Application Note. Over Current Latch with Low Side Sense AN-CM-223

Similar documents
Application Note. External Oscillator Solutions with GreenPAK AN-CM-233

Application Note. Customized Glucometer using GreenPAK AN-CM-222

Application Note. Brushless DC Motor Control AN-1114

Application Note. Low Power DC/DC Converter AN-CM-232

Application Note. Servo Overload Protection AN-CM-247

Application Note. 3-Phase Brushless DC Motor Control with Hall Sensors AN-CM-244

Application Note. Smart LED Dimmer Controlled via Bluetooth AN-CM-225

Application Note. PWM Control for PC Fans AN-CM-248

iw3627 Off-Line Digital Constant-Voltage LED Driver with Power Factor Correction 1 Description 2 Features 3 Applications

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

Reference Design EBC iw1760b-00 for 15W Dual Output Home Appliance Switched Mode Power Supply Design

iw1815 Product Summary

AN4995 Application note

AN4439 Application note

Chop away input offsets with TSZ121/TSZ122/TSZ124. Main components Single very high accuracy (5 μv) zero drift micropower 5 V operational amplifier

Using a Pulse Width Modulated Output with Semiconductor Pressure Sensors

Circuit Applications of Multiplying CMOS D to A Converters

LM2903W. Low-power, dual-voltage comparator. Features. Description

AN2837 Application note

Data Conversion and Lab Lab 1 Fall Operational Amplifiers

AN3134 Application note

AN4269. Diagnostic and protection features in extreme switch family. Document information

Micro DC-DC Converter Family Isolated Remote Sense

AN1441 Application note

Low-Pressure Sensing Using MPX2010 Series Pressure Sensors

Description. Part numbers Order codes Packages Output voltages

AN243 Application note

LF253, LF353. Wide bandwidth dual JFET operational amplifiers. Features. Description

MIC23099 Evaluation Board

Features. Applications SOT-23-5

Applications of the LM392 Comparator Op Amp IC

Description. Order code Package Packing

When input, output and feedback voltages are all symmetric bipolar signals with respect to ground, no biasing is required.

TS522. Precision low noise dual operational amplifier. Features. Description

AN3248 Application note

CMOS Schmitt Trigger A Uniquely Versatile Design Component

Obsolete Product(s) - Obsolete Product(s)

LM2901. Low power quad voltage comparator. Features. Description

STV8172A. Vertical deflection booster for 3 App TV/monitor applications with 70 V flyback generator. Features. Description STV8172A.

STEVAL-ISA005V1. 1.8W buck topology power supply evaluation board with VIPer12AS. Features. Description. ST Components

Obsolete Product(s) - Obsolete Product(s)

EVAL-RHF310V1. EVAL-RHF310V1 evaluation board. Features. Description

LF253 LF353. Wide bandwidth dual JFET operational amplifiers. Features. Description

Practical RTD Interface Solutions

Low noise and low drop voltage regulator with shutdown function. Description

LM217M, LM317M. Medium current 1.2 to 37 V adjustable voltage regulator. Description. Features

EE 3305 Lab I Revised July 18, 2003

LM248, LM348. Four UA741 quad bipolar operational amplifiers. Description. Features

STEVAL-ISA110V1. 12 V/12 W wide-range non-isolated flyback based on the VIPER26LN. Features. Description

Response time reduction of the ZXCT1009 Current Monitor

35 W bridge car radio amplifier with low voltage operation. Description. Table 1. Device summary. Order code Package Packing

STLQ ma, 3 μa supply current low drop linear regulator. Features. Applications. Description

Obsolete Product(s) - Obsolete Product(s)

LM323. Three-terminal 3 A adjustable voltage regulators. Description. Features

LM2907/LM2917 Frequency to Voltage Converter

Applications of the LM392 Comparator Op Amp IC

Sensor Interfacing and Operational Amplifiers Lab 3

AN1489 Application note

Improving feedback current accuracy when using H-Bridges for closed loop motor control

