Published in: Proceedings of the 11th International Conference on Electrical Machines and Systems ICEMS '08

Similar documents
Sensorless Control of a Novel IPMSM Based on High-Frequency Injection

NEW CRITERION FOR STATOR INTER TURN FAULT DETECTION OF SYNCHRONOUS GENERATOR

Generalized Theory Of Electrical Machines

Published in: Proceedings of the 29th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2014.

IN MANY industrial applications, ac machines are preferable

A study of Sensorless Control of Induction Motor at Zero Speed Utilizing High Frequency Voltage Injection

Control of Electric Machine Drive Systems

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

MATLAB/SIMULINK MODEL OF FIELD ORIENTED CONTROL OF PMSM DRIVE USING SPACE VECTORS

Simulation and Dynamic Response of Closed Loop Speed Control of PMSM Drive Using Fuzzy Controller

Self-commissioning of Interior Permanent Magnet Synchronous Motor Drives With High-Frequency Current Injection

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING VOLTAGE SOURCE INVERTER

Applying POWERSYS and SIMULINK to Modeling Switched Reluctance Motor

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

Modeling and Simulation of Field Oriented Control PMSM Drive System using SVPWM Technique

SYNCHRONOUS MACHINES

A Study on Distributed and Concentric Winding of Permanent Magnet Brushless AC Motor

Study of High Voltage AC Underground Cable Systems Silva, Filipe Miguel Faria da; Bak, Claus Leth; Wiechowski, Wojciech T.

3.1.Introduction. Synchronous Machines

EEE, St Peter s University, India 2 EEE, Vel s University, India

Inductance Based Sensorless Control of Switched Reluctance Motor

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES

Modelling of Three Phase Transformer in MATLAB/Simulink

Induction motor control by vector control method.

Aalborg Universitet. Publication date: Document Version Early version, also known as pre-print. Link to publication from Aalborg University

EE 560 Electric Machines and Drives. Autumn 2014 Final Project. Contents

IN RECENT years, sensorless or self-sensing control of

Rotor Structure Selections of Nonsine Five-Phase Synchronous Reluctance Machines for Improved Torque Capability

Influence of Electrical Eigenfrequencies on Damped Voltage Resonance Based Sensorless Control of Switched Reluctance Drives

Windings and Axes 1.0 Introduction In these notes, we will describe the different windings on a synchronous machine. We will confine our analysis to

Decreasing the commutation failure frequency in HVDC transmission systems

BECAUSE OF their low cost and high reliability, many

Resonances in Collection Grids of Offshore Wind Farms

Low Speed Position Estimation Scheme for Model Predictive Control with Finite Control Set

Sensorless Control Drive of Permanent Magnet Motor Based on a Simple On-line Parameter Identification Scheme

Mitigation of Cross-Saturation Effects in Resonance-Based Sensorless Switched Reluctance Drives

MODELING AND SIMULATION OF DISCONTINUOUS CURRENT MODE INVERTER FED PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE

FOR the last decade, many research efforts have been made

MATHEMATICAL MODELING OF POWER TRANSFORMERS

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12)

Estimation of Vibrations in Switched Reluctance Motor Drives

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

Lightning transient analysis in wind turbine blades

Control of Electric Machine Drive Systems. Seung-Ki Sul

Adaptive Flux-Weakening Controller for IPMSM Drives

Performance analysis of Switched Reluctance Motor using Linear Model

A Waveguide Transverse Broad Wall Slot Radiating Between Baffles

User Guide IRMCS3041 System Overview/Guide. Aengus Murray. Table of Contents. Introduction

DYNAMIC MODELING AND SIMULATION OF THE SYNCHRONOUS GENERATOR

Investigation of a Hybrid Winding Concept for Toroidal Inductors using 3D Finite Element Modeling

A Practical Guide to Free Energy Devices

Third Harmonics Injection Applied To Three Phase/Three Level/Three Switch Unidirectional PWM Rectifier

ELG2336 Introduction to Electric Machines

Rare-Earth-Less Motor with Field Poles Excited by Space Harmonics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 53, NO. 2, APRIL

Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time Stepping Finite Element Method

DISCUSSION OF FUNDAMENTALS

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents

Identification of PMSM Motor Parameters with a Power Analyzer

Realising Robust Low Speed Sensorless PMSM Control Using Current Derivatives Obtained from Standard Current Sensors

Fault-Tolerance of Five-Phase Induction Machines with Mixed stator winding Layouts: Torque Ripple Analysis

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor

Published in: IECON 2016: The 42nd Annual Conference of IEEE Industrial Electronics Society

Unbalance Detection in Flexible Rotor Using Bridge Configured Winding Based Induction Motor

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

An Optimized Version of a New Absolute Linear Encoder Dedicated to Intelligent Transportation Systems

Code No: R Set No. 1

Control of a 750kW Permanent Magnet Synchronous Motor

Published in: Proceedings of 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016

ROTOR FLUX VECTOR CONTROL TRACKING FOR SENSORLESS INDUCTION MOTOR

Comparative Analysis of Space Vector Pulse-Width Modulation and Third Harmonic Injected Modulation on Industrial Drives.

Aalborg Universitet. Published in: Antennas and Propagation (EuCAP), th European Conference on

Smooth rotation. An adaptive algorithm kills jerky motions in motors.

A novel method to improve Power quality by using wind and solar hybrid system

PHYS 1442 Section 004 Lecture #15

Practical Transformer on Load

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

A Simple Sensor-less Vector Control System for Variable

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

Published in: Proceedings of the th European Conference on Power Electronics and Applications (EPE'15-ECCE Europe)

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics

Measurements of the Distorted No-load Current of a 60/20 kv, 6 MVA Power Transformer Søgaard, Kim; Bak, Claus Leth; Wiechowski, Wojciech Tomasz

CHAPTER 2. Transformers. Dr Gamal Sowilam

Estimation of Core Losses in an Induction Motor under PWM Voltage Excitations Using Core Loss Curves Tested by Epstein Specimens

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

The current distribution on the feeding probe in an air filled rectangular microstrip antenna

ECE 5670/ Lab 6. Parameter Estimation of a Brushless DC Motor. Objectives

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

Khamehchi, Sina; Mölsä, Eemeli; Hinkkanen, Marko Comparison of standstill parameter identification methods for induction motors

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING

Chapter 2-1 Transformers

THEORY AND ANALYSIS OF THREE-PHASE SERIES-CONNECTED PARAMETRIC MOTORS

A New Class of Resonant Discharge Drive Topology for Switched Reluctance Motor

Voltage dip detection with half cycle window RMS values and aggregation of short events Qin, Y.; Ye, G.; Cuk, V.; Cobben, J.F.G.

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System

Evaluation of fibre twisting angle and composite properties

Transcription:

Aalborg Universitet Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Andrew Ewen Published in: Proceedings of the 11th International Conference on Electral Machines and Systems ICEMS '08 Publation date: 2008 Document Version Publisher's PDF, also known as Version of record Link to publation from Aalborg University Citation for published version (APA): Lu, K., Rasmussen, P. O., & Ritchie, E. (2008). Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors. In Proceedings of the 11th International Conference on Electral Machines and Systems ICEMS '08 (pp. 1-5). IEEE. General rights Copyright and moral rights for the publations made accessible in the publ portal are retained by the authors and/or other copyright owners and it is a condition of accessing publations that users recognise and abide by the legal requirements associated with these rights.? Users may download and print one copy of any publation from the publ portal for the purpose of private study or research.? You may not further distribute the material or use it for any profit-making activity or commercial gain? You may freely distribute the URL identifying the publation in the publ portal? Take down poly If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: november 02, 2018

Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors Kaiyuan Lu, Mario Vetuschi, Peter Omand Rasmussen, Ewen Ritchie Institute of Energy Technology, Aalborg University, Denmark Abstract- Accurate knowledge of the high frequency inductance profile plays an important role in many designs of sensorless controllers for Surface inductance. A special algorithm is used to decouple the cross-coupling effects between the d-axis and the q-axis, whh allows Mounted Permanent Magnet (SMPM) synchronous motors. This paper presents an AC+DC measurement method for determination of the d-axis and q-axis high frequency inductance profiles of SMPM synchronous motors. This method uses DC currents to set a desired magnet working point on the motor laminations, and then superimpose balanced small AC signals to measure the incremental a separate determination of the d, q inductance profiles as functions of the d, q currents. Experimental results on a commercial SMPM motor using the proposed method are presented in this paper. I. INTRODUCTION High performance sensorless controllers for Surface Mounted Permanent Magnet (SMPM) synchronous motors have many attracting aspects for modern industry applations. Some sensorless control methods are based on the knowledge of the difference between the d- and q-axes high frequency inductances caused by magnet saturation [1]~[]. For a certain type of SMPM motors, the signifance of the difference between d, q inductances plays an important role in a successful applation of such sensorless control methods. This makes it necessary to have a reliable knowledge of the high frequency d, q inductances, whh may be obtained by measurements. The classal dq-model of a SMPM synchronous motor assumes that the d- and q-axes inductances have constant values. In reality, these two inductance values are functions of both the d- and q-axes currents. This is known as the cross-coupling effects. To be able to achieve an accurately model of the SMPM motor including cross-coupling effects, knowledge of the nonlinear inductance profiles as functions of d, q currents are necessary. Accurate knowledge of these nonlinear inductance profiles may only be obtained by measurements. When the frequency of the injected signal for position estimation is far above the normal frequency range, according to [1], the inductance will behavior differently. In [1], it was illustrated that at low frequencies, the d-axis inductance is lower than the q-axis inductance due to the saturation caused by the rotor magnet fields. But at high frequencies, d-axis inductance becomes greater than the q-axis inductance, whh is due to the change of the flux path from the main path to the leakage path [1]. More investigations on this phenomenon were reported in [4], [5]. Many reported measurement methods for determination of the nonlinear d, q inductances as functions of d, q currents are based on the steady-state motor equation with the back EMF pre-measured and assumed to be constant [6] ~ [8]. The steady-sate performance based measurement method requires a rotating test and mechanally loading the test motor to its rated operating point. Additional information, like speed, needs to be known. If inductance under high frequency excitation needs to be determined, this method is no longer valid. The test may also be performed by locking the rotor shaft and supplying proper currents to the phases to create a desired d or q-axis field [6]. The flux linkage vs. current information is measured, e.g. using an inductance bridge [6]. This measurement method only requires a locked-rotor test, whh is much simple to perform compared to the rotational test with a loading system. No speed measurement is needed for inductance determination in this method. But if high frequency inductance measurement is required, where high frequency AC signals are injected into the phases, due to the magnet saturation caused by magnets, the d, q-axes inductances are not equal even for a SMPM motor, whh results in unbalanced three phase high frequency currents. This brings diffulty in inductance determination using the motor equations, either in abc-reference frame or in dq-reference frame. In this paper, a special algorithm is proposed for separate determination of the high frequency d- and q-axes inductances. This method uses DC currents to set a desired magnet working point on the d- or q-axis, and then superimpose balanced small AC signals to measure the incremental inductance. A special algorithm is introduced for simplifying the motor equations, whh allows a separate determination of the d, q-axes inductances. II. FEM ANALYSIS OF THE HIGH FREQUENCY INDUCTANCE PROFILE OF A SMPM SYNCHRONOUS MOTOR For a SMPM motor, ideally, the rotor exhibits no saliency and the d, q-axes inductances are equal. Though the d, q-axes are perpendular to each other, whh seems to offer a magnet decoupling, they have common flux paths, e.g., in the stator core

