EE 462G Laboratory #1 Measuring Capacitance

Similar documents
EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

Laboratory 2 (drawn from lab text by Alciatore)

EE 3302 LAB 1 EQIUPMENT ORIENTATION

Electronic Circuits Laboratory EE462G Lab #3. Diodes, Transfer Characteristics, and Clipping Circuits

Experiment 8: An AC Circuit

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

Exponential Waveforms

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

EE 368 Electronics Lab. Experiment 10 Operational Amplifier Applications (2)

STEP RESPONSE OF 1 ST AND 2 ND ORDER CIRCUITS

Lab 3: AC Low pass filters (version 1.3)

EE 3305 Lab I Revised July 18, 2003

EE 210: CIRCUITS AND DEVICES

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

Lab 2: Capacitors. Integrator and Differentiator Circuits

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

ENG 100 Lab #2 Passive First-Order Filter Circuits

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

Integrators, differentiators, and simple filters

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

EXPERIMENT 4: RC, RL and RD CIRCUITs

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Notes on Experiment #1

LAB 1: Familiarity with Laboratory Equipment (_/10)

University of Pittsburgh

Lab 2: Linear and Nonlinear Circuit Elements and Networks

RC Filters and Basic Timer Functionality

Laboratory 4. Bandwidth, Filters, and