AN3222 Application note

STEVAL-ISA111V1. Wide-range single-output demonstration board based on the VIPER26HN. Features. Description STEVAL-ISA111V1

Obsolete Product(s) - Obsolete Product(s)

LM723CN. High precision voltage regulator. Features. Description

AN2446 Application note

Features. Applications

Current sense chain accuracy

EK307 Active Filters and Steady State Frequency Response

Part numbers Order codes Packages Temperature range. LM137 LM137K TO-3-55 C to 150 C LM337 LM337K TO-3 0 C to 125 C LM337 LM337SP TO C to 125 C

KF25B, KF33B KF50B, KF80B

AN2441 Application note

MC33172 MC Low power dual bipolar operational amplifiers. Features. Description

LM2904AH. Low-power, dual operational amplifier. Related products. Description. Features. See LM2904WH for enhanced ESD performances

AN3302 Application note

AN2944 Application note

Description. Table 1. Device summary SOT-223 DPAK TO-220

Order code Temperature range Package Packaging Marking

PIEZO FILM LAB AMPLIFIER

LF453 Wide-Bandwidth Dual JFET-Input Operational Amplifiers

NUMBER DEMO CIRCUIT NUMBER DESCRIPTION

Obsolete Product(s) - Obsolete Product(s)

AN2961 Application note

Using the Peak Detector Voltage to Compensate Output Voltage Change over Temperature

FAN1851A Ground Fault Interrupter

AN1756 Application note

LF442 Dual Low Power JFET Input Operational Amplifier

Design Resources Ask The Analog Experts WEBENCH Design Center TI Precision Designs Library R I R F

A Simplified Test Set for Op Amp Characterization

AN2333 Application note

Obsolete Product(s) - Obsolete Product(s)

TS391. Low-power single voltage comparator. Features. Description

AN1642 Application note

AN12232 QN908x ADC Application Note

LM193, LM193A, LM293, LM293A, LM393, LM393A

PowerAmp Design. PowerAmp Design PAD125 CURRENT LIMIT ACCESSORY MODULE

ML4818 Phase Modulation/Soft Switching Controller

LM2931. Very low drop voltage regulators with inhibit function. Description. Features

LM2903H. Low-power dual voltage comparator. Features. Description

AN2842 Application note

AN4112 Application note

Advanced Regulating Pulse Width Modulators

Transcription:

Application Note Over Current Latch with Low Side Sense AN-CM-223 Abstract The design in this application note uses a single Dialog GreenPAK SLG46110V to realize a lowside sensing over current detection circuit with a latching output used to enable/disable an external high-side PMOS load switch. This Application Note comes complete with design files which can be found in the References section.

Contents Abstract... 1 Contents... 2 Figures... 2 Tables... 2 1 Terms and Definitions... 3 2 References... 3 3 Introduction... 4 4 Configuring GreenPAK Comparators as OpAmps... 6 Revision History... 11 Figures Figure 1: Application Circuit... 4 Figure 2: GreenPAK Design... 5 Figure 3: Simulation Waveforms... 5 Figure 4: 12 Circuit Configured for Gain of x3.2... 6 Figure 5: Graph 1. VIN vs VOUT at VDD = 3.3 V with x3.2 Gain... 7 Figure 6: Graph 2. VIN vs VOUT for all Gain Settings at 3.3 V from Table 2 (VDD = 3.3 V)... 9 Figure 7: Graph 3. VIN vs VOUT for all Gain Settings at 5 V from Table 2 (VDD = 5 V)... 9 Figure 8: ACMP0 Settings in GreenPAK Design... 10 Tables Table 1: x3.2 Gain... 7 Table 2: VIN vs VOUT Data for 3 Different Gain Settings at VDD = 3.3 V and 5 V... 8 CFR0014 2 of 12 2018 Dialog Semiconductor