back. If part of the stator core back region is saturated by the d-axis magnet and/or d-axis current, the flux produced by the q-axis current, whh travels through this saturated region will be influenced, causing a reduction in the q-axis inductance. This phenomenon is illustrated in Fig. 1, where the regions indated by circles are saturated regions caused by the d-axis flux, and where the q-axis flux will travel through. Fig. 1 Stat 2D FE results showing the cross-coupling effects of a SMPM motor. When high frequency signals are injected into the motor for position estimation, the flux path produced by high frequency currents will change, whh is believed to be mainly due to the eddy current effects, as is illustrated in Fig. 2, where flux plot from AC transient analysis is shown. (a) Very low frequency AC current excitation, at 0.1 Hz In this transient model, the rotor is assigned with a constant conductivity. It can be observed from Fig. 2 that at low frequency, the flux cross through the rotor region evenly. But when the frequency increases, eddy currents on the rotor side will be induced due to the alternating field created by stator currents. The field produced by the rotor eddy currents is always opposite to the change of the state flux. As a result, the rotor flux is forced to be squeezed in the area close to the rotor surface. This causes the rotor reluctance to increase (both due to decreased cross-section area and quk saturation in the flux path), and consequently, a decrease in the winding inductance. A 2D model assumes the same geometry and material property on the direction perpendular to the 2D plan. Such a model with conductivity assigned on the rotor side assumes the rotor is constructed by a bulk material. Many motors used in the industry often use laminations on the rotor side. So a 2D model may only give a rough estimation, especially eddy current effects are concerned. Accurate knowledge of how the inductance will behavior as a function of the d- and/or q-axis current and frequency, may be obtained by measurements. A reliable measurement method is required. III. PROPOSED ALGORITHM FOR EXPERIMENTAL DETERMINATION OF HIGH FREQUENCY INDUCTANCE PROFILE The proposed inductance measurement method uses AC+DC excitation. DC currents are used to set a desired magnet working point on the d- or q-axis. Even in deep saturated regions, if the AC excitation is controlled to be small, the resultant AC current will still be sinusoidal, and the equivalent measurement circuit can be modeled by a simple R-L circuit. The corresponding incremental inductance can then be calculated based on the circuit impedance, whh may be simply calculated from the measured terminal voltage, and line current. But the problem here is that due to the magnet saturation caused by magnets and d, q currents, the d, q-axes inductances are not equal even for a SMPM motor. This causes the three phases self-induces differ from each other. Even balanced three-phase voltage is supplied on the phases, the resultant phase currents will differ in their magnitudes and their phase angles. The rotor is locked during the test. A constant angle value should be used in the Park transformation. Therefore the transformed d, q currents will be sinusoidal and also unbalanced. The zero-component will exist. If the d, q equivalent circuits are used for d, q inductances calculation, the instantaneous abc currents should be measured for calculation of the d, q currents. The measurement of the instantaneous current requires accurate data acquisition system, whh is not convenient. When the rotor is locked, the back EMF produced by the magnets is zero. The motor voltage equation becomes: (b) High frequency AC current excitation, at 100 Hz dλ abc v = Ri + (1) abc abc dt Fig. 2 Flux plot obtained from transient AC analysis showing the eddy current effects on flux path changing.

