Long-term carrier-envelope-phase stabilization of a femtosecond laser by the direct locking method

Similar documents
Precision control of carrier-envelope phase in grating based chirped pulse amplifiers

Control of the frequency comb from a modelocked Erbium-doped fiber laser

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Carrier-envelope phase stabilization of modelocked lasers

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Control and precise measurement of carrier-envelope phase dynamics

taccor Optional features Overview Turn-key GHz femtosecond laser

Status on Pulsed Timing Distribution Systems and Implementations at DESY, FERMI and XFEL

The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit

Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis

Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors

Absolute frequency measurement of unstable lasers with optical frequency combs

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

How to build an Er:fiber femtosecond laser

Highly Phase Stable Mode-Locked Lasers

Generating coherent broadband continuum soft-x-ray radiation by attosecond ionization gating

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

Carrier envelope-offset dynamics and stabilization of femtosecond pulses

Directly Chirped Laser Source for Chirped Pulse Amplification

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

Ultrahigh precision synchronization of optical and microwave frequency sources

The Frequency Comb (R)evolution. Thomas Udem Max-Planck Institut für Quantenoptik Garching/Germany

Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology

Femtosecond-stability delivery of synchronized RFsignals to the klystron gallery over 1-km optical fibers

Carrier envelope phase effects on polarization gated attosecond spectra

A transportable optical frequency comb based on a mode-locked fibre laser

Suppression of Rayleigh-scattering-induced noise in OEOs

Carrier-Envelope Phase Stabilization of Single and Multiple Femtosecond Lasers

Using GNSS for optical frequency and wavelength measurements

Femtosecond Synchronization of Laser Systems for the LCLS

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

Control of coherent light and its broad applications

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

PLL Synchronizer User s Manual / Version 1.0.6

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Attosecond control of optical waveforms

Recent Progress in Pulsed Optical Synchronization Systems

Absolute frequency measurement of the iodine-stabilized He Ne laser at 633 nm

Supplementary Information. All-fibre photonic signal generator for attosecond timing. and ultralow-noise microwave

SYNCHRONIZATION SYSTEMS FOR ERLS

Isolated sub-30-attosecond pulse generation using a multicycle two-color chirped laser and a static electric field

Jungwon Kim, Jonathan A. Cox, Jian J. Chen & Franz X. Kärtner. Department of Electrical Engineering and Computer Science and Research Laboratory

High Power and Energy Femtosecond Lasers

Phase-coherent synthesis of optical frequencies and waveforms

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao

Carrier-Envelope Phase Stabilization of Modelocked Lasers

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Diode Laser Control Electronics. Diode Laser Locking and Linewidth Narrowing. Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG

Generation and Control of Ultrashort Supercontinuum Pulses

Real-time pulse length measurement of few-cycle laser pulses using above-threshold ionization

High-Energy 6.2-fs Pulses for Attosecond Pulse Generation

Designing for Femtosecond Pulses

Supercontinuum generation and carrier envelope offset frequency measurement in a tapered single-mode fiber

TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY

CARRIER-ENVELOPE PHASE STABILIZATION OF GRATING-BASED CHIRPED-PULSE AMPLIFIERS ERIC WAYNE MOON. B.S., Baker University, 2003

Direct measurement and analysis of the carrier-envelope phase in light pulses approaching the single-cycle regime

XUV FREQUENCY COMB SPECTROSCOPY

STABILIZATION OF THE ABSOLUTE FREQUENCY AND PHASE OF A COMPACT, LOW JITTER MODELOCKED SEMICONDUCTOR DIODE LASER

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

Stability of a Fiber-Fed Heterodyne Interferometer

A CW seeded femtosecond optical parametric amplifier

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Spider Pulse Characterization

Soliton stability conditions in actively modelocked inhomogeneously broadened lasers

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology

Development of high average power fiber lasers for advanced accelerators

Simultaneous measurement of two different-color ultrashort pulses on a single shot

A new picosecond Laser pulse generation method.

