Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors AD5546/AD5556

Similar documents
Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors AD5547/AD5557

Current Output/Serial Input, 16-Bit DAC AD5543-EP

a Preliminary Technical Data

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC AD5545/AD5555

Octal, 16-Bit DAC with 5 ppm/ C On-Chip Reference in 14-Lead TSSOP AD5668-EP

Improved Second Source to the EL2020 ADEL2020

High Speed 12-Bit Monolithic D/A Converters AD565A/AD566A

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER

Matched Monolithic Quad Transistor MAT14

Quad, Current-Output, Serial-Input 16-/14-Bit DACs AD5544/AD5554

Very Low Distortion, Precision Difference Amplifier AD8274

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

12-Bit Serial Input Multiplying DAC AD5441

CMOS 12-Bit Monolithic Multiplying DAC AD7541A

12-Bit Successive-Approximation Integrated Circuit ADC ADADC80

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible

12-Bit Successive-Approximation Integrated Circuit A/D Converter AD ADC80

LC2 MOS Dual 12-Bit DACPORTs AD7237A/AD7247A

High Precision, 2.5 V IC Reference AD580

High Precision 10 V IC Reference AD581

Dual Monolithic CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTERS

1.2 V Precision Low Noise Shunt Voltage Reference ADR512

Single-Supply 42 V System Difference Amplifier AD8205

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER

LC2 MOS Octal 8-Bit DAC AD7228A

CMOS 8-Bit Buffered Multiplying DAC AD7524

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Low Power, Wide Supply Range, Low Cost Unity-Gain Difference Amplifier AD8276

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

High Precision 10 V Reference AD587

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

Zero Drift, Digitally Programmable Instrumentation Amplifier AD8231-EP OP FUNCTIONAL BLOCK DIAGRAM FEATURES ENHANCED PRODUCT FEATURES

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

2.5 V to 5.5 V, 230 A, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs AD5332/AD5333/AD5342/AD5343*

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

3 V, Parallel Input Micropower 10-/12-Bit DACs AD7392/AD7393

10-Channel Gamma Buffer with VCOM Driver ADD8710

128-Position I 2 C Compatible Digital Potentiometer AD5247

LC2 MOS Complete 12-Bit Multiplying DAC AD7845

High Precision 10 V Reference AD587

2.5 V to 5.5 V, 500 A, Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs AD5334/AD5335/AD5336/AD5344*

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

Dual Picoampere Input Current Bipolar Op Amp AD706

AD7837/AD7847 SPECIFICATIONS 1 (V DD = +15 V 5%, V SS = 15 V 5%, AGNDA = AGNDB = DGND

Microprocessor-Compatible 12-Bit D/A Converter AD667*

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Precision, 16 MHz CBFET Op Amp AD845

Four-Channel Sample-and-Hold Amplifier AD684

High Common-Mode Voltage Programmable Gain Difference Amplifier AD628

+3 Volt, Serial Input. Complete 12-Bit DAC AD8300

LC2 MOS Quad 14-Bit DAC AD7836

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

Micropower Precision CMOS Operational Amplifier AD8500

Octal 14-Bit, Parallel Input, Voltage-Output DAC AD7841

200 ma Output Current High-Speed Amplifier AD8010

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

LC 2 MOS 5 Ω RON SPST Switches ADG451/ADG452/ADG453

1.2 V Precision Low Noise Shunt Voltage Reference ADR512W

1.0 V Precision Low Noise Shunt Voltage Reference ADR510

2.7 V to 5.5 V, 140 μa, Rail-to-Rail Output 8-Bit DAC in a SOT-23 AD5300

High Common-Mode Voltage Difference Amplifier AD629

Dual Picoampere Input Current Bipolar Op Amp AD706

1.8 V to 5 V Auto-Zero, In-Amp with Shutdown AD8553

OBSOLETE. Low Cost Quad Voltage Controlled Amplifier SSM2164 REV. 0

AD5292-EP Position, Digital Potentiometer with Maximum ±1% R-Tolerance Error and 20-TP Memory. Data Sheet FUNCTIONAL BLOCK DIAGRAM V DD FEATURES

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers MAX5487/MAX5488/ MAX5489. Benefits and Features

