draft choice, the procedure is repeated, round by round, until every team has exhausted its choices. Presumably, this system, by giving the worst teams priority in the selection process, makes the teams more competitive the next season. Consider a game with only two teams (A and B) and four players in the draft (1,2,3,4), with preference ordering as follows: A = {1,2,3,4}and B = {2,3,4,1}. Assume that the both sets of preferences are common knowledge. Team A is the first-mover. Given this information, answer the following questions: a) If both teams choose sincerely, what is the outcome of the game? Is it Pareto Optimal? b) To choose sincerely, however, is not an equilibrium in this game. If both teams act rationally, what is the equilibrium of the game? Is it Pareto Optimal? c) Can you find an algorithm to find the equilibrium of the game when the number of teams is 2? d) Now consider the same game with three teams (A,B,C) and six players (1,2,3,4,5,6). Each team preference ordering is given by: A = {1,2,3,4,5,6}, B = {5,6,2,1,4,3}, and C =

5 {3,6,5,4,1,2}. Team A moves first, team B moves second, and team C moves last. If the teams choose sincerely, what is the outcome of the game? Is it Pareto Optimal? Why or why not? e) If the teams act strategically, what is the equilibrium of the game? Is it Pareto Optimal? f) Now assume that B moves first, C moves second, A moves last, and they behave rationally. What is the equilibrium of the game? Compare this result with your findings from part (e). What do you conclude? 15. (A very simple model of team production) Two workers have to choose sequentially whether to exert a high level or a low level of effort. The benefit that each worker gets is equal to, where n is the number of workers choosing a high level of effort, and x > 1. The cost of providing a high level of effort is equal to and the cost of choosing a low level of effort is equal to, where. a) What is the variable x capturing? Why is it greater than 1? b) Check for all possible Nash Equilibria. c) What happens to the probability of both workers choosing high effort when x increases? Explain the intuition. d) Assume that the manager of the firm moves last (after the two workers chose their respective levels of effort) and chooses to implement a fine f on those workers who chose a low level of effort. What is the minimum fine that guarantees high effort from both workers? How does the size of the fine change with, and x? e) Now add a third worker (without a manager). Which situation are we more likely to see all workers exerting high effort? With 2 workers or with 3? Explain the intuition. 16. Two staff managers in a sorority, the house manager (player 1) and kitchen manager (player 2), must select a resident assistant from a pool of three candidates: {a, b, c}. Player 1 prefers a to b, and b to c. Player 2 prefers b to a, and a to c. The process that is imposed on them is as follows: First, the house manager vetoes one of the candidates and announces the veto to the central office for staff selection and to the kitchen manager. Next the kitchen manager vetoes one of the remaining two candidates and announces it to the central office. Finally the director of the central office assigns the remaining candidate to be a resident assistant at the sorority. a) Find the Nash equilibrium. Is it unique? b) Now assume that before the two players play the game, player 2 can send an alienating e- mail to one of the candidates, which would result in that candidate withdrawing her application. Would player 2 choose to do this, and if so, with which candidate? 17. (Divide and Choose) Two players use the following procedure to divide a cake. Player 1 divides the cake into two pieces, and then player 2 chooses one of the pieces; player 1 obtains the remaining piece. The cake is continuously divisible (no lumps!), each player likes all parts of it, and each player cares only about the size of the piece of cake she obtains. a) Find the equilibrium (assuming that they only care about the amount of cake they receive);

6 b) Come up with two different utility functions (one for player 1 and one for player 2) so that the equilibrium is different than the one from part a; c) Come up with one utility function (the same one for each player) so that the equilibrium is different than the one from part a. 18. (Brams and Straffin, 1979) In the draft system used in football, basketball, and other professional sports in the United States, the teams having the worst win-loss records in the previous season get first pick of the new players in the draft. The worst team gets first choice, the next-worst team second choice, and so on. After each team has made a draft choice, the procedure is repeated, round by round, until every team has exhausted its choices. Presumably, this system, by giving the worst teams priority in the selection process, makes the teams more competitive the next season. Consider a game with only two teams (A and B) and four players in the draft (1,2,3,4), with preference ordering as follows: A = {1,2,3,4}and B = {2,3,4,1}. Assume that the both sets of preferences are common knowledge. Team A is the first-mover. Given this information, answer the following questions: g) If both teams choose sincerely, what is the outcome of the game? Is it Pareto Optimal? h) To choose sincerely, however, is not an equilibrium in this game. If both teams act rationally, what is the equilibrium of the game? Is it Pareto Optimal? i) Can you find an algorithm to find the equilibrium of the game when the number of teams is 2? j) Now consider the same game with three teams (A,B,C) and six players (1,2,3,4,5,6). Each team preference ordering is given by: A = {1,2,3,4,5,6}, B = {5,6,2,1,4,3}, and C = {3,6,5,4,1,2}. Team A moves first, team B moves second, and team C moves last. If the teams choose sincerely, what is the outcome of the game? Is it Pareto Optimal? Why or why not? k) If the teams act strategically, what is the equilibrium of the game? Is it Pareto Optimal? l) Now assume that B moves first, C moves second, A moves last, and they behave rationally. What is the equilibrium of the game? Compare this result with your findings from part (e). What do you conclude?