Efficient second-harmonic generation of CW radiation in an external optical cavity using non-linear crystal BIBO

Absolute Distance Measurements Using the Optical Comb of a Femtosecond Pulse Laser

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Coherent power combination of two Masteroscillator-power-amplifier. semiconductor lasers using optical phase lock loops

Pulse compression with supercontinuum generation in microstructure fibers

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS

A n optical frequency comb (OFC), a light source whose spectrum consists of a series of discrete, equally

TIMING DISTRIBUTION AND SYNCHRONIZATION COMPLETE SOLUTIONS FROM ONE SINGLE SOURCE

RF-Based Detector for Measuring Fiber Length Changes with Sub-5 Femtosecond Long-Term Stability.

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Broadband dispersion-free optical cavities based on zero group delay dispersion mirror sets

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Testing with 40 GHz Laser Sources

Wavelength Control and Locking with Sub-MHz Precision

Ultrafast Optical Physics II (SoSe 2017) Lecture 9, June 16

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

Generation of five phase locked harmonics by implementing a divide by three optical frequency divider

Frequency stabilized three mode HeNe laser using nonlinear optical phenomena

High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers

atom physics seminar ultra short laser pulses

Compact, Ti:sapphire based methane-stabilized optical molecular frequency comb and clock

Applied Physics B Lasers and Optics. m. hirasawa 1,3, n. nakagawa 1,3 k. yamamoto 1,3 r. morita 1,3 h. shigekawa 2,3 m.

ModBox - Spectral Broadening Unit

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm

Testing with Femtosecond Pulses

National standards of length for high-capacity optical fiber communication systems

Acousto-optic pulse picking scheme with carrierfrequency-to-pulse-repetition-rate. synchronization

Transcription:

Long-term carrier-envelope-phase stabilization of a femtosecond laser by the direct locking method Jae-hwan Lee 1, Yong Soo Lee 1, Juyun Park 1, Tae Jun Yu 2, and Chang Hee Nam 1 1 Dept. of Physics and Coherent X-ray Research Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea 2 Advanced Photonics Research Institute, Gwangju Institute of Science and technology, Gwangju 500-712, Korea chnam@kaist.ac.kr Abstract: We have developed a practical solution to implement the direct locking method for the carrier-envelope phase (CEP) stabilization of femtosecond laser pulses and achieved 24-hour CEP stabilization without realignment of any optical components. The direct locking method realizes the CEP stabilization in the time domain by directly quenching the beat signal from an f-to-2f interferometer and, thereby, locking every pulse to a same CEP. We have accomplished the long-term CEP stabilization using commercially available standard feedback electronics, and maintained the CEP stabilization with low jitter without using any frequency-analyzing components, greatly facilitating the accessibility of the CEP stabilization. 2008 Optical Society of America OCIS codes: (120.5050) Phase measurement; (320.2250)Femtosecond phenomena; (320.7100)Ultrafast measurements References and links 1. A. Baltǔska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, Attosecond control of electronic processes by intense light fields, Nature (London) 421, 611 615 (2003). 2. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, Isolated single-cycle attosecond pulses, Science 314, 443 446 (2006). 3. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, Attosecond control and measurement: lightwave electronics, Science 317, 769 775 (2007). 4. Th. Udem, J. Reichert, R.Holzwarth, and T. W. Hänsch, Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser, Phys. Rev. Lett. 82, 3568-3571 (1999). 5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science 288, 635 639 (2000). 6. M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, 87 Sr Lattice Clock with Inaccuracy below 10 15, Phys. Rev. Lett. 98, 083002 (2007). 7. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, H. Takamiya, K. Nishijima, T. Homma, H. Takahashi, K. Okubo, S. Nakamura, and Y. Koyamada, Carrier-envelope-phase stabilized chirped-pulse amplification system scalable to higher pulse energies, Opt. Express 12, 2070 2080 (2004). 8. K. -H. Hong, J. Lee, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Carrier-envelope phase stabilization of high-contrast femtosecond laser pulses with a relativistic intensity, Appl. Phys. Lett. 89, 031113 (2006). (C) 2008 OSA 18 August 2008 / Vol. 16, No. 17 / OPTICS EXPRESS 12624