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

Low Cost JFET Input Operational Amplifiers ADTL082/ADTL084

Zero Drift, Unidirectional Current Shunt Monitor AD8219

Zero-Drift, High Voltage, Bidirectional Difference Amplifier AD8207

High Speed, G = +2, Low Cost, Triple Op Amp ADA4862-3

OBSOLETE. 10-Bit, 170 MSPS D/A Converter AD9731

+5 Volt, Parallel Input Complete Dual 12-Bit DAC AD8582

1.8 V to 5 V Auto-Zero, In-Amp with Shutdown AD8563

+3 V/+5 V, Rail-to-Rail Quad, 8-Bit DAC AD7304/AD7305*

Single-Supply, 42 V System Difference Amplifier AD8206

2.7 V to 5.5 V, 140 A, Rail-to-Rail Output 8-Bit DAC in a SOT-23 AD5300 *

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers

781/ /

800 MHz, 4:1 Analog Multiplexer ADV3221/ADV3222

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482

Ultraprecision Operational Amplifier OP177

Rail-to-Rail, High Output Current Amplifier AD8397

DAC8043* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017

High Accuracy 8-Pin Instrumentation Amplifier AMP02

Low Power, Wide Supply Range, Low Cost Difference Amplifiers, G = ½, 2 AD8278/AD8279

16 V, 4 MHz RR0 Amplifiers AD8665/AD8666/AD8668

SCLK 4 CS 1. Maxim Integrated Products 1

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanodacs in LFCSP AD5541A/AD5542A/AD5512A

16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation Amplifier AD8230

TYPICAL APPLICATION LTC1591/LTC1591-1

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

Low Cost, General Purpose High Speed JFET Amplifier AD825

High Voltage Current Shunt Monitor AD8211

High Accuracy, Ultralow IQ, 1.5 A, anycap Low Dropout Regulator ADP3339

DACPORT Low Cost, Complete P-Compatible 8-Bit DAC AD557*

Transcription:

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant esistors AD5546/AD5556 FEATUES 16-bit resolution 14-bit resolution 2- or 4-quadrant multiplying DAC ±1 LSB DNL ±1 LSB INL or ±2 LSB INL Operating supply voltage: 2.7 V to 5.5 V Low noise: 12 nv/ Hz Low power: IDD = 1 µa.5 µs settling time Built-in FB facilitates current-to-voltage conversion Built-in 4-quadrant resistors allow V to 1 V, V to 1 V, or ±1 V outputs 2 ma full-scale current ±2%, with VEF = 1 V Automotive operating temperature: 4 C to 125 C Compact TSSOP-28 package APPLICATIONS Automatic test equipment Instrumentation Digitally controlled calibration Digital waveform generation FUNCTIONAL BLOCK DIAGAM V DD W DBDB15 1 COM EF OFS 1 2 OFS FB AD5546/ AD5556 CONTOL LOGIC PO 16/14 DAC DAC EGISTE Figure 1. AD5546/AD5556 Simplified Block Diagram GENEAL DESCIPTION FB I OUT The AD5546/AD5556 are precision 16-/14-bit, multiplying, low power, current output, parallel input D/A converters. They operate from a single 2.7 V to 5.5 V supply with ±1 V multiplying references for 4-quadrant outputs. Built-in 4-quadrant resistors facilitate the resistance matching and temperature tracking that minimize the number of components needed for multiquadrant applications. The feedback resistor (FB) simplifies the I-V conversion with an external buffer. The AD5546/ AD5556 are packaged in compact TSSOP-28 packages with operating temperatures from 4 C to 125 C. 381--1 5V 2 VIN U3 AD3 4 TIM 5 6 1 U2A OP2177 COM C1 VEF EF VEF OF FB 1 2 OFS FB 5V VDD C2 16/14 DATA U1 AD5546/AD5556 16/14-BIT IOUT U2B OP2177 VEF TO VEF W W Figure 2. 16-/14-Bit, 4-Quadrant Multiplying DAC with a Minimum of External Components 381--2 ev. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 916, Norwood, MA 262-916, U.S.A. Tel: 781.329.47 www.analog.com Fax: 781.326.873 24 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS Specifications... 3 Absolute Maximum atings... 5 Pin Configurations and Functional Descriptions... 6 Typical Performance Characteristics... 8 Circuit Operation... 11 D/A Converter Section... 11 Digital Section... 12 ESD Protection Circuits... 12 eference Selection... 12 Applications... 13 Unipolar Mode... 13 Bipolar Mode... 14 AC eference Signal Attenuator... 15 System Calibration... 15 Outline Dimensions... 16 Ordering Guide... 16 Amplifier Selection... 12 EVISION HISTOY evision : Initial Version ev. Page 2 of 16