1 Terms and Definitions PMOS PGA P-type metal-oxide-semiconductor logic Programmable-gain amplifier 2 References For related documents and software, please visit: https://www.dialog-semiconductor.com/configurable-mixed-signal. Download our free GreenPAK Designer software [1] to open the.gp files [2] and view the proposed circuit design. Use the GreenPAK development tools [3] to freeze the design into your own customized IC in a matter of minutes. Dialog Semiconductor provides a complete library of application notes [4] featuring design examples as well as explanations of features and blocks within the Dialog IC. [1] GreenPAK Designer Software, Software Download and User Guide, Dialog Semiconductor [2] AN-CM-223.gp, GreenPAK Design File, Dialog Semiconductor [3] GreenPAK Development Tools, GreenPAK Development Tools Webpage, Dialog Semiconductor [4] GreenPAK Application Notes, GreenPAK Application Notes Webpage, Dialog Semiconductor [5] SLG46110V, Datasheet, Dialog Semiconductor [6] Darmawaskita, Hartono, Get Extra Op Amps by Using Spare Comparators, Electronic Design 24 May 2004: n. pag. Web. CFR0014 3 of 12 2018 Dialog Semiconductor

3 Introduction This design uses a single Dialog GreenPAK SLG46110V to realize a low-side sensing over current detection circuit with a latching output used to enable/disable an external high-side PMOS load switch. By configuring one of the onboard comparators (ACMP1) to perform as a non-inverting amplifier with a gain of 22.5 (See attached application note), we can use a very small 0.010 Ω lowside sense resistor to, in this case, detect a 4 A maximum current. Figure 1 shows the full circuit schematic while Figure 2 shows the internal design of the SLG46110V GreenPAK circuit. Figure 1: Application Circuit CFR0014 4 of 12 2018 Dialog Semiconductor

Figure 2: GreenPAK Design The circuit functions as follows and the associated simulation waveforms are given in Figure 3. Once the 4 A limit is exceeded (shown by the yellow trace), the output of ACMP0 will trip HIGH, setting both the output of Latch 2 and the OC_FAULT output HIGH (shown by the green trace). The /OC_LATCH_OUT and OC_LATCH_OUT outputs are tied to the output of Latch 2, so when the Latch 2 output goes HIGH, the /OC_LATCH_OUT output goes LOW and turns OFF the load switch. Once tripped, the /OC_LATCH_OUT output on Pin 9 will remain LOW, even if the overcurrent event is gone, keeping the external load switch turned OFF. If the overcurrent condition is now cleared, the output of ACMP0 will go LOW, thus the OC_FAULT output will now go LOW, as it follows the output state of ACMP0. However, the /OC_LATCH_OUT output will remain latched LOW. In this event, the micro can now look at the OC_FAULT signal, determine that the over current event has been corrected, and send a LOW going pulse to the /RESET input on Pin 2 (shown by the orange trace). The low going pulse on the /RESET input will then reset the output of Latch 2 to LOW, and thus set the /OC_LATCH _OUT output HIGH, thereby turning on the external switch. Figure 3: Simulation Waveforms CFR0014 5 of 12 2018 Dialog Semiconductor