PROBLEM SET 1 1. (Geanokoplos, 1992) Imagine three girls sitting in a circle, each wearing either a red hat or a white hat. Each girl can see the colo

PROBLEM SET 1 1. (Geanokoplos, 1992) Imagine three girls sitting in a circle, each wearing either a red hat or a white hat. Each girl can see the colo PROBLEM SET 1 1. (Geanokoplos, 1992) Imagine three girls sitting in a circle, each wearing either a red hat or a white hat. Each girl can see the color of the hat of the other two girls, but not the color

More information

PROBLEM SET 1 1. (Geanokoplos, 1992) Imagine three girls sitting in a circle, each wearing either a red hat or a white hat. Each girl can see the colo

PROBLEM SET 1 1. (Geanokoplos, 1992) Imagine three girls sitting in a circle, each wearing either a red hat or a white hat. Each girl can see the colo PROBLEM SET 1 1. (Geanokoplos, 1992) Imagine three girls sitting in a circle, each wearing either a red hat or a white hat. Each girl can see the color of the hat of the other two girls, but not the color

More information

DYNAMIC GAMES. Lecture 6

DYNAMIC GAMES. Lecture 6 DYNAMIC GAMES Lecture 6 Revision Dynamic game: Set of players: Terminal histories: all possible sequences of actions in the game Player function: function that assigns a player to every proper subhistory

More information

Games in Extensive Form, Backward Induction, and Subgame Perfection:

Games in Extensive Form, Backward Induction, and Subgame Perfection: Econ 460 Game Theory Assignment 4 Games in Extensive Form, Backward Induction, Subgame Perfection (Ch. 14,15), Bargaining (Ch. 19), Finitely Repeated Games (Ch. 22) Games in Extensive Form, Backward Induction,

More information

Strategic Bargaining. This is page 1 Printer: Opaq

Strategic Bargaining. This is page 1 Printer: Opaq 16 This is page 1 Printer: Opaq Strategic Bargaining The strength of the framework we have developed so far, be it normal form or extensive form games, is that almost any well structured game can be presented

More information

EconS Sequential Move Games

EconS Sequential Move Games EconS 425 - Sequential Move Games Eric Dunaway Washington State University eric.dunaway@wsu.edu Industrial Organization Eric Dunaway (WSU) EconS 425 Industrial Organization 1 / 57 Introduction Today, we

More information

Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016

Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016 Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016 1 Games in extensive form So far, we have only considered games where players

More information

ECON 312: Games and Strategy 1. Industrial Organization Games and Strategy

ECON 312: Games and Strategy 1. Industrial Organization Games and Strategy ECON 312: Games and Strategy 1 Industrial Organization Games and Strategy A Game is a stylized model that depicts situation of strategic behavior, where the payoff for one agent depends on its own actions

More information

Student Name. Student ID

Student Name. Student ID Final Exam CMPT 882: Computational Game Theory Simon Fraser University Spring 2010 Instructor: Oliver Schulte Student Name Student ID Instructions. This exam is worth 30% of your final mark in this course.

More information

Finance Solutions to Problem Set #8: Introduction to Game Theory

Finance Solutions to Problem Set #8: Introduction to Game Theory Finance 30210 Solutions to Problem Set #8: Introduction to Game Theory 1) Consider the following version of the prisoners dilemma game (Player one s payoffs are in bold): Cooperate Cheat Player One Cooperate

More information

2. The Extensive Form of a Game

2. The Extensive Form of a Game 2. The Extensive Form of a Game In the extensive form, games are sequential, interactive processes which moves from one position to another in response to the wills of the players or the whims of chance.

More information

ECON 282 Final Practice Problems

ECON 282 Final Practice Problems ECON 282 Final Practice Problems S. Lu Multiple Choice Questions Note: The presence of these practice questions does not imply that there will be any multiple choice questions on the final exam. 1. How

More information

Games. Episode 6 Part III: Dynamics. Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto

Games. Episode 6 Part III: Dynamics. Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto Games Episode 6 Part III: Dynamics Baochun Li Professor Department of Electrical and Computer Engineering University of Toronto Dynamics Motivation for a new chapter 2 Dynamics Motivation for a new chapter

More information

Game Theory -- Lecture 6. Patrick Loiseau EURECOM Fall 2016

Game Theory -- Lecture 6. Patrick Loiseau EURECOM Fall 2016 Game Theory -- Lecture 6 Patrick Loiseau EURECOM Fall 06 Outline. Stackelberg duopoly and the first mover s advantage. Formal definitions 3. Bargaining and discounted payoffs Outline. Stackelberg duopoly

More information

final examination on May 31 Topics from the latter part of the course (covered in homework assignments 4-7) include:

final examination on May 31 Topics from the latter part of the course (covered in homework assignments 4-7) include: The final examination on May 31 may test topics from any part of the course, but the emphasis will be on topic after the first three homework assignments, which were covered in the midterm. Topics from

More information

Game Theory Refresher. Muriel Niederle. February 3, A set of players (here for simplicity only 2 players, all generalized to N players).