SPECIFICATIONS Table 1. Electrical Characteristics. VDD = 2.7 V to 5.5 V, IOUT = virtual, = V, VEF = 1 V to 1 V, TA = full operating temperature range, unless otherwise noted. Parameter Symbol Conditions Min Typ Max Unit STATIC PEFOMANCE 1 esolution N AD5546, 1 LSB = VEF/2 16 = 153 µv at 16 Bits VEF = 1 V esolution N AD5556, 1 LSB = VEF/2 14 = 61 µv at VEF = 1 V 14 Bits elative Accuracy INL Grade: AD5556C ±1 LSB elative Accuracy INL Grade: AD5546B ±2 LSB Differential Nonlinearity DNL Monotonic ±1 LSB Output Leakage Current IOUT Data = zero scale, TA = 25 C 1 na Output Leakage Current IOUT Data = zero scale, TA = TA maximum 2 na Full-Scale Gain Error GFSE Data = full scale ±1 ±4 mv Bipolar Mode Gain Error GE Data = full scale ±1 ±4 mv Bipolar Mode Zero-Scale GZSE Data = full scale ±1 ±2.5 mv Error Full-Scale Tempco2 TCVFS 1 ppm/ C EFEENCE INPUT VEF ange VEF 18 18 V EF Input esistance EF 4 5 6 kω 1 and 2 esistance 1 and 2 4 5 6 kω 1-to-2 Mismatch (1 to 2) ±.5 ±1.5 Ω Feedback and Offset FB, OFS 8 1 12 kω esistance Input Capacitance 2 CEF 5 pf ANALOG OUTPUT Output Current IOUT Data = full scale 2 ma Output Capacitance2 COUT Code dependent 2 pf LOGIC INPUT AND OUTPUT Logic Input Low Voltage VIL VDD = 5 V.8 V Logic Input Low Voltage VIL VDD = 3 V.4 V Logic Input High Voltage VIH VDD = 5 V 2.4 V Logic Input High Voltage VIH VDD = 3 V 2.1 V Input Leakage Current IIL 1 µa Input Capacitance2 CIL 1 pf 3 INTEFACE TIMING2, Data to W Setup Time tds VDD = 5 V 2 ns VDD = 3 V 35 ns Data to W Hold Time tdh VDD = 5 V ns VDD = 3 V ns W Pulse Width t W VDD = 5 V 2 ns VDD = 3 V 35 ns Pulse Width t VDD = 5 V 2 ns VDD = 3 V 35 ns Pulse Width t VDD = 5 V 2 ns VDD = 3 V 35 ns W to Delay Time tlwd VDD = 5 V ns VDD = 3 V ns ev. Page 3 of 16

Parameter Symbol Condition Min Typ Max Unit SUPPLY CHAACTEISTICS Power Supply ange VDD ANGE 2.7 5.5 V Positive Supply Current IDD Logic inputs = V 1 µa Power Dissipation PDISS Logic inputs = V.55 mw Power Supply Sensitivity PSS VDD = ±5%.3 %/% AC CHAACTEISTICS 4 Output Voltage Settling ts To ±.1% of full scale, data cycles from zero scale to full scale.5 µs Time to zero scale eference Multiplying BW BW VEF = 5 V p-p, data = full scale 4 MHz DAC Glitch Impulse Q VEF = V, midscale to midscale minus 1 7 nv-s Multiplying Feedthrough /VEF VEF = 1 mv rms, f = 1 khz 65 db Error Digital Feedthrough QD W = 1, toggles at 1MHz 7 nv-s Total Harmonic Distortion THD VEF = 5 V p-p, data = full-scale, f = 1 KHz 85 db Output Noise Density en f = 1 khz, BW = 1 Hz 12 nv/rt Hz 1 All static performance tests (except IOUT) are performed in a closed-loop system, using an external precision OP97 I-V converter amplifier. The AD554x FB terminal is tied to the amplifier output. The op amp IN is grounded and the DAC IOUT is tied to the op amp IN. Typical values represent average readings measured at 25 C. 2 These parameters are guaranteed by design and not subject to production testing. 3 All input control signals are specified with t = tf = 2.5 ns (1% to 9% of 3 V), and timed from a voltage level of 1.5 V. 4 All ac characteristic tests are performed in a closed-loop system using an AD841 I-V converter amplifier. ev. Page 4 of 16

