Vibration measurement in the cryogenic interferometric gravitational wave detector (CLIO interferometer)

Similar documents
Development of the accelerometer for cryogenic experiments II

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors II - Cooling Performance and Vibration -

Development of a Vibration Measurement Method for Cryocoolers

Low Vibration, Low Thermal Fluctuation System for Pulse Tube and Gifford- McMahon Cryocoolers

Interferometer for LCGT 1st Korea Japan Workshop on Korea University Jan. 13, 2012 Seiji Kawamura (ICRR, Univ. of Tokyo)

Cold-Head Vibrations of a Coaxial Pulse Tube Refrigerator

The VIRGO injection system

Downselection of observation bandwidth for KAGRA

Control Servo Design for Inverted Pendulum

The AEI 10 m Prototype. June Sina Köhlenbeck for the 10m Prototype Team

Designing Optical Layouts for AEI s 10 meter Prototype. Stephanie Wiele August 5, 2008

The VIRGO suspensions

Virgo status and commissioning results

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7)

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux

Interferometer signal detection system for the VIRGO experiment. VIRGO collaboration

Optical lever for KAGRA

Introduction to laser interferometric gravitational wave telescope

Micro-manipulated Cryogenic & Vacuum Probe Systems

VIRGO. The status of VIRGO. & INFN - Sezione di Roma 1. 1 / 6/ 2004 Fulvio Ricci

Quantum States of Light and Giants

A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer

S.No Description/Specifications Qty 01. Post office box Trainer.

Development of Optical lever system of the 40 meter interferometer

How to Build a Gravitational Wave Detector. Sean Leavey

DRAFT Expected performance of type-bp SAS in bkagra

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses.

Squeezed light and radiation pressure effects in suspended interferometers. Thomas Corbitt

Using a Negative Impedance Converter to Dampen Motion in Test Masses

Results from the Stanford 10 m Sagnac interferometer

Improving seismic isolation in Advanced LIGO using a ground rotation sensor

Koji Arai / Stan Whitcomb LIGO Laboratory / Caltech. LIGO-G v1

Tilt sensor and servo control system for gravitational wave detection.

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Vibration studies of a superconducting accelerating

Possibility of Upgrading KAGRA

Status of the BIPM Watt Balance

Development of Shock Acceleration Calibration Machine in NMIJ

Thermal correction of the radii of curvature of mirrors for GEO 600

Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor

Our 10m Interferometer Prototype

Energy Efficient Operation of 4 K Pulse Tube Cryocoolers

ngvla Advanced Cryocoolers For ngvla NATIONAL RADIO ASTRONOMY OBSERVATORY Larry D Addario, Caltech ngvlaworkshop, Socorro, 2017 June 26

Received 14 May 2008, in final form 14 July 2008 Published 11 September 2008 Online at stacks.iop.org/cqg/25/195008

Seismic Noise & Vibration Isolation Systems. AIGO Summer Workshop School of Physics, UWA Feb Mar. 2, 2010

Physical Properties Measurement System (PPMS): Detailed specifications: Basic unit cryogen- free

THE CRYOGENIC SYSTEM OF TESLA

ALIGNMENT METHODS APPLIED TO THE LEP MAGNET MEASUREMENTS. J. Billan, G. Brun, K. N. Henrichsen, P. Legrand, 0. Pagano, P. Rohmig and L. Walckiers.

arxiv: v1 [gr-qc] 10 Sep 2007

Superattenuator seismic isolation measurements by Virgo interferometer: a comparison with the future generation antenna requirements

Advanced Virgo commissioning challenges. Julia Casanueva on behalf of the Virgo collaboration

Arm Cavity Finesse for Advanced LIGO

SUPERCONDUCTING GANTRY AND OTHER DEVELOPMENTS AT HIMAC

Fusion Engineering and Design (1997) First results from the three-view far-infrared interferometer for the H1 heliac

Vertical-Vibration Suppressing Design of Accumulator with New Vibration-Measuring Method

A SUBMILLIMETER SIS RECEIVER COOLED BY A COMPACT STIRLING-YT REFRIGERATOR

Picometer stable scan mechanism for gravitational wave detection in space

Unit-23 Michelson Interferometer I

System Options. Magnetic Property Measurement System. AC Susceptibility. AC Susceptibility Specifications

First step in the industry-based development of an ultra-stable optical cavity for space applications