9. E. Gagnon, I. Thomann, A. Paul, A. L. Lytle, S. Backus, M. M. Murnane, H. C. Kapteyn, and A. S. Sandhu, Long-term carrier-envelope phase stability from a grating-based, chirped pulse amplifier, Opt. Lett. 31, 1866 1868 (2006). 10. C. Li, E. Moon, H. Mashiko, C. M. Nakamura, P. Ranitovic, C. M. Maharjan, C. L. Cocke, Z. Chang, and G. G. Paulus, Precision control of carrier-envelope phase in grating based chirped pulse amplifiers, Opt. Express 14, 11468 11476 (2006). 11. Y. S. Lee, J. H. Sung, and C. H. Nam, T. J. Yu, and K. -H. Hong, Novel method for carrier-envelope-phase stabilization of femtosecond laser pulses, Opt. Express 13, 2969 2976 (2005). 12. T. J. Yu, K. -H. Hong, H. G. Choi, J. H. Sung, I. W. Choi, D. K. Ko, J. Lee, J. Kim, D. E. Kim, and C. H. Nam, Pricise and long-term stabilization of the carrier-envelope phase of femtosecond laser pulses using an enhanced direct locking technique, Opt. Express 15, 8203 8211 (2007). 13. J. -h. Lee, Y. S. Lee, J. Park, T. J. Yu, and C. H. Nam Implementation of the direct locking method for long-term carrier-envelope phase stabilization of a khz femtosecond laser, in preparation. 14. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation, Appl. Phys. B, 69, 327 332, (1999). 15. K. -H. Hong, T. J. Yu, Y. S. Lee, C. H. Nam, and R. S. Windeler, Measurement of the shot-to-shot carrierenvelope phase slip of femtosecond laser pulses, J. Opt. Soc. Kor. 42, 101 105 (2003). 16. J. H. Sung, J. Y. Park, T. Imran, Y. S. Lee, and C. H. Nam, Generation of 0.2-TW5.5-fs optical pulses at 1 khz using a differentially pumped hollow-fiber chirped-mirror compressor, Appl. Phys. B 82, 5 8 (2005). 17. J. H. Sung, K. -H. Hong, and C. H. Nam, High-power femtosecond Ti:sapphire laser at 1 khz with a long cavity femtosecond oscillator, J. Opt. Soc. Kor. 7, 135 138 (2003). 18. L. Xu, Ch. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, Route to phase control of ultrashort light pulses, Opt. Lett. 21, 2008 2010, (1996). 19. J. Bechhoefer, Feedback for physicists: A tutorial essay on control, Rev. Mod. Phys. 77, 783 836 (2005). 1. Introduction Carrier-envelope phase (CEP) stabilization of femtosecond laser pulses has become one of crucial techniques in attosecond science [1-3] as well as in frequency metrology [4-6]. The CEP stabilization technique has been developed on the basis of the phase-locked loop (PLL) method [7-10], operating in the frequency domain, and widely used for the generation of a stable optical frequency comb. The PLL method stabilizes pulse-to-pulse CEP slip to be constant. On the other hand, the direct locking (DL) method is a different kind of CEP stabilization technique operating in the time domain [11]. DL directly uses the beat signal from an f -to-2 f interferometer as an error signal and quenches it through a negative feedback. As the DL method generates CEP-stabilized pulses with zero CEP slip, the CEP of every pulse is same. It is, thus, beneficial to applications requiring femtosecond pulses with identical CEP, compared to the conventional PLL method necessitating a special scheme to achieve zero CEP slip [5]. Successful operation of DL has been confirmed with an out-of-loop measurement [11]. Recently, the DL technique has been improved further using homodyne balanced detection (HBD) and double feedback techniques, achieving low CEP jitter and long-term CEP stabilization [12]. Furthermore, the CEP of amplified pulses in a khz femtosecond Ti:Sapphire laser was successfully stabilized using DL and applied to high harmonic generation with CEP-stabilized femtosecond laser pulses [13]. In this paper, we present a practical solution to implement the DL method for the CEP stabilization of femtosecond laser pulses, achieving continuous CEP stabilization for 24 hours without any optical realignment. The CEP stabilization is realized using commercially available standard feedback electronics containing the functions of proportional, integral, and derivative (PID) operations. By testing PID functions an optimum solution to realize the DL has been obtained. In addition we show that the DL can be realized without using any frequency-related equipment such as an RF spectrum analyzer, making it also an economical solution for CEP stabilization of femtosecond lasers. (C) 2008 OSA 18 August 2008 / Vol. 16, No. 17 / OPTICS EXPRESS 12625