ABSOLUTE MAXIMUM ATINGS Table 2. Parameter ating VDD to.3 V, 8 V FB, OFS, 1, COM, and EF to 18 V, 18 V Logic Inputs to.3 V, 8 V V(IOUT) to.3 V, VDD.3 V Input Current to Any Pin except Supplies ±5 ma Thermal esistance (θja) 128 C Maximum Junction Temperature (TJ MAX) 15 C Operating Temperature ange 4 C to 125 C Storage Temperature ange 65 C to 15 C Lead Temperature: Vapor Phase, 6 s 215 C Infrared, 15 s 22 C Package Power Dissipation (TJ MAX TA)/θJA Stresses above those listed under Absolute Maximum atings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. ev. Page 5 of 16

PIN CONFIGUATIONS AND FUNCTIONAL DESCIPTIONS D7 1 28 V DD D6 2 27 D8 D5 3 26 D9 D4 4 25 D1 D3 5 24 D11 D2 6 23 D12 AD5546 TOP VIEW (Not to Scale) D1 7 22 D13 D 8 21 D14 OFS 9 2 D15 FB 1 19 1 11 18 COM 12 17 EF 13 16 W I OUT 14 15 Figure 3.AD5546 Pin Configuration 381--3 D5 1 28 V DD D4 2 27 D6 D3 3 26 D7 D2 4 25 D8 D1 5 24 D9 D 6 23 D1 AD5556 NC 7 TOP VIEW 22 D11 NC 8 (Not to Scale) 21 D12 OFS 9 2 D13 FB 1 19 1 11 NC = NO CONNECT 18 COM 12 17 EF 13 16 W I OUT 14 15 Figure 4. AD5556 Pin Configuration 381--4 Table 3. AD5546 Functional Descriptions Pin No. Mnemonic Description 18 D7 to D Digital Input Data Bits D7 to D. Signal level must be VDD.3 V. 9 OFS Bipolar Offset esistor. Accepts up to ±18 V. In 2-quadrant mode ties to FB. In 4-quadrant mode ties to 1 and external reference. 1 FB Internal Matching Feedback esistor. Connects to the output of an external op amp for I-V conversion. 11 1 4-Quandrant esistor 1. In 2-quadrant mode shorts to EF pin. In 4-quadrant mode ties to OFS. 12 COM Center Tap Point of Two 4-Quadrant esistors, 1 and 2. In 4-quadrant mode, ties to the inverting node of the reference amplifier. In 2-quadrant mode, shorts to EF pin. 13 EF DAC eference Input in 2-Quadrant Mode and 2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, this is the reference input with constant input resistance versus code. In 4-quadrant mode, this pin is driven by the external reference amplifier. 14 IOUT DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion. 15 Digital Input Load DAC Control. Signal level must be VDD.3 V. 16 W Write Control Digital Input in Active Low. Transfers shift-register data to DAC register on rising edge. Signal level must be VDD.3 V. 17 Power-On eset State. = resets at zero scale, = 1 resets at midscale. Signal level must be VDD.3 V. 18 eset in Active Low. esets to zero scale if =, and resets to midscale if = 1. Signal level must be VDD.3 V. 19 Analog and Digital Grounds. 221 D15 to D14 Digital Input Data Bits D15 to D14. Signal level must be VDD.3 V. 2227 D13 to D8 Digital Input Data Bits D13 to D8. Signal level must be VDD.3 V. 28 VDD Positive Power Supply Input. Specified range of operation: 2.7 V to 5.5 V. Table 4. AD5556 Functional Descriptions Pin No. Mnemonic Description 16 D5 to D Digital Input Data Bits D5 to D. Signal level must be VDD.3 V. 78 NC No Connection. User should not connect anything other than dummy pads on these terminals. 9 OFS Bipolar Offset esistor. Accepts up to ±18 V. In 2-quadrant mode ties to FB. In 4-quadrant mode ties to 1 and external reference. 1 FB Internal Matching Feedback esistor. Connects to the output of an external op amp for I-V conversion. 11 1 4-Quandrant esistor 1. In 2-quadrant mode shorts to EF pin. In 4-quadrant mode ties to OFS. 12 COM Center Tap Point of Two 4-Quadrant esistors, 1 and 2. In 4-quadrant mode, ties to the inverting node of the reference amplifier. In 2-quadrant mode, shorts to EF pin. 13 EF DAC eference Input in 2-Quadrant Mode and 2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, this is the reference input with constant input resistance versus code. In 4-quadrant mode, this pin is driven by the external reference amplifier. 14 IOUT DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion. ev. Page 6 of 16