All essential parameters in the design are customizable to the needs of the application. The gain associated with ACMP1, the voltage trip level associated with ACMP0, signal polarities, load switch and sense resistor can all be configured to match the requirements needed. With the unused resources within the SLG46110V, additional features can also be added to enhance the circuit functionality. One example would be to add an automatic retry circuit that would automatically clear the /OC_LATCH_OUT signal after a set period of time. If the continued over current situation caused another immediate trip, the circuit would initiate another retry. It would continue to attempt to clear the /OC_LATCH_OUT signal for a preprogrammed number of times, and if unsuccessful, it would finally latch the /OC_LATCH_OUT signal LOW. At this point the external switch would be latched off until the fault is cleared and a low going pulse is input on Pin 2, /RESET. This circuit provides a small, configurable, low cost solution for overcurrent safety functions. With the addition of a few properly selected external passive components, this solution can cover a wide range of overcurrent applications needing electronic circuit breaker functions. 4 Configuring GreenPAK Comparators as OpAmps Often when using a GreenPAK device there is a need to add gain to an input signal in order to bring it into a measurable range for use by the ADC or the comparators. In some GreenPAK devices there is a PGA available to perform this function. The PGA is quite versatile in its configurability but the input voltage range is limited and its gain is limited to a maximum setting of x8. The SLG46110V has no internal Operational Amplifiers (OpAmps). As a result, it would be nice to have a way of incorporating some gain into your GreenPAK design without adding extra OpAmps. One method to achieve this would be to try and adapt one of the onboard comparators for use as an OpAmp. This is something that has been done for years in highly integrated solutions where cost and size were major factors. With a bit of work and a few external R s and C s you can effectively make a low power OpAmp from a spare comparator in your GreenPAK design. This is by no means a high speed, high performance OpAmp solution but for many applications where gain is needed on the input signal from a sensor, we are only looking to amplify a slow-moving DC signal. For many applications such as these where we are measuring temperature or voltage across a shunt resistor, a solution such as this is more than adequate. In order to configure one of the comparators for use as an OpAmp, we first look at the overall circuit, shown in Figure 4. The comparator is configured as a non-inverting OpAmp with VIN being connected to the non-inverting input of the comparator. The inverting input of the comparator is connected to the center point of the resistive divider made up of R1 and R2, with C1 adding a bit of RC time constant to the feedback signal. The resistor, R3, in combination with C2, will act as a low pass filter, in this case yielding a 24 Hz cutoff. VOUT is then the voltage across C2. Figure 4: 12 Circuit Configured for Gain of x3.2 CFR0014 6 of 12 2018 Dialog Semiconductor

The circuit functions as follows. When the voltage across C1 is less than the input voltage at VIN, the output of the comparator is HIGH. This causes the voltage across C1 to rise. Once the voltage across C1 is greater than VIN, the output of the comparator switches LOW. Now the voltage across C1 begins to fall until it is less than VIN, at which point the output of the comparator switches HIGH and the cycle begins again. After many cycles the filtered average voltage seen across the output capacitor, C2, is given by the transfer function of the non-inverting amplifier. V OUT = V IN (R1 + R2) / R2 The circuit in Figure 4 was tested and measured yielding results very close to the calculated gain of x3.2. A table of measured data is given in Table 1 along with the associated data plot for VOUT vs. VIN at VDD = 3.3 V. Table 1: x3.2 Gain VDD = 3.3 V VIN (IN+) (mv) VOUT (mv) 4 13 101 322 201 635 300 947 400 1263 500 1579 599 1891 699 2206 798 2518 898 2835 999 3155 1099 3274 Figure 5: Graph 1. VIN vs VOUT at VDD = 3.3 V with x3.2 Gain CFR0014 7 of 12 2018 Dialog Semiconductor