Game Theory Refresher. Muriel Niederle. February 3, A set of players (here for simplicity only 2 players, all generalized to N players). Game Theory Refresher Muriel Niederle February 3, 2009 1. Definition of a Game We start by rst de ning what a game is. A game consists of: A set of players (here for simplicity only 2 players, all generalized

More information

ECON 301: Game Theory 1. Intermediate Microeconomics II, ECON 301. Game Theory: An Introduction & Some Applications

ECON 301: Game Theory 1. Intermediate Microeconomics II, ECON 301. Game Theory: An Introduction & Some Applications ECON 301: Game Theory 1 Intermediate Microeconomics II, ECON 301 Game Theory: An Introduction & Some Applications You have been introduced briefly regarding how firms within an Oligopoly interacts strategically

More information

Microeconomics of Banking: Lecture 4

Microeconomics of Banking: Lecture 4 Microeconomics of Banking: Lecture 4 Prof. Ronaldo CARPIO Oct. 16, 2015 Administrative Stuff Homework 1 is due today at the end of class. I will upload the solutions and Homework 2 (due in two weeks) later

More information

1\2 L m R M 2, 2 1, 1 0, 0 B 1, 0 0, 0 1, 1

1\2 L m R M 2, 2 1, 1 0, 0 B 1, 0 0, 0 1, 1 Chapter 1 Introduction Game Theory is a misnomer for Multiperson Decision Theory. It develops tools, methods, and language that allow a coherent analysis of the decision-making processes when there are

More information

(a) Left Right (b) Left Right. Up Up 5-4. Row Down 0-5 Row Down 1 2. (c) B1 B2 (d) B1 B2 A1 4, 2-5, 6 A1 3, 2 0, 1

(a) Left Right (b) Left Right. Up Up 5-4. Row Down 0-5 Row Down 1 2. (c) B1 B2 (d) B1 B2 A1 4, 2-5, 6 A1 3, 2 0, 1 Economics 109 Practice Problems 2, Vincent Crawford, Spring 2002 In addition to these problems and those in Practice Problems 1 and the midterm, you may find the problems in Dixit and Skeath, Games of

More information

ECO 463. SimultaneousGames

ECO 463. SimultaneousGames ECO 463 SimultaneousGames Provide brief explanations as well as your answers. 1. Two people could benefit by cooperating on a joint project. Each person can either cooperate at a cost of 2 dollars or fink

More information

"Students play games while learning the connection between these games and Game Theory in computer science or Rock-Paper-Scissors and Poker what s

Students play games while learning the connection between these games and Game Theory in computer science or Rock-Paper-Scissors and Poker what s "Students play games while learning the connection between these games and Game Theory in computer science or Rock-Paper-Scissors and Poker what s the connection to computer science? Game Theory Noam Brown

More information

Extensive-Form Games with Perfect Information

Extensive-Form Games with Perfect Information Extensive-Form Games with Perfect Information Yiling Chen September 22, 2008 CS286r Fall 08 Extensive-Form Games with Perfect Information 1 Logistics In this unit, we cover 5.1 of the SLB book. Problem

More information

Econ 302: Microeconomics II - Strategic Behavior. Problem Set #5 June13, 2016

Econ 302: Microeconomics II - Strategic Behavior. Problem Set #5 June13, 2016 Econ 302: Microeconomics II - Strategic Behavior Problem Set #5 June13, 2016 1. T/F/U? Explain and give an example of a game to illustrate your answer. A Nash equilibrium requires that all players are

More information

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2016 Prof. Michael Kearns

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2016 Prof. Michael Kearns Introduction to (Networked) Game Theory Networked Life NETS 112 Fall 2016 Prof. Michael Kearns Game Theory for Fun and Profit The Beauty Contest Game Write your name and an integer between 0 and 100 Let

More information

UPenn NETS 412: Algorithmic Game Theory Game Theory Practice. Clyde Silent Confess Silent 1, 1 10, 0 Confess 0, 10 5, 5

UPenn NETS 412: Algorithmic Game Theory Game Theory Practice. Clyde Silent Confess Silent 1, 1 10, 0 Confess 0, 10 5, 5 Problem 1 UPenn NETS 412: Algorithmic Game Theory Game Theory Practice Bonnie Clyde Silent Confess Silent 1, 1 10, 0 Confess 0, 10 5, 5 This game is called Prisoner s Dilemma. Bonnie and Clyde have been

More information

Bargaining games. Felix Munoz-Garcia. EconS Strategy and Game Theory Washington State University