Pin No. Mnemonic Description 15 Digital Input Load DAC Control. Signal level must be VDD.3 V. 16 W Write Control Digital Input in Active Low. Transfers shift-register data to DAC register on rising edge. Signal level must be VDD.3 V. 17 Power On eset State. = resets at zero-scale, = 1 resets at midscale. Signal level must be VDD.3 V. 18 eset in Active Low. esets to zero-scale if = and resets to midscale if = 1. Signal level must be VDD.3 V. 19 Analog and Digital Grounds. 227 D13 to D6 Digital Input Data Bits D13 to D6. Signal level must be VDD.3 V. 28 VDD Positive power supply input. Specified range of operation: 2.7 V to 5.5 V. t W W DATA t DS t DH t LWD t Figure 5. AD5546/AD5556 Timing Diagram t 381--5 Table 5. AD5546 Parallel Input Data Format LSB Bit Position B15 B14 B13 B12 B11 B1 B9 B8 B7 B6 B5 B4 B3 B2 B1 B Data Word D15 D14 D13 D12 D11 D1 D9 D8 D7 D6 D5 D4 D3 D2 D1 D Table 6. AD5556 Parallel Input Data Format LSB Bit Position B13 B12 B11 B1 B9 B8 B7 B6 B5 B4 B3 B2 B1 B Data Word D13 D12 D11 D1 D9 D8 D7 D6 D5 D4 D3 D2 D1 D Table 7. Control Inputs W egister Operation X X eset output to, with pin =. Midscale with pin = 1. 1 Load input register with data bits. 1 1 1 Load DAC register with the contents of the input register. 1 1 Input and DAC registers are transparent. 1 When and W are tied together and programmed as a pulse, the data bits are loaded into the input register on the falling edge of the pulse, and then loaded into the DAC register on the rising edge of the pulse. 1 1 No register operation. ev. Page 7 of 16

TYPICAL PEFOMANCE CHAACTEISTICS INL (LSB) 1..8.6.4.2.2.4.6 DNL (LSB) 1..8.6.4.2.2.4.6.8 1. 8192 16384 24576 32768 496 49152 57344 65536 CODE (Decimal) Figure 6. AD5546 Integral Nonlinearity Error 381--6.8 1. 248 496 6144 8192 124 12288 14336 16384 CODE (Decimal) Figure 9. AD5556 Differential Nonlinearity Error 381--9 1..8.6 1.5 1. V EF =2.5V T A =25 C DNL (LSB).4.2.2.4 LINEAITY EO (LSB).5.5 INL DNL.6.8 1. 8192 16384 24576 32768 496 49152 57344 65536 CODE (Decimal) 381--7 1. 1.5 2 4 GE 6 8 SUPPLY VOLTAGE V DD (V) 1 381--1 Figure 7. AD5546 Differential Nonlinearity Error Figure 1. Linearity Error vs. VDD 1..8 5 V DD =5V T A =25 C INL (LSB).6.4.2.2.4.6 SUPPLY CUENT I DD (LSB) 4 3 2 1.8 1. 248 496 6144 8192 124 12288 14336 16384 CODE (Decimal) Figure 8. AD5556 Integral Nonlinearity Error 381--8.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. LOGIC INPUT VOLTAGE V IH (V) Figure 11. Supply Current vs. Logic Input Voltage 381--11 ev. Page 8 of 16