As shown in Figure 5, there is some error at both extremes of the plot when the input is near 0 V and when the output is near the 3.3 V rail. There is an offset present at the low end of the VOUT vs. VIN plot. This offset can be easily calibrated out of the system, if necessary, but that is not the focus of this application note. Techniques for correcting OpAmp offsets are readily available on the internet. At the high end of the plot, as we get close to the VDD rail, the gain becomes slightly nonlinear. This is to be expected and illustrates the need to allow a bit of headroom below the VDD rail and limit the output swing of the circuit to around VDD 300 mv or about 3.0 V max. with a VDD of 3.3 V. One additional limitation of this circuit is the input voltage range. The IN+ node at VIN can normally take a voltage up to VDD but the IN- node is limited to about 1.2 V. For example, a 1.5 V VIN signal with the OpAmp configured for a gain of 2 and VDD = 3.3 V, will cause the circuit to exceed the input voltage range of the IN- node. Once IN- is above 1.3 V, it will cause the output to go to the rail until VIN is brought back down below 1.2 V. So, as a rule, it is recommended to limit the VIN range to 0 < VIN < 1.2 V, max. Additional VIN vs VOUT data at various gains was taken for both VDD = 3.3 V and VDD = 5 V. That data is listed in Table 2 and plotted in Figure 6 and Figure 7. In all cases the output is very linear within the VIN < 1.1 V and VOUT < VDD 300 mv constraints. Table 2: VIN vs VOUT Data for 3 Different Gain Settings at VDD = 3.3 V and 5 V VDD = 3.3 V VDD = 5 V VDD = 3.3 V VDD = 5 V VDD = 3.3 V VDD = 5 V Gain = 2 Gain = 3.2 Gain = 4.3 VIN (IN+) (mv) VOUT (mv) VOUT (mv) VOUT (mv) 4 9 10 13 15.2 18.1 19.6 101 204.8 206.2 322 321 429 431 201 406 407 635 636 855 858 300 608 607 947 949 1277 1280 400 810 810 1263 1266 1705 1707 500 1012 1013 1579 1585 2132 2134 599 1212 1213 1891 1899 2556 2556 699 1415 1416 2206 2220 2983 2984 798 1615 1616 2518 2527 3286 3406 898 1818 1820 2835 2845 3286 3839 999 2022 2026 3155 3167 3286 4270 1099 2230 2242 3274 3506 3286 4690 VDD saturation CFR0014 8 of 12 2018 Dialog Semiconductor

Figure 6: Graph 2. VIN vs VOUT for all Gain Settings at 3.3 V from Table 2 (VDD = 3.3 V) Figure 7: Graph 3. VIN vs VOUT for all Gain Settings at 5 V from Table 2 (VDD = 5 V) Figure 8 is a screenshot of the circuit designed into an SLG46110V. The figure shows not only the circuit but also the remaining resources and pins that are available to add other features and perform other functions. The actual GreenPAK design program file is attached as well. CFR0014 9 of 12 2018 Dialog Semiconductor

Figure 8: ACMP0 Settings in GreenPAK Design Based on the analysis given, the circuit operates quite well and as expected. The gain is very linear and accurate for VOUT < VDD - 300 mv and VIN < 1.1 V. For many slow varying DC signals this performance is more than acceptable for adding some needed gain and enables the designer to now measure and compare these signal values more accurately and easily without adding additional external OpAmps. CFR0014 10 of 12 2018 Dialog Semiconductor

Revision History Revision Date Description 1.0 28-Feb-2018 Initial version. CFR0014 11 of 12 2018 Dialog Semiconductor

Status Definitions Status DRAFT APPROVED or unmarked Definition The content of this document is under review and subject to formal approval, which may result in modifications or additions. The content of this document has been approved for publication. Disclaimer Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor. Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications. Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect. Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor. All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor s Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated. Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of their respective owners. 2018 Dialog Semiconductor. All rights reserved. Contacting Dialog Semiconductor United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700 Germany Dialog Semiconductor GmbH Phone: +49 7021 805-0 The Netherlands Dialog Semiconductor B.V. Phone: +31 73 640 8822 Email: enquiry@diasemi.com North America Dialog Semiconductor Inc. Phone: +1 408 845 8500 Japan Dialog Semiconductor K. K. Phone: +81 3 5769 5100 Taiwan Dialog Semiconductor Taiwan Phone: +886 281 786 222 Web site: www.dialog-semiconductor.com Hong Kong Dialog Semiconductor Hong Kong Phone: +852 2607 4271 Korea Dialog Semiconductor Korea Phone: +82 2 3469 8200 China (Shenzhen) Dialog Semiconductor China Phone: +86 755 2981 3669 China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058 CFR0014 12 of 12 2018 Dialog Semiconductor