2. Practical implementation of the direct locking method CEP stabilization means the control of pulse-to-pulse CEP variation of a femtosecond laser. The information on CEP variation of a femtosecond laser can be obtained from an f -to-2f interferometer [14, 15]. The DL method first measures a beat signal between f 2n and 2f n components of an octave-spanned laser spectrum due to CEP variation, in which f 2n and 2f n are the fundamental and frequency-doubled 532-nm components of the laser spectrum, respectively. The beat signal is then sent to a feedback servo as an error signal. The CEP stabilization by the DL method is achieved by quenching the beat signal by the feedback servo. We have realized the feedback servo using PID controllers, commonly used for stabilizing system operation, such as constant temperature maintenance. Fig. 1. Schematic diagram of the direct locking setup for CEP stabilization. (AOM: acoustooptic modulator, PID: analog PID controller, PCF: photonic crystal fiber, DB: dichroic beam splitter, SHG: second-harmonic generation crystal, HWP: half-wave plate, BPF: band-pass filter, PBS: polarizing beam splitter at 532 nm, APD: avalanche photodiode, BPD: balanced PIN photodiode) We applied DL for the CEP stabilization of a femtosecond oscillator with a set of intracavity prisms. Figure 1 shows the schematic diagram of the direct locking setup that consists of the f -to-2f interferometer, photodiodes, and locking servo [11]. For the generation of an octave spanning spectrum a tapered photonic crystal fiber (Femtowhite 800, Crystal-fibre) was used, which greatly improved the alignment sensitivity compared to a bare photonic crystal fiber. The HBD setup in Fig. 1 optically eliminates any signal fluctuations, not originating from CEP variation, for the generation of a pure beat signal. The half-wave plate and polarizing beam splitters (PBS3, PBS4) were installed in front of the balanced photodiodes (BPD) to realize HBD. The pure beat signal generated from BPD was then sent to the feedback servo (PID1). The feedback signal, sent to an acousto-optic modulator (AOM), adjusted the pump power to the oscillator, and the CEP stabilization was achieved by directly quenching the beat signal [15, 18]. The generation of the beat signal requires the overlap of the f 2n and 2f n components in space and time. The spatial overlap was obtained by careful alignment, but the temporal overlap could be found by cautious monitoring of the beat signal with an oscilloscope. Figure 2 shows how (C) 2008 OSA 18 August 2008 / Vol. 16, No. 17 / OPTICS EXPRESS 12626