Alignment control of GEO 600

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

3D Optical Motion Analysis of Micro Systems. Heinrich Steger, Polytec GmbH, Waldbronn

MULTIPACTING IN THE CRAB CAVITY

High performance vibration isolation techniques for the AIGO gravitational wave detector

Mechanical modeling of the Seismic Attenuation System for AdLIGO

INTERFEROMETRIC VIBRATION DISPLACEMENT MEASUREMENT

CHAPTER 3. Multi-stage seismic attenuation system

DEVELOPMENT OF A BETA 0.12, 88 MHZ, QUARTER WAVE RESONATOR AND ITS CRYOMODULE FOR THE SPIRAL2 PROJECT

Thoughts on noise in LISA What do we learn from LPF? M Hewitson LISA Consortium Meeting Paris 13th October 2015

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

Noise Budget Development for the LIGO 40 Meter Prototype

PRM SRM. Grav. Wave ReadOut

PI piezo Life Time Test Report. A. Bosotti, R. Paparella, F. Puricelli

Commissioning of Advanced Virgo

OPTICS IN MOTION. Introduction: Competing Technologies: 1 of 6 3/18/2012 6:27 PM.

HIGH POWER INPUT COUPLERS FOR THE STF BASELINE CAVITY SYSTEM AT KEK

Nanoscale Material Characterization with Differential Interferometric Atomic Force Microscopy

Periodic Error Correction in Heterodyne Interferometry

School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei, China 2

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor

X-Ray Detection Using SOI Monolithic Sensors at a Compact High-Brightness X-Ray Source Based on Inverse Compton Scattering

Development of Photocathode RF Gun No.

Report to the 20th Meeting of CCTF Research Activities on Time and Frequency National Metrology Institute of Japan (NMIJ)/AIST

The VIRGO Environmental Monitoring System

Autocorrelator MODEL AA- 10DM

Supplementary Figure 1

4. Superconducting sector magnets for the SRC 4.1 Introduction

VIBRATION MEASUREMENTS IN THE KEKB TUNNEL. Mika Masuzawa, Yasunobu Ohsawa, Ryuhei Sugahara and Hiroshi Yamaoka. KEK, OHO 1-1 Tsukuba, Japan

Status of KAGRA Detector Characterization. Kazuhiro Hayama (Osaka City Univ.) on behalf of the detector characterization group

D.C. Emmony, M.W. Godfrey and R.G. White

Stability of a Fiber-Fed Heterodyne Interferometer

GAS (Geometric Anti Spring) filter and LVDT (Linear Variable Differential Transformer) Enzo Tapia Lecture 2. KAGRA Lecture 2 for students

High Power and Energy Femtosecond Lasers

Reliability Studies of the Nozzle/Piezo Units for the WASA-at-COSY Pellet Target

Study of MEMS Devices for Space Applications ~Study Status and Subject of RF-MEMS~

7 Telsa SQUID Magnetometer

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications

LINEAR INDUCTION ACCELERATOR WITH MAGNETIC STEERING FOR INERTIAL FUSION TARGET INJECTION

A Low-Noise 1542nm Laser Stabilized to an

Transcription:

Vibration measurement in the cryogenic interferometric gravitational wave detector (CLIO interferometer) ICRR Univ. of Tokyo, Dept. of geophysics Kyoto University A, KEK B, Dept. of advanced materials science Univ. of Tokyo C, Sumitomo Heavy Industries Ltd. D K. Yamamoto, T. Uchiyama, S. Miyoki, M. Ohashi, K. Kuroda, H. Hayakawa A, T. Tomaru B, N. Sato B, T. Suzuki B, T. Haruyama B, A. Yamamoto B, T. Shintomi B, S. Moriwaki C, Y. Ikushima D, T. Koyama D, R. Li D 2006 March 28 The meeting of Physical Society of Japan @Matsuyama University

0. Abstract Measurement of the vibration at the top of suspension and inner shield of CLIO interferometer

Contents 1. Introduction 2. Outline of experiment 3. Results 4. Future works 5. Summary

1. Introduction LCGT and CLIO : future and current Japanese project to construct the interferometric gravitational wave detector (1) Cryogenic interferometer (20 K) : reduction of thermal noise (2) Kamioka mine : small seismic noise Cryocooler Vibration Measurement of vibration with operating cryocooler is necessary.