Bargaining games. Felix Munoz-Garcia. EconS Strategy and Game Theory Washington State University Bargaining games Felix Munoz-Garcia EconS 424 - Strategy and Game Theory Washington State University Bargaining Games Bargaining is prevalent in many economic situations where two or more parties negotiate

More information

Introduction to Game Theory

Introduction to Game Theory Introduction to Game Theory Lecture 2 Lorenzo Rocco Galilean School - Università di Padova March 2017 Rocco (Padova) Game Theory March 2017 1 / 46 Games in Extensive Form The most accurate description

More information

Game Theory and Algorithms Lecture 3: Weak Dominance and Truthfulness

Game Theory and Algorithms Lecture 3: Weak Dominance and Truthfulness Game Theory and Algorithms Lecture 3: Weak Dominance and Truthfulness March 1, 2011 Summary: We introduce the notion of a (weakly) dominant strategy: one which is always a best response, no matter what

More information

Instructions [CT+PT Treatment]

Instructions [CT+PT Treatment] Instructions [CT+PT Treatment] 1. Overview Welcome to this experiment in the economics of decision-making. Please read these instructions carefully as they explain how you earn money from the decisions

More information

INTRODUCTION TO GAME THEORY

INTRODUCTION TO GAME THEORY INTRODUCTION TO GAME THEORY Game Theory A. Tic-Tac-Toe (loser pays winner $5). 1. Are there good and bad moves in tic-tac-toe? O X O X a. yes, at least some times. b. def: action something a player can

More information

DECISION MAKING GAME THEORY

DECISION MAKING GAME THEORY DECISION MAKING GAME THEORY THE PROBLEM Two suspected felons are caught by the police and interrogated in separate rooms. Three cases were presented to them. THE PROBLEM CASE A: If only one of you confesses,

More information

Bargaining Games. An Application of Sequential Move Games

Bargaining Games. An Application of Sequential Move Games Bargaining Games An Application of Sequential Move Games The Bargaining Problem The Bargaining Problem arises in economic situations where there are gains from trade, for example, when a buyer values an

More information

Spring 2014 Quiz: 10 points Answer Key 2/19/14 Time Limit: 53 Minutes (FAS students: Teaching Assistant. Total Point Value: 10 points.

Spring 2014 Quiz: 10 points Answer Key 2/19/14 Time Limit: 53 Minutes (FAS students: Teaching Assistant. Total Point Value: 10 points. Gov 40 Spring 2014 Quiz: 10 points Answer Key 2/19/14 Time Limit: 53 Minutes (FAS students: 11:07-12) Name (Print): Teaching Assistant Total Point Value: 10 points. Your Grade: Please enter all requested

More information

Sequential games. Moty Katzman. November 14, 2017

Sequential games. Moty Katzman. November 14, 2017 Sequential games Moty Katzman November 14, 2017 An example Alice and Bob play the following game: Alice goes first and chooses A, B or C. If she chose A, the game ends and both get 0. If she chose B, Bob

More information

Chapter 30: Game Theory

Chapter 30: Game Theory Chapter 30: Game Theory 30.1: Introduction We have now covered the two extremes perfect competition and monopoly/monopsony. In the first of these all agents are so small (or think that they are so small)

More information

The Rubinstein bargaining game without an exogenous first-mover

The Rubinstein bargaining game without an exogenous first-mover The Rubinstein bargaining game without an exogenous first-mover Fernando Branco Universidade Católica Portuguesa First Version: June 2007 This Version: January 2008 Abstract I study the equilibria of a

More information

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility theorem (consistent decisions under uncertainty should

More information

Game Theory and Economics of Contracts Lecture 4 Basics in Game Theory (2)

Game Theory and Economics of Contracts Lecture 4 Basics in Game Theory (2) Game Theory and Economics of Contracts Lecture 4 Basics in Game Theory (2) Yu (Larry) Chen School of Economics, Nanjing University Fall 2015 Extensive Form Game I It uses game tree to represent the games.

More information

Probability Paradoxes

Probability Paradoxes Probability Paradoxes Washington University Math Circle February 20, 2011 1 Introduction We re all familiar with the idea of probability, even if we haven t studied it. That is what makes probability so

More information

February 11, 2015 :1 +0 (1 ) = :2 + 1 (1 ) =3 1. is preferred to R iff

February 11, 2015 :1 +0 (1 ) = :2 + 1 (1 ) =3 1. is preferred to R iff February 11, 2015 Example 60 Here s a problem that was on the 2014 midterm: Determine all weak perfect Bayesian-Nash equilibria of the following game. Let denote the probability that I assigns to being

More information

Ultimatum Bargaining. James Andreoni Econ 182

Ultimatum Bargaining. James Andreoni Econ 182 1 Ultimatum Bargaining James Andreoni Econ 182 3 1 Demonstration: The Proposer-Responder Game 4 2 Background: Nash Equilibrium Example Let's think about how we make a prediction in this game: Each Player