3. 2.5 SUPPLY CUENT (ma) 2. 1.5 1..5 xffff x 1k 1k 1M 1M 1M CLOCK FEQUENCY (Hz) x5555 x8 Figure 12. AD5546 Supply Current vs. Clock Frequency 381--12 V DD =5V V EF =1V CODES x8 x7fff.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. TIME (µs) (5V/DIV) V OUT (5mV/DIV) Figure 15. AD5546 Midscale Transition and Digital Feedthrough 381--15 PSS (db) 9 8 7 6 5 4 3 2 1 V DD =5V± 1% V EF =1V 1 1 1k 1k 1k 1M FEQUENCY (Hz) Figure 13. Power Supply ejection atio vs. Frequency 381--13 EF LEVEL.dB xffff x8 x4 x2 x1 x8 x4 x2 x1 x8 x4 x2 x1 x8 x4 x2 x1 x /DIV 12.dB MAKE 4 41 677.2Hz MAG (A/) 2.939db 1 1 1k 1k 1k 1M 1M STAT 1.Hz STOP 5.Hz 12dB 24dB 36dB 48dB 6dB 72dB 84dB 96dB Figure 16. AD5546 Unipolar eference Multiplying Bandwidth 18dB 381--16 EF LEVEL.dB ALL BITS ON /DIV 12.dB 12 D15 AND D14 ON D15 AND D13 ON 1 24 D15 AND D12 ON D15 AND D11 ON 36 D15 AND D1 ON D15 AND D9 ON 48 D15 AND D8 ON D15 AND D7 ON 2 6 72 D15 AND D6 ON D15 AND D5 ON D15 AND D4 ON D15 AND D3 ON 84 D15 AND D2 ON D15 AND D1 ON V OUT 96 CH1 5.V CH2 2.V M 2ns A CH1 2.7V B CH1 6.2V 4.ns Figure 14. Settling Time from Full Scale to Zero Scale 381--14 18 D15 ON D15 AND D ON 12 1 1 1k 1k 1k 1M 1M STAT 1.Hz STOP 1.Hz Figure 17. AD5546 Bipolar eference Multiplying Bandwidth (Codes from Midscale to Full Scale) 381--17 ev. Page 9 of 16

EF LEVEL.dB 12 24 36 48 6 72 84 ALL BITS OFF D14 ON D14 AND D13 ON D14 AND D12 ON D14 AND D11 ON D14 AND D1 ON D14 AND D9 ON D14 AND D8 ON D14 AND D7 ON D14 AND D6 ON D14 AND D5 ON D14 AND D4 ON D14 AND D3 ON D14 AND D2 ON D14 AND D1 ON /DIV 12.dB 96 18 D14 ON D14 AND D ON 12 1 1 1k 1k 1k 1M 1M STAT 1.Hz STOP 1.Hz Figure 18. AD5546 Bipolar eference Multiplying Bandwidth (Codes from Midscale to Zero Scale) 381--18 ev. Page 1 of 16

CICUIT OPEATION D/A CONVETE SECTION The AD5546/AD5556 are 16-/14-bit multiplying, current output, and parallel input DACs. The devices operate from a single 2.7 V to 5.5 V supply, and provide both unipolar V to VEF, or V to VEF, and bipolar ±VEF output ranges from a 18 V to 18 V reference. In addition to the precision conversion FB commonly found in current output DACs, there are three additional precision resistors for 4-quadrant bipolar applications. The AD5546/AD5556 consist of two groups of precision - ladders, which make up the 12/1 LSBs, respectively. Furthermore, the four s are decoded into 15 segments of resistor value. Figure 19 shows the architecture of the 16-bit AD5546. Each of the 16 segments in the - ladder carries an equally weighted current of one-sixteenth of full scale. The feedback resistor, FB, and 4-quadrant resistor, OFS, have values of 1 kω. Each 4-quadrant resistor, 1 and 2, equals 5 kω. In 4-quadrant operation, 1, 2, and an external op amp work together to invert the reference voltage and apply it to the EF input. With OFS and FB connected as shown in Figure 2, the output can swing from VEF to VEF. EF COM 1 2 5kΩ 1 5kΩ 4kΩ 4kΩ 4kΩ 4kΩ 4kΩ AD5546/AD5556 The reference voltage inputs exhibit a constant input resistance of 5 kω ±2%. The DAC output, IOUT, impedance is code dependent. External amplifier choice should take into account the variation of the AD5546/AD5556 output impedance. The feedback resistance in parallel with the DAC ladder resistance dominates output voltage noise. To maintain good analog performance, it is recommended to bypass the power supply with a.1 µf to.1 µf ceramic or chip capacitor in parallel with a 1 µf tantulum capacitor. Also, to minimize gain error, PCB metal traces between VEF and FB should match. Every code change of the DAC corresponds to a step function; gain peaking at each output step may occur if the op amp has limited GBP and excessive parasitic capacitance present at the op amp inverting node. A compensation capacitor, therefore, may be needed between the I-V op amp inverting and output nodes to smooth the step transition. Such a compensation capacitor should be found empirically, but a 2 pf capacitor is generally adequate for the compensation. The VDD power is used primarily by the internal logic and to drive the DAC switches. Note that the output precision degrades if the operating voltage falls below the specified voltage. Users should also avoid using switching regulators because device power supply rejection degrades at higher frequencies. 4kΩ 4kΩ 4kΩ 4 15 SEGMENTS 8-BIT A B 4-BIT 1kΩ 1kΩ OFS FB 16 8 4 IOUT ADDESS DECODE DAC EGISTE W W INPUT EGISTE D15 D14 D Figure 19. 16-Bit AD5546 Equivalent - DAC Circuit with Digital Section 381--19 ev. Page 11 of 16