λa Lls 0 0 ia ia λ + abc = λc = 0 Lls 0 Lsm (2) λc 0 0 Lls cos( θ ) Lsm = Laad cosθ + sin( θ ) Laaq sinθ + + + + Where R is the stator phase resistance. Lls is the phase leakage inductance, and L sm is the main inductance matrix. The main inductance is defined as the inductance calculated from the flux travelling through the stator, the air-gap, and the rotor. It may be easily observed from () that inductance L ls + Laad is the phase self-inductance when the rotor d-axis is aligned with this phase and the other two phases are open-circuited. Correspondingly, inductance L ls + Laaq is the self-inductance when rotor q-axis is aligned with this phase. Angle θ is the rotor position angle, defined as the angle between the rotor d-axis and the stator phase-a axis. v abc, i abc, and λ abc are column vectors of the three phase terminal voltage, line current, and flux linkage, respectively. A special row vector is introduced as following: k q = sinθ + (4) It should be noted that for each test where the rotor is locked, (4) is a constant row vector. Multiplying (4) to the both sides of (1) (and using (2) and ()), and applying the following trigonometr relations [9]: cos 2 sin 2 ( x y) ( x y) = sin x sin y + sin x sin x + sin y + = sin x cos y + sin x sin x + cos y + sin cos Equation (1) can be finally transformed to: d veq = Rieq + Llsieq + Laaqieq dt 2 () y + (5) y + (6) (7) where 2 2 veq = sinθ va + vb + + vc (8) 2 2 ieq = sinθ ia + ib + + (9) θ is the rotor position whh is known. Equation (7) forms a simple R-L circuit. The resistance is the phase resistance, whh can be pre-measured using the DC method. The equivalent inductance in (7) is actually the q-axis inductance used in the dq-model. To calculate the inductance in (7), only the rms values of the equivalent voltage v eq, and the equivalent current i eq need to be known. As has been discussed before, the resultant phase currents from a balanced three phase supply are not balanced. They differ in their magnitudes and phase angles. But they will still remain sinusoidal shapes. The coeffients evolved with θ in (8) and (9) are constants. The rms value of (9) may be calculated as: 2 2 i eq, rms = ieq, rms,1 + ieq, rms,2 (10) 2 ieq, rms,1 = sinθ ia, rms + ib, rms cosθba + +, rms cosθca ieq, rms,2 = sin θ ib, rms sin θ ba + +, rms sinθca (11) (12) where θba is the phase difference angle between phase a current and phase b current. θ ca is the phase difference angle between phase a current and phase c current. The supplied voltage is balanced. Therefore the phase shift angle between phase voltages is known, whh is. If the power factor angle, whh tells the phase shift information between the current and the voltage, is measured, then the needed phase shift angles ( θ ba, θca used in (11) and (12)) may be determined. The rms value of the equivalent voltage (8) can be similarly calculated by replacing current with voltage in (10)~(12). For 4 voltage calculation, θ ba = and θ ca =. For the d-axis inductance calculation, (4) should be substituted by: k d = cosθ + (1)

Similar procedure may then be followed for d-axis inductance calculation. As a short summary, for a measurement at a locked rotor position, first DC currents are supplied to the motor to set a desired magnet working point on the d- and/or q-axis. Balanced three-phase AC voltages are then superimposed on motor terminals. The resultant AC current components and the power factor for each phase are then measured. For q-axis inductance determination, a special vector (4) is used to manipulate motor equations to form a equivalent R-L circuit as described in (7), where the rms equivalent current i eq may be calculated by using (10)~(11). The rms equivalent voltage v eq may be obtained similarly. For d-axis inductance determination, vector (1) instead of (4) should be used for motor equation manipulation, and similar procedure should be followed. By changing the DC currents and repeating the measurement, the d- and q-axis inductances as functions of the d- and q-axes currents may be obtained. The frequency of the AC signal may be changed to a desired value for a measurement of the inductances as functions of the frequency. IV. EXPERIMENTAL RESULTS The proposed measurement method has been applied to a -phase, 0.4 KW, commercial SMPM AC servomotor (manufacture: SEM, UK). The test bench is shown in Fig.. The test motor is connected to a dividing head for locking the rotor at a desired position. A programmable power supply (Chroma) is used for supplying AC+DC voltages to the motor. The terminal voltage, line current and power factor are measured by three power analyzers. The measured incremental inductances as functions of d, q currents are shown in Fig. 4 ~ Fig. 5. The results shown in Fig. 4~5 were obtained with a fixed AC excitation frequency. The AC current magnitudes were controlled to be the same for the measurements taken at different frequencies as shown in Fig. 6. All the measurements were performed at the position where rotor d-axis is aligned with stator phase a-axis. Ld (mh) L q [mh] 10.5 10 9.5 9 8.5 8 0 0.5 1 1.5 2 2.5 Fig. 4 Measured incremental d-axis inductance as a function of the d, q-axes currents, at the position where rotor d-axis is aligned with phase a-axis. 12.8 12.6 12.4 12.2 12 Id (A), d-axis DC current Fig. 5 Measured incremental q-axis inductance as a function of the d, q-axes currents, at the position where rotor d-axis is aligned with phase a-axis. =0 =1 = 11.8 0 0.5 1 1.5 2 2.5 (A), q-axis DC current i d =0 i d =1 i d =2 Dividing head Test Motor 12.5 12 Ld Lq Power analyzers L d, L q [mh] 11.5 11 10.5 Power supply 10 200 00 400 500 600 700 800 900 1000 1100 1200 Frequency [Hz] Fig. Test bench for inductance measurement Fig. 6 Measured incremental d-axis and q-axis inductances as functions of the excitation AC frequency, at the position where rotor d-axis is aligned with phase a-axis.