More information

18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY

18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY 18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY 1. Three closed boxes lie on a table. One box (you don t know which) contains a $1000 bill. The others are empty. After paying an entry fee, you play the following

More information

. Introduction to Game Theory Lecture Note 4: Extensive-Form Games and Subgame Perfect Equilibrium. HUANG Haifeng University of California, Merced

. Introduction to Game Theory Lecture Note 4: Extensive-Form Games and Subgame Perfect Equilibrium. HUANG Haifeng University of California, Merced .. Introduction to Game Theory Lecture Note 4: Extensive-Form Games and Subgame Perfect Equilibrium HUANG Haifeng University of California, Merced Extensive games with perfect information What we have

More information

EconS Game Theory - Part 1

EconS Game Theory - Part 1 EconS 305 - Game Theory - Part 1 Eric Dunaway Washington State University eric.dunaway@wsu.edu November 8, 2015 Eric Dunaway (WSU) EconS 305 - Lecture 28 November 8, 2015 1 / 60 Introduction Today, we

More information

U strictly dominates D for player A, and L strictly dominates R for player B. This leaves (U, L) as a Strict Dominant Strategy Equilibrium.

U strictly dominates D for player A, and L strictly dominates R for player B. This leaves (U, L) as a Strict Dominant Strategy Equilibrium. Problem Set 3 (Game Theory) Do five of nine. 1. Games in Strategic Form Underline all best responses, then perform iterated deletion of strictly dominated strategies. In each case, do you get a unique

More information

Lecture 5: Subgame Perfect Equilibrium. November 1, 2006

Lecture 5: Subgame Perfect Equilibrium. November 1, 2006 Lecture 5: Subgame Perfect Equilibrium November 1, 2006 Osborne: ch 7 How do we analyze extensive form games where there are simultaneous moves? Example: Stage 1. Player 1 chooses between fin,outg If OUT,

More information

The Mother & Child Game

The Mother & Child Game BUS 4800/4810 Game Theory Lecture Sequential Games and Credible Threats Winter 2008 The Mother & Child Game Child is being BD Moms responds This is a Sequential Game 1 Game Tree: This is the EXTENDED form

More information

Games of Perfect Information and Backward Induction

Games of Perfect Information and Backward Induction Games of Perfect Information and Backward Induction Economics 282 - Introduction to Game Theory Shih En Lu Simon Fraser University ECON 282 (SFU) Perfect Info and Backward Induction 1 / 14 Topics 1 Basic

More information

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2014 Prof. Michael Kearns Introduction to (Networked) Game Theory Networked Life NETS 112 Fall 2014 Prof. Michael Kearns percent who will actually attend 100% Attendance Dynamics: Concave equilibrium: 100% percent expected to attend

More information

Lecture #3: Networks. Kyumars Sheykh Esmaili

Lecture #3: Networks. Kyumars Sheykh Esmaili Lecture #3: Game Theory and Social Networks Kyumars Sheykh Esmaili Outline Games Modeling Network Traffic Using Game Theory Games Exam or Presentation Game You need to choose between exam or presentation:

More information

THEORY: NASH EQUILIBRIUM

THEORY: NASH EQUILIBRIUM THEORY: NASH EQUILIBRIUM 1 The Story Prisoner s Dilemma Two prisoners held in separate rooms. Authorities offer a reduced sentence to each prisoner if he rats out his friend. If a prisoner is ratted out

More information

Arpita Biswas. Speaker. PhD Student (Google Fellow) Game Theory Lab, Dept. of CSA, Indian Institute of Science, Bangalore

Arpita Biswas. Speaker. PhD Student (Google Fellow) Game Theory Lab, Dept. of CSA, Indian Institute of Science, Bangalore Speaker Arpita Biswas PhD Student (Google Fellow) Game Theory Lab, Dept. of CSA, Indian Institute of Science, Bangalore Email address: arpita.biswas@live.in OUTLINE Game Theory Basic Concepts and Results

More information

CS510 \ Lecture Ariel Stolerman

CS510 \ Lecture Ariel Stolerman CS510 \ Lecture04 2012-10-15 1 Ariel Stolerman Administration Assignment 2: just a programming assignment. Midterm: posted by next week (5), will cover: o Lectures o Readings A midterm review sheet will

More information

Game Theory and Economics Prof. Dr. Debarshi Das Humanities and Social Sciences Indian Institute of Technology, Guwahati

Game Theory and Economics Prof. Dr. Debarshi Das Humanities and Social Sciences Indian Institute of Technology, Guwahati Game Theory and Economics Prof. Dr. Debarshi Das Humanities and Social Sciences Indian Institute of Technology, Guwahati Module No. # 05 Extensive Games and Nash Equilibrium Lecture No. # 03 Nash Equilibrium

More information

Dynamic Games of Complete Information

Dynamic Games of Complete Information Dynamic Games of Complete Information Dynamic Games of Complete and Perfect Information F. Valognes - Game Theory - Chp 13 1 Outline of dynamic games of complete information Dynamic games of complete information

More information

The book goes through a lot of this stuff in a more technical sense. I ll try to be plain and clear about it.