DIGITAL SECTION The AD5546/AD5556 have 16-/14-bit parallel inputs. The devices are double-buffered with 16-/14-bit registers. The double-buffered feature allows the update of several AD5546/ AD5556 simultaneously. For AD5546, the input register is loaded directly from a 16-bit controller bus when the W pin is brought low. The DAC register is updated with data from the input register when is brought high. Updating the DAC register updates the DAC output with the new data (see Figure 19). To make both registers transparent, tie W low and high. The asynchronous pin resets the part to zero scale if pin =, and midscale if pin = 1. ESD POTECTION CICUITS All logic input pins contain back-biased ESD protection Zeners connected to ground () and VDD, as shown in Figure 2. As a result, the voltage level of the logic input should not be greater than the supply voltage. V DD DIGITAL INPUTS 5kΩ D Figure 2. Equivalent ESD Protection Circuits 381--2 AMPLIFIE SELECTION In addition to offset voltage, the bias current is important in op amp selection for precision current output DACs. An input bias current of 3 na in the op amp contributes to 1 LSB in the AD5546 s full-scale error. Op amps OP1177 and AD8628 are good candidates for the I-V conversion. EFEENCE SELECTION The initial accuracy and the rated output of the voltage reference determine the full span adjustment. The initial accuracy is usually a secondary concern in precision, as it can be trimmed. Figure 25 shows an example of a trimming circuit. The zero scale error can also be minimized by standard op amp nulling techniques. The voltage reference temperature coefficient and long-term drift are primary considerations. For example, a 5 V reference with a TC of 5 ppm/ o C means that the output changes by 25 µv per degree Celsius. As a result, the reference that operates at 55 o C contributes an additional 75 µv full-scale error. Similarly, the same 5 V reference with a ±5 ppm long-term drift means that the output may change by ±25 µv over time. Therefore, it is practical to calibrate a system periodically to maintain its optimum precision. ev. Page 12 of 16

APPLICATIONS UNIPOLA MODE 2-Quadrant Multiplying Mode, V OUT = V to V EF The AD5546/AD5556 DAC architecture uses a current-steering - ladder design that requires an external reference and op amp to convert the unipolar mode of output voltage to = VEF D/65,536 (AD5546) (1) = VEF D/16,384 (AD5556) (2) where D is the decimal equivalent of the input code. The output voltage polarity is opposite to the VEF polarity in this case (see Figure 21). Table 8 shows the negative output versus code for the AD5546. Table 8. AD5546 Unipolar Mode Negative Output vs. Code D in Binary (V) 1111 1111 1111 1111 VEF(65,535/65,536) 1 VEF/2 1 VEF(1/65,536) 2-Quadrant Multiplying Mode, V OUT = V to V EF The AD5546/AD5556 are designed to operate with either positive or negative reference voltages. As a result, positive output can be achieved with an additional op amp, (see Figure 22), and the output becomes = VEF D/65,536 (AD5546) (3) = VEF D/16,384 (AD5556) (4) Table 9 shows the positive output versus code for the AD5546. Table 9. AD5546 Unipolar Mode Positive Output vs. Code D in Binary (V) 1111 1111 1111 1111 VEF(65,535/65,536) 1 VEF/2 1 VEF(1/65,536) 5V C1 C2 2 VIN U3 AD3 TIM 5 4 1 1 COM 2 EF OFS OFS FB FB C6 2.2pF C3 16/14 DATA VDD U1 AD5546/AD5556 16/14-BIT IOUT V U2 AD8628 V 2.5V TO V C4 W W 5V C5 381--21 Figure 21. Unipolar 2-Quadrant Multiplying Mode, = to VEF ev. Page 13 of 16