Fig. 2. Monitoring the beat signal, using APD in Fig. 1 and an oscilloscope, to match the time delay between f and 2f signals in the f -to-2f interferometer. The beat signal changed from (a) to (b) to (c) as the time delay became better matched. the temporal overlap can be checked with the oscilloscope. The leakage beam containing the 2f n and f 2n components from PBS3 was detected using an avalanche photodiode (APD) with 100 MHz bandwidth. When the f 2n and 2f n signals did not temporally overlap, a pulse train with the laser repetition rate appeared, as shown in Fig. 2(a). As the time delay was adjusted, the pulse train exhibited a modulation when the two signals became temporally overlapped, as shown in Fig. 2(b). In this case the modulation frequency was too high for feedback control. In order to make the frequency within the accessible feedback frequency of 100 khz, the insertion of the intracavity prism was adjusted. Figure 2(c) shows the pulse train with a modulation frequency of about 2.5 MHz. With further adjustment of the prism insertion the modulation frequency could be reduced within the feedback control frequency. This is another benefit of the DL method achieved without using an RF spectrum analyzer. With sufficiently low frequency modulation below 100 khz the direct locking servo was activated. For the feedback control an analog PID controller (SIM960, SRS) with 100-kHz operational bandwidth was used. The pure beat signal from the BPD in Fig. 1 was supplied as an error signal, ε. The feedback signal (V out ) generated from the PID controller can be expressed as follows [19]: V out = P(ε + I εdt + D dε dt )+V of f, (1) where P, I, and D are proportional, integral, and derivative gain, respectively, and V of f is an offset voltage. Using only the P function the error signal can be quenched, but it may generate a non-zero error that can be corrected using the I function. When the non-zero error contains rapidly varying component, it can be corrected by the D function. The result of the feedback control operation is shown in Fig. 3. The pure beat signal in Fig. 3(a) was generated using the (C) 2008 OSA 18 August 2008 / Vol. 16, No. 17 / OPTICS EXPRESS 12627

0.3 (a) 0.0 Beat Sig. (V) -0.3 0.3 0.0-0.3 0.3 (b) (c) 0.0-0.3 0 1 2 3 4 Time (ms) Fig. 3. Quenching of the beating signal using standard feedback electronics. (a) Pure beating signal monitored by the BPD in the f -to-2f interferometer. Feedback signals obtained using only the P function of the PID controller (b) and using the P and I functions (c). HBD technique. As the beat frequency became less than 100 khz, it could be measured with the BPD consisting of two PIN photodiodes; it is another benefit of the DL method as compared to the conventional PLL method requiring high sensitivity APD s due to its operation at much higher frequency. When the feedback was performed with only the P function, the quenched beat signal contained low-frequency fluctuation, as shown in Fig. 3(b). This fluctuation could be stabilized using the I function, as shown in Fig. 3(c), without further applying the D function. Angle (rad) 1 0 (a) (b) 1 0 Angle (rad) Angle (rad) -1 0 20 40 60 80 100 1 0 (c) -1 0 2 4 6 8 10 Time (ms) -1 0.0 0.2 0.4 0.6 0.8 1.0 Time ( s) Time (ms) (d) 10-4 10-3 10-2 10-1 10 0 10 1 10 2 Time (s) 40 36 32 Accumulated phase jitter (mrad) Fig. 4. CEP jitter measured with different observation duration. The stabilized beat signals measured for 100 us (a), 1 ms (b), and 10 ms (c). (d) Change of the accumulated CEP jitter with different observation duration. (C) 2008 OSA 18 August 2008 / Vol. 16, No. 17 / OPTICS EXPRESS 12628