The book goes through a lot of this stuff in a more technical sense. I ll try to be plain and clear about it. Economics 352: Intermediate Microeconomics Notes and Sample Questions Chapter 15: Game Theory Models of Pricing The book goes through a lot of this stuff in a more technical sense. I ll try to be plain

More information

Game Theory. Wolfgang Frimmel. Subgame Perfect Nash Equilibrium

Game Theory. Wolfgang Frimmel. Subgame Perfect Nash Equilibrium Game Theory Wolfgang Frimmel Subgame Perfect Nash Equilibrium / Dynamic games of perfect information We now start analyzing dynamic games Strategic games suppress the sequential structure of decision-making

More information

Grade 7/8 Math Circles. February 14 th /15 th. Game Theory. If they both confess, they will both serve 5 hours of detention.

Grade 7/8 Math Circles. February 14 th /15 th. Game Theory. If they both confess, they will both serve 5 hours of detention. Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles February 14 th /15 th Game Theory Motivating Problem: Roger and Colleen have been

More information

Game Theory. Vincent Kubala

Game Theory. Vincent Kubala Game Theory Vincent Kubala Goals Define game Link games to AI Introduce basic terminology of game theory Overall: give you a new way to think about some problems What Is Game Theory? Field of work involving

More information

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition SF2972: Game theory Mark Voorneveld, mark.voorneveld@hhs.se Topic 1: defining games and strategies Drawing a game tree is usually the most informative way to represent an extensive form game. Here is one

More information

17.5 DECISIONS WITH MULTIPLE AGENTS: GAME THEORY

17.5 DECISIONS WITH MULTIPLE AGENTS: GAME THEORY 666 Chapter 17. Making Complex Decisions plans generated by value iteration.) For problems in which the discount factor γ is not too close to 1, a shallow search is often good enough to give near-optimal

More information

Games with Sequential Moves. Games Of Strategy Chapter 3 Dixit, Skeath, and Reiley

Games with Sequential Moves. Games Of Strategy Chapter 3 Dixit, Skeath, and Reiley Games with Sequential Moves Games Of Strategy Chapter 3 Dixit, Skeath, and Reiley Terms to Know Action node Backward induction Branch Decision node Decision tree Equilibrium path of play Extensive form

More information

Incomplete Information. So far in this course, asymmetric information arises only when players do not observe the action choices of other players.

Incomplete Information. So far in this course, asymmetric information arises only when players do not observe the action choices of other players. Incomplete Information We have already discussed extensive-form games with imperfect information, where a player faces an information set containing more than one node. So far in this course, asymmetric

More information

Game Theory. Vincent Kubala

Game Theory. Vincent Kubala Game Theory Vincent Kubala vkubala@cs.brown.edu Goals efine game Link games to AI Introduce basic terminology of game theory Overall: give you a new way to think about some problems What Is Game Theory?

More information

Math 100, Writing Assignment #2

Math 100, Writing Assignment #2 Math 100, Writing Assignment # Katie Hellier Math 100 Fall 011 University of California at Santa Cruz November 8, 011 1 The Problem A pirate ship captures a treasure of 1000 golden coins. The treasure

More information

Strategies and Game Theory

Strategies and Game Theory Strategies and Game Theory Prof. Hongbin Cai Department of Applied Economics Guanghua School of Management Peking University March 31, 2009 Lecture 7: Repeated Game 1 Introduction 2 Finite Repeated Game

More information

6. Bargaining. Ryan Oprea. Economics 176. University of California, Santa Barbara. 6. Bargaining. Economics 176. Extensive Form Games

6. Bargaining. Ryan Oprea. Economics 176. University of California, Santa Barbara. 6. Bargaining. Economics 176. Extensive Form Games 6. 6. Ryan Oprea University of California, Santa Barbara 6. Individual choice experiments Test assumptions about Homo Economicus Strategic interaction experiments Test game theory Market experiments Test

More information

Would You Like To Earn $1000 s With The Click Of A Button?

Would You Like To Earn $1000 s With The Click Of A Button? Would You Like To Earn $1000 s With The Click Of A Button? (Follow these easy step by step instructions and you will) - 100% Support and all questions answered! - Make financial stress a thing of the past!