5V C1 C2 2 VIN U3 AD3 4 TIM 5 6 2.5V 1A 1 V U2A AD8628 V 5V COMA C8 C9 C7 2 EFA 2.5V OFSA OFS FBA FB 5V C6 C4 C3 16/14 DATA VDD U1 AD5546/AD5556 16/14-BIT IOUT C5 V U2B AD8628 V V TO 2.5V W W 381--22 Figure 22. Unipolar 2-Quadrant Multiplying Mode, = to VEF 15V C1 C2 5V 2 VIN U3 AD1 4 C3 TIM 16/14 DATA 5 6 VDD 1 1 U2A AD8512 COM C8 2 U1 AD5546/AD5556 1V EF 1V OF FB OFS FB 16/14-BIT IOUT C9 15V C4 C5 V U2B AD8512 V 1V TO 1V C6 W W 15V C7 381--23 Figure 23. 4-Quadrant Multiplying Mode, = VEF to VEF BIPOLA MODE 4-Quadrant Multiplying Mode, V OUT = V EF to V EF The AD5546/AD5556 contain on-chip all the 4-quadrant resistors necessary for the precision bipolar multiplying operation. Such a feature minimizes the number of exponent components to only a voltage reference, dual op amp, and compensation capacitor (see Figure 23). For example, with a 1 V reference, the circuit yields a precision, bipolar 1 V to 1 V output. = (D/32768 1) VEF (AD5546) (5) = (D/16384 1) VEF (AD5556) (6) ev. Page 14 of 16

Table 1 shows some of the results for the 16-bit AD5546. Table 1. AD5546 Output vs. Code D in Binary 1111 1111 1111 1111 VEF(32,767/32,768) 1 1 VEF(1/32,768) 1 111 1111 1111 1111 VEF(1/32,768) VEF AC EFEENCE SIGNAL ATTENUATO Besides handling digital waveforms decoded from parallel input data, the AD5546/AD5556 handle equally well low frequency ac reference signals for signal attenuation, channel equalization, and waveform generation applications. The maximum signal range can be up to ±18 V (see Figure 24). SYSTEM CALIBATION The initial accuracy of the system can be adjusted by trimming the voltage reference ADx with a digital potentiometer (see Figure 25). The AD517 provides an OTP (one time programmable), 8-bit adjustment that is ideal and reliable for such calibration. ADI s OTP digital potentiometer comes with programmable software that simplifies the factory calibration process. 1V U2A OP2177 C7 1V 1A 1 COMA 2 VEFA OFSA OFS FBA FB 15V C6 C4 5V C1 C2 16/14 DATA VDD U1 AD5546/AD5556 16/14-BIT IOUT C5 V U2B OP2177 V C8 W W 15V C9 381--24 5V C1 C2 2 VIN U3 AD3 4 TIM 3 47kΩ 5 6 Figure 24. Signal Attenuator with AC eference U4 AD517 1kΩ B 7 1kΩ 2.5V V U2A AD8628 V C8 5V C9 C7 2.5V 1A 1 COMA 2 VEFA OFSA OFS FBA FB 5V C6 C4 C3 16/14 DATA VDD U1 AD5546/AD5556 16/14-BIT IOUT C5 V U2B AD8628 V V TO 2.5V W W Figure 25. Full Span Calibration 381--25 ev. Page 15 of 16

OUTLINE DIMENSIONS 9.8 9.7 9.6 28 15 1 14 4.5 4.4 4.3 6.4 BSC PIN 1.15.5.65 BSC 1.2 MAX COPLANAITY.1.3.19 SEATING PLANE.2.9 8.75.6.45 COMPLIANT TO JEDEC STANDADS MO-153AE Figure 26. 28-Lead Thin Shrink Small Outline Package [TSSOP] U-28 Dimensions shown in millimeters ODEING GUIDE Model ES (Bit) DNL (LSB) INL (LSB) Temperature ange ( C) Ordering Quantity Package Description Package Option AD5546BU 16 ±1 ±2 4 to 125 5 TSSOP-28 U-28 AD5546BU-EEL7 16 ±1 ±2 4 to 125 1 TSSOP-28 U-28 AD5556CU 14 ±1 ±1 4 to 125 5 TSSOP-28 U-28 AD5556CU-EEL7 14 ±1 ±1 4 to 125 1 TSSOP-28 U-28 24 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D381--1/4() ev. Page 16 of 16