In the DL method, the data analysis is simple and intuitive. CEP jitter can be estimated simply by comparing the BPD signals before and after locking. As the beat signal before locking provides a full sinusoidal swing, the CEP jitter can be easily obtained by converting each point of the beat signal after locking to corresponding angular value [11]. In order to investigate the accumulated phase jitter of CEP-stabilized laser pulses, the root-mean-square CEP jitter was measured with different observation duration, as shown in Fig 4. The CEP jitter increased from 31 mrad for 100-μs observed duration to 35 mrad for 1ms, and to 36 mrad for 10 ms, as shown in Figs. 4 (a), (b), and (c), respectively. The accumulated phase jitter saturated to about 37 mrad for the observed duration of 100 ms or longer, as shown in the Fig. 4 (d). In the DL method this kind of analysis can be done without using a vector spectrum analyzer or frequency counter, one of strong advantages of the DL method. 3. Long-term CEP stabilization Long-term CEP stability is crucial for actual applications of CEP-stabilized femtosecond lasers. In the free running mode, the CEP variation contains a slow drift as well as fast variation. The DL quenches both components, but the slow drift may cause the feedback signal to AOM to drift to one direction, eventually disrupting the CEP locking or even the mode-locking of the oscillator itself. The large pump power modulation by AOM was thus the most severe obstacle in the long-term CEP stabilization. This problem has been resolved using the double feedback loop that separately controls fast variation and slow drift using two feedback loops [12]. We have realized the double feedback loop using two PID controllers (PID1 and PID2), as shown in Fig. 1. The fast CEP variation was compensated by the first feedback servo connected to AOM, but continuous CEP drift can cause too large modulation of AOM. Figure 5(a) show the feedback signal to AOM (black line) and the beat signal measured with the detector BPD (gray line) obtained only with the feedback servo PID1. The feedback signal to AOM was continuously decreased and then the CEP stabilization was interrupted after about 20 minutes. In this case the strong modulation of AOM disrupted the CEP locking. The large modulation of AOM can be prevented by compensating for the slow drift component with the second feedback servo controlling the intracavity prism insertion. Instead of compensating for CEP variation only with the first feedback servo that may cause too large pumping power modulation, the slow CEP drift was compensated for by adjusting the intracavity prism insertion. For the latter the second PID controller (PID2) was employed with the P and I feedback functions for the prism insertion control. Since the drift was not so fast, a low cutoff frequency in the I operation was used. Figure 5(b) shows the change of the feedback signal to AOM with different cutoff frequencies. In the case of 0.3-Hz cutoff frequency, the feedback signal contained a drifting component. With 3-Hz cutoff frequency it was improved, but the feedback signal still shows some variation. So the cutoff frequency was increased to find the optimum frequency of 10 Hz at which the feedback signal to AOM showed fluctuation around a steady value. Figure 5(c) presents the result of 24-hour CEP stabilization achieved without realignment of any optical components. It shows the feedback signals to AOM (black line) for pumping power control and to PZT for the control of prism insertion (gray line). The feedback signal to PZT was continuously adjusted so as to stably maintain the feedback signal to AOM, allowing long-term CEP stabilization. The CEP stabilization for a whole day is a clear demonstration of the robustness of the DL method. As a consequence, the capability of long-term CEP stabilization will make the DL method a powerful tool in investigating lightmatter interactions with CEP-stabilized laser pulses, such as attosecond science. In addition the DL method has a good potential also in frequency metrology, since the control of the comb frequency can be achieved by adjusting the cavity length of the oscillator. (C) 2008 OSA 18 August 2008 / Vol. 16, No. 17 / OPTICS EXPRESS 12629

Fig. 5. 24-hour CEP stabilization achieved by employing the double feedback loop. (a) Performance of the CEP stabilization obtained by controlling only AOM. (b) Optimization of the cutoff frequency in the I feedback. (c) Continuous CEP stabilization for 24 hours. Feedback signals to AOM (black) and to PZT (gray) are shown during the 24-hour CEP stabilization. 4. Conclusion Based on the direct locking method CEP stabilization of femtosecond laser pulses for a whole day has been demonstrated. The direct CEP locking that stabilizes CEP of every laser pulse to a same CEP value was realized using two analog PID controllers. The fast CEP variation was stabilized by the first PID controller connected to the AOM, and the slow CEP drift was managed by employing the second PID controller to adjust the intracavity prism insertion. It is noted that the CEP stabilization was achieved without using any frequency-analyzing equipment such as RF spectrum analyzer. As a consequence, the direct locking method is a very practical solution for the CEP stabilization of a femtosecond laser, greatly improving the accessibility of CEP stabilization, and will greatly benefit such areas as attosecond physics. (C) 2008 OSA 18 August 2008 / Vol. 16, No. 17 / OPTICS EXPRESS 12630

Acknowledgment This work was supported by the Korea Science and Engineering Foundation through the Creative Research Initiative Program. (C) 2008 OSA 18 August 2008 / Vol. 16, No. 17 / OPTICS EXPRESS 12631