More information

Computing Nash Equilibrium; Maxmin

Computing Nash Equilibrium; Maxmin Computing Nash Equilibrium; Maxmin Lecture 5 Computing Nash Equilibrium; Maxmin Lecture 5, Slide 1 Lecture Overview 1 Recap 2 Computing Mixed Nash Equilibria 3 Fun Game 4 Maxmin and Minmax Computing Nash

More information

Dynamic games: Backward induction and subgame perfection

Dynamic games: Backward induction and subgame perfection Dynamic games: Backward induction and subgame perfection ectures in Game Theory Fall 04, ecture 3 0.0.04 Daniel Spiro, ECON300/400 ecture 3 Recall the extensive form: It specifies Players: {,..., i,...,

More information

Perfect Bayesian Equilibrium

Perfect Bayesian Equilibrium Perfect Bayesian Equilibrium When players move sequentially and have private information, some of the Bayesian Nash equilibria may involve strategies that are not sequentially rational. The problem is

More information

Chapter 13. Game Theory

Chapter 13. Game Theory Chapter 13 Game Theory A camper awakens to the growl of a hungry bear and sees his friend putting on a pair of running shoes. You can t outrun a bear, scoffs the camper. His friend coolly replies, I don

More information

Bargaining and Reputation with Ultimatums

Bargaining and Reputation with Ultimatums Bargaining and Reputation with Ultimatums Mehmet Ekmekci 1 Hanzhe Zhang 2 1 Boston College 2 Michigan State University Monday, November 19, 2018 Southern Economic Association - http://www.msu.edu/ hanzhe/

More information

Module 5: Probability and Randomness Practice exercises

Module 5: Probability and Randomness Practice exercises Module 5: Probability and Randomness Practice exercises PART 1: Introduction to probability EXAMPLE 1: Classify each of the following statements as an example of exact (theoretical) probability, relative

More information

Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes

Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes Worksheet 6 th Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of

More information

2015 Mark Whitten DEJ Enterprises, LLC 1

2015 Mark Whitten DEJ Enterprises, LLC   1 All right, I'm going to move on real quick. Now, you're at the house, you get it under contract for 10,000 dollars. Let's say the next day you put up some signs, and I'm going to tell you how to find a

More information

1 Game Theory and Strategic Analysis

1 Game Theory and Strategic Analysis Page 1 1 Game Theory and Strategic Analysis 11. 12. 13. 14. Static Games and Nash Equilibrium Imperfect Competition Explicit and Implicit Cooperation Strategic Commitment (a) Sequential games and backward

More information

There are several schemes that we will analyze, namely: The Knaster Inheritance Procedure. Cake-Division Procedure: Proportionality

There are several schemes that we will analyze, namely: The Knaster Inheritance Procedure. Cake-Division Procedure: Proportionality Chapter 13 Fair Division Fair Division Problems When demands or desires of one party are in conflict with those of another; however, objects must be divided or contents must be shared in such a way that

More information

How to divide things fairly

How to divide things fairly MPRA Munich Personal RePEc Archive How to divide things fairly Steven Brams and D. Marc Kilgour and Christian Klamler New York University, Wilfrid Laurier University, University of Graz 6. September 2014

More information

Lecture 11 Strategic Form Games

Lecture 11 Strategic Form Games Lecture 11 Strategic Form Games Jitesh H. Panchal ME 597: Decision Making for Engineering Systems Design Design Engineering Lab @ Purdue (DELP) School of Mechanical Engineering Purdue University, West

More information

Lecture 13(ii) Announcements. Lecture on Game Theory. None. 1. The Simple Version of the Battle of the Sexes

Lecture 13(ii) Announcements. Lecture on Game Theory. None. 1. The Simple Version of the Battle of the Sexes Lecture 13(ii) Announcements None Lecture on Game Theory 1. The Simple Version of the Battle of the Sexes 2. The Battle of the Sexes with Some Strategic Moves 3. Rock Paper Scissors 4. Chicken 5. Duopoly

More information

4/21/2016. Intermediate Microeconomics W3211. Lecture 20: Game Theory 2. The Story So Far. Today. But First.. Introduction

4/21/2016. Intermediate Microeconomics W3211. Lecture 20: Game Theory 2. The Story So Far. Today. But First.. Introduction 1 Intermediate Microeconomics W3211 ecture 20: Game Theory 2 Introduction Columbia University, Spring 2016 Mark Dean: mark.dean@columbia.edu 2 The Story So Far. 3 Today 4 ast lecture we began to study

More information

Game Theory and Randomized Algorithms

Game Theory and Randomized Algorithms Game Theory and Randomized Algorithms Guy Aridor Game theory is a set of tools that allow us to understand how decisionmakers interact with each other. It has practical applications in economics, international

More information

13-6 Probabilities of Mutually Exclusive Events

13-6 Probabilities of Mutually Exclusive Events Determine whether the events are mutually exclusive or not mutually exclusive. Explain your reasoning. 1. drawing a card from a standard deck and getting a jack or a club The jack of clubs is an outcome

More information

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 6 Games and Strategy (ch.4)-continue

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 6 Games and Strategy (ch.4)-continue Introduction to Industrial Organization Professor: Caixia Shen Fall 014 Lecture Note 6 Games and Strategy (ch.4)-continue Outline: Modeling by means of games Normal form games Dominant strategies; dominated

More information

EC 308 Sample Exam Questions

EC 308 Sample Exam Questions EC 308 Sample Exam Questions 1. In the following game Sample Midterm 1 Multiple Choice Questions Player 2 l m r U 2,0 3,1 0,0 Player 1 M 1,1 2,2 1,2 D 3,2 2,2 2,1 (a) D dominates M for player 1 and therefore

More information

Extensive Games with Perfect Information. Start by restricting attention to games without simultaneous moves and without nature (no randomness).