Schematic view of cryogenic apparatus (1)Top of suspension (300 K) Vacuum chamber (300 K) Outer shield (100 K) Inner shield (8 K) Intermediate mass (10 K) Cryocooler (4 K) Heat link (2)Shield (8 K) Measurement point (1)Top of suspension (300 K, vacuum) (2)Shield(8K, vacuum) Mirror (20 K) CLIO cryostat in Kamioka mine

2. Outline of experiment 2-1. Location Kamioka mine (LCGT,CLIO site) 220km west from Tokyo Kamioka 220km Tokyo (TAMA)

2-2. Cryostat of CLIO interferometer (end) Gifford-McMahon refrigerator (removal) Mirror Top of suspension (room temperature, vacuum, 1.9 m from floor, support of four poles) Inner shield (low temperature, vacuum, 0.6 m from floor, support of G10 rods) Pulse tube cryocooler : extremely small vibration 4K Pulse tube cryocooler 80K Pulse tube cryocooler Shield (developed by KEK and Sumitomo Heavy Industries Ltd.) Class. Quantum Grav. 21(2004)S1005. Compressor Beam splitter (100m ahead) by T. Uchiyama

Top roof Door Cryostat of CLIO interferometer

Top of suspension

Top roof Door Cryostat of CLIO interferometer

Inner shield Duct Bottom of shield

2-3. Accelerometer Laser source (diode) 635 nm Reference Mirror(fixed) Steering mirror Beam Splitter (fixed) Oscillator Vacuum chamber (Laser source and photo detectors are in vacuum chamber. Sound does not affect accelerometer directly.) Only room temperature 5 mw Photo Detector Photo Detector Output Observation band < 400 Hz (horizontal) < 250 Hz (vertical) + Differential amp Filter

Accelerometer Laser source Beam Splitter Reference mirror Oscillator 145 mm Coil Photo detectors

3. Results 3-1. Top of suspension (Horizontal:optical axis) < 200 Hz Displacement [m/hz 1/2 ] Cryocoolers and pump do not increase vibration. > 200 Hz Cryocoolers and pump increase vibration. 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 -9 2 10 / f 1/2 [m/hz ] Top of suspension(horizontal) Pulse,pump on (2005/3/10:first) Pump on (2005/3/10:second) Off (2005/2/3:second) Kashiwa (2004/8/6:second) Vertical : similar 10-14 0.1 1 10 100 1000 Frequency [Hz]

3-2. Inner shield (Horizontal:optical axis) Cryocoolers and pumps do not increase vibration. G10 rods > 200 Hz vibration isolation Displacement [m/hz 1/2 ] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 -9 2 10 / f 1/2 [m/hz ] 0.1 1 10 100 1000 Frequency [Hz] Shield (Horizontal) Pulse on (2005/10/6) Pump on (2005/10/5) Off (2005/10/4) Kashiwa (2004/8/6:second)

3-3. Inner shield (Vertical) 10-5 10-6 -9 10 / f 2 1/2 [m/hz ] Vacuum pumps increase vibration. Cryocoolers : peaks > 200 Hz G10 rods vibration isolation Displacement [m/hz 1/2 ] 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 Shield (Vertical) Pulse on (2005/10/13:second) Pump on (2005/10/13:first) Off (2005/10/12) Kashiwa (2004/8/16:first) 0.1 1 10 100 1000 Frequency [Hz]

3-4. Comparison with floor (Horizontal:Optical axis) Floor -9 2 1/2 10 / f [m/hz ] Suspension top peak Inner shield : 30 Hz 10 Hz - 200 Hz 100 times Displacement [m/hz 1/2 ] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 -9 2 10 / f 1/2 [m/hz ] 0.1 1 10 100 1000 Frequency [Hz] Horizontal motion Top of suspension (2005/2/3:second) Inner shield (2005/10/4:first) Floor (RION) (Perpendicular end 2005/5/10) Kashiwa (2004/8/6:second)

3-5. Comparison with floor (Vertical) Floor -9 2 1/2 10 / f [m/hz ] Suspension top peak Inner shield : 30 Hz, 40 Hz 10 Hz - 200 Hz 10 times Displacement [m/hz 1/2 ] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 -9 2 10 / f 1/2 [m/hz ] 0.1 1 10 100 1000 Frequency [Hz] Vertical motion Top of suspension (2005/6/8:first) Inner shield (2005/10/12:first) Floor (RION) (Inline end 2005/5/11) Kashiwa (2004/8/16:first)