It may be observed from Fig. 4~5 that both the d-axis and q-axis inductances are functions of the d, q-axes currents. As shown in Fig. 4, when the d-axis current increases, the d-axis inductance decreases, whh is due to the increased saturation level on the d-axis path. When the q-axis current is increased, whh causes saturation on the d-axis flux path, the d-axis inductance is future reduced. Similar effect of the d, q currents on the q-axis inductance may be observed from Fig. 5. When the AC excitation frequency increases, both the d-axis and q-axis inductances decrease, as shown in Fig. 6. This is mainly due to the eddy current effects whh cause the change of the flux path, as briefly discussed in section II. V. CONCLUSION In this paper, a new d, q-axes incremental inductance measurement method was proposed. It is shown that by using two special row vectors, the original motor equations may be simplified and transformed into a simple equation that only involves the d-axis or the q-axis inductance. This allows the d, q-axes inductances to be separately determined, even with high nonlinearity effects present. Measurement results obtained using this method clearly show the cross-coupling effects of the d, q inductances and the frequency effects on the inductances. REFERENCES [1] Ji-Hoon Jang; Seung-Ki Sul; Jung-Ik Ha; Kozo Ide; Mitsujiro Sawamura, Sensorless Drive of Surface-mounted Permanent-Magnet Motor by High-Frequency Signal Injection Based on Magnet saliency, IEEE Transactions on Industry Applations, Vol. 9, Jul.-Aug. 200 pp.101 109. [2] Ji-Hoon Jang; Jung-Ik Ha; Ohto, M.; Ide, K.; Seung-Ki Sul; Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection, IEEE Transactions on Industry Applations, Vol. 40, Nov.-Dec. 2004 pp.1595 1604. [] Consoli, A.; Scarcella, G.; Testa, A.; Industry applation of zero-speed sensorless control techniques for PM synchronous motors, IEEE Transactions on Industry Applations, Vol. 7, March-April, 2001 pp. 51-521. [4] Jung-Ik Ha; Seung-Ki Sul; Physal understanding of high frequency injection method to sensorless drives of an induction machine, IEEE Industry Applations Conference, Vol., 8-12 Oct. 2000, pp. 1802 1808. [5] Jung-Ik Ha; Ohto, M.; Ji-Hoon Jang; Seung-Ki Sul; Design and selection of AC machines for saliency-based sensorless control, 7th IAS Annual Meeting on Industry Applations, Vol. 2, 1-18 Oct. 2002 pp.1155 1162. [6] T. J. E. Miller, Methods for testing permanent magnet polyphase AC motors, in Conf. Rec. IEEE-IAS Annu. Meeting, 1981, pp. 494 499. [7] Hans-Peter Nee, Louis Lefevre, Peter Thelin, Juliette Soulard, Determination of d and q Reactances of Permanent-Magnet Synchronous Motors Without Measurements of the Rotor Position, IEEE Transactions on Industry Applations,, Vol. 6, NO. 5, Sep-Oct, 2000. [8] Stumberger B,Kreca B,Hribernik B., Determination of parameters of synchronous motor with permanent mag-nets from measurement of load conditions, IEEE Transactions on Energy Conversion,, Vol. 14, NO. 4, December, 1999. [9] Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Analysis of electr machinery and drive systems, Wiley Inter-science, 2 nd edition, 2002, ISBN 0-471-1426-X, pp.60.