Extensive Games with Perfect Information. Start by restricting attention to games without simultaneous moves and without nature (no randomness). Extensive Games with Perfect Information There is perfect information if each player making a move observes all events that have previously occurred. Start by restricting attention to games without simultaneous

More information

Chapter 15: Game Theory: The Mathematics of Competition Lesson Plan

Chapter 15: Game Theory: The Mathematics of Competition Lesson Plan Chapter 15: Game Theory: The Mathematics of Competition Lesson Plan For All Practical Purposes Two-Person Total-Conflict Games: Pure Strategies Mathematical Literacy in Today s World, 9th ed. Two-Person

More information

BLACKJACK. Game Rules. Definitions Mode of Play How to Play Settlement Irregularities

BLACKJACK. Game Rules. Definitions Mode of Play How to Play Settlement Irregularities BLACKJACK Game Rules 1. Definitions 2. Mode of Play 3. 4. How to Play Settlement 5. Irregularities 21 1. Definitions 1.1. In these rules: 1.1.1. Blackjack means an Ace and any card having a point value

More information

Refinements of Sequential Equilibrium

Refinements of Sequential Equilibrium Refinements of Sequential Equilibrium Debraj Ray, November 2006 Sometimes sequential equilibria appear to be supported by implausible beliefs off the equilibrium path. These notes briefly discuss this

More information

NORMAL FORM (SIMULTANEOUS MOVE) GAMES

NORMAL FORM (SIMULTANEOUS MOVE) GAMES NORMAL FORM (SIMULTANEOUS MOVE) GAMES 1 For These Games Choices are simultaneous made independently and without observing the other players actions Players have complete information, which means they know

More information

3 Game Theory II: Sequential-Move and Repeated Games

3 Game Theory II: Sequential-Move and Repeated Games 3 Game Theory II: Sequential-Move and Repeated Games Recognizing that the contributions you make to a shared computer cluster today will be known to other participants tomorrow, you wonder how that affects

More information

CONNECTICUT LOTTERY CORPORATION OFFICIAL GAME RULES Connecticut Lucky-4-Life"

CONNECTICUT LOTTERY CORPORATION OFFICIAL GAME RULES Connecticut Lucky-4-Life CONNECTICUT LOTTERY CORPORATION OFFICIAL GAME RULES Connecticut Lucky-4-Life" Please take notice that the Connecticut Lottery Corporation (CLC) duly adopted, with the advice and consent of the Board of

More information

Game Theory: The Basics. Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943)

Game Theory: The Basics. Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943) Game Theory: The Basics The following is based on Games of Strategy, Dixit and Skeath, 1999. Topic 8 Game Theory Page 1 Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943)

More information

Homework 5 Answers PS 30 November 2013

Homework 5 Answers PS 30 November 2013 Homework 5 Answers PS 30 November 2013 Problems which you should be able to do easily 1. Consider the Battle of the Sexes game below. 1a 2, 1 0, 0 1b 0, 0 1, 2 a. Find all Nash equilibria (pure strategy

More information

LESSON 6. Finding Key Cards. General Concepts. General Introduction. Group Activities. Sample Deals

LESSON 6. Finding Key Cards. General Concepts. General Introduction. Group Activities. Sample Deals LESSON 6 Finding Key Cards General Concepts General Introduction Group Activities Sample Deals 282 More Commonly Used Conventions in the 21st Century General Concepts Finding Key Cards This is the second

More information

Mixed Strategies; Maxmin

Mixed Strategies; Maxmin Mixed Strategies; Maxmin CPSC 532A Lecture 4 January 28, 2008 Mixed Strategies; Maxmin CPSC 532A Lecture 4, Slide 1 Lecture Overview 1 Recap 2 Mixed Strategies 3 Fun Game 4 Maxmin and Minmax Mixed Strategies;

More information

Backward Induction and Stackelberg Competition

Backward Induction and Stackelberg Competition Backward Induction and Stackelberg Competition Economics 302 - Microeconomic Theory II: Strategic Behavior Shih En Lu Simon Fraser University (with thanks to Anke Kessler) ECON 302 (SFU) Backward Induction

More information

G5212: Game Theory. Mark Dean. Spring 2017

G5212: Game Theory. Mark Dean. Spring 2017 G5212: Game Theory Mark Dean Spring 2017 The Story So Far... Last week we Introduced the concept of a dynamic (or extensive form) game The strategic (or normal) form of that game In terms of solution concepts

More information