3-6. Sensitivity of CLIO interferometer External vibration does not limit sensitivity above 40 Hz at 300 K. above 60 Hz at 20 K. < 40 Hz Suspension top dominant Displacement [m/hz 1/2 ] 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 10-16 10-17 10-18 10-19 10-20 10-21 Noise budget of CLIO From top of suspension From inner shield Shot noise Radiation pressure noise Standard quantum limit Thermal noise (mirror) Thermal noise (mirror at 300K) by T. Uchiyama 10 0 10 1 10 2 10 3 10 4 Frequency [Hz]

4. Future works (For LCGT) (1) Cryocooler : no serious problem (2) Vacuum pump : some problems (inner shield, vertical motion) (Dry pump) < (Rotary and turbo pump) Connection with cryostat (3) Suspension top : peak (30 Hz) SAS (4) Inner shield : large vibration (10 Hz - 200 Hz) SPI Study of inner shield vibration

5. Summary (1) Measurement of the vibration at top of suspension and inner shield of CLIO interferometer (2) Cryocooler : no serious problem Vacuum pump : some problems (inner shield, vertical motion) (3) Suspension top : peak (30 Hz) Inner shield : large vibration (10 Hz - 200 Hz : 10-100 times) (4) CLIO interferometer sensitivity : External vibration does not limit sensitivity above 40 Hz at 300 K. above 60 Hz at 20 K. (5) Future works for LCGT : Vacuum pump Inner shield vibration

KamLAND (KAMIOKANDE) Super KAMIOKANDE Dark Matter Detector Perpendicular Exit Superconducting gravimeter (LISM[20m]) Inline Location of experiment CLIO[100m] CLIO Location in Kamioka mine

Dry pump

Dry pump

Duct of CLIO interferometer Cryostat Turbo pump To rotary pump

4K Pulse tube refrigerator

80K Pulse tube refrigerator

Compressor

thermal switch Gifford-McMahon refrigerator

SHI SRP-052A 2 Cryostat 80K 4K

2. Outline of Experiment 2-1. Outline of accelerometer (i) Free mass : reference (ii) Sensor : displacement between free mass and shield Sensor Shield Free mass Force (iii) Actuator : feedback Actuator Mass follows shield. Acceleration Acceleration of shield is derived from feedback signal. Horizontal and vertical vibration measurement Goal sensitivity : Seismic motion in Kamioka mine

2-2. Components of accelerometer (i) Free mass : Mechanical harmonic oscillator Material : Phosphor bronze Resonant frequency : 20 Hz 20 mm * 20 mm *20 mm 20 mm length 0.3 mm thickness 1 mm width (ii) Sensor : Michelson interferometer (Calibration) (iii) Actuator : Coil-magnet actuator (Operation at low temperature)

Vertical oscillator Coil Oscillator BS Reference mirror Steering mirror holder

Accelerometer Beam splitter of CLIO Laser source Interferometer Top of suspension

Displacement [m/hz 1/2 ] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 Interferometer noise Horizontal, Top of suspension pulse, pump off interferometer noise (2005/3/16:third) seismic motion (2005/2/3:second) 10-15 10-1 10 0 10 1 10 2 10 3 10 4 10 5 Frequency [Hz]

Displacement [m/hz 1/2 ] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 Interferometer noise Top of suspension Vertical, off interferometer noise (2005/7/7:second) seismic motion (off:2005/6/8:first) 10-15 10-1 10 0 10 1 10 2 10 3 10 4 10 5 Frequency [Hz]

10-9 10-10 Noise of interferometer (off) Top of suspension vertical(2005/7/7:second) horizontal(2005/3/16:third) Displacement [m/hz 1/2 ] 10-11 10-12 10-13 10-14 10-15 10-1 10 0 10 1 10 2 10 3 10 4 10 5 Frequency [Hz]

Displacement [m/hz 1/2 ] 10-9 10-10 10-11 10-12 10-13 Top of suspension Horizontal pulse,pump on (2005/3/10:first) pump on (2005/3/10:second) pulse,pump off (2005/2/3:second) 10-14 10-15 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 Frequency [Hz]

Displacement [m/hz 1/2 ] 10-9 10-10 10-11 10-12 10-13 Suspension top (Vertical) Pulse on (2005/6/14:second) Pump on (2005/6/8:third) Off (2005/6/8:first) 10-14 10-15 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 Frequency [Hz]

3-2. Horizontal motion (optical axis:>100hz) >400Hz Upper limit Refrigerator increases vibration 100 times (1 khz). Seismic motion [m/hz 1/2 ] 10-9 10-10 10-11 10-12 10-13 10-14 Top of suspension Horizontal motion pulse,pump on (2005/3/10:first) pulse,pump off (2005/2/3:second) fixed mirror (on) (2005/3/16:first) fixed mirror (off) (2005/3/16:third) 10-15 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 Frequency [Hz]

Displacement [m/hz 1/2 ] 10-9 10-10 10-11 10-12 10-13 Suspension top (Vertical) Pulse on (2005/6/14:second) Off (2005/6/8:first) fixed mirror(pulse on) (2005/7/8:first) fixed mirror(off) (2005/7/7:second) 10-14 10-15 10 2 2 4 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 5 Frequency [Hz]

3-2. Vertical motion (< 1 khz) floor level (1 Hz-70 Hz) -9 2 1/2 10 / f [m/hz ] < 200 Hz Cryocoolers do not increase vibration seriously. Displacement [m/hz 1/2 ] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 -9 2 10 / f 1/2 [m/hz ] Vertical motion pulse on (2005/6/14:second) pulse,pump off (2005/6/8:first) pump on (2005/6/8:third) Kashiwa (2004/8/16:first) 10-15 10-1 10 0 10 1 10 2 10 3 10 4 10 5 Frequency [Hz]

3-3. Vertical motion (< 1 khz) floor level (1 Hz-100 Hz) -9 2 10 /f [m/hz 1/2] < 200 Hz Refrigerator does not increase vibration seriously. Seismic motion [m/hz 1/2 ] 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 -9 2 10 /f [m/hz 1/2] Vertical motion pulse,pump on (2005/3/18:second) pulse,pump off (2005/3/18:first) CLIK end (2004/8/16:first) 10-14 0.1 1 10 100 1000 Frequency [Hz]

Cryostat RION

3-5.Gifford-McMahon refrigerator (Horizontal motion) GM refrigerator inceases vibration. 30 Hz-400 Hz Kashiwa level! Seismic motion [m/hz 1/2 ] 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 GM refrigerator (Horizontal motion) GM on (2005/1/21:second) pulse,pump on (2005/3/10:first) CLIK end (2004/8/6:second) 10-12 10-13 0.1 1 10 100 1000 Frequency [Hz]

3-2. Operation at room temperature (2) (Cryostat vs optical table) 10-5 - 30 Hz : about same 30 Hz -100 Hz : larger motion in cryostat 100 Hz - : better sound isolation in cryostat Seismic motion [m/hz 1/2 ] 10-6 10-7 10-8 10-9 10-10 10-11 Seismic motion CLIK (Kashiwa) end pump off (2004/3/13) optical table (2004/2/21) 10-12 10-13 0.1 1 10 100 1000 Frequency [Hz]

3. Results 3-1. Operation at room temperature 3-1-1. Comparison with RION (i) Horizontal motion Seismic motion [m/hz 1/2 ] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 Horizontal seismic motion in cryostat (2004/8/5:in air:kashiwa) Interferometer RION Consistent (0.2 Hz - 100 Hz) 10-13 0.1 1 10 100 1000 Frequency [Hz]

(ii) Vertical motion Seismic motion [m/hz 1/2 ] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 Vertical seismic motion in cryostat (2004/8/14:in air:kashiwa) Interferometer RION Consistent (0.3 Hz - 100 Hz) 10-13 0.1 1 10 100 1000 Frequency [Hz]

10-5 10-6 10-7 Displacement [m/hz 1/2 ] 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 Shield of CLIO cryostat Horizontal,perpendicular end pump,pt off Interferometer (2005/11/30) RION(2005/11/30) 0.1 1 10 100 1000 Frequency [Hz]

Displacement [m/hz 1/2 ] 10-4 10-5 10-6 10-7 10-8 10-9 10-10 Shield of CLIO cryostat 2005/10/4(pump,PT off) 2005/10/4(50m pump on) 10-11 10-12 0.1 2 4 6 8 1 2 4 6 8 10 2 4 6 8 100 Frequency [Hz]

50 m pump Duct Turbo pump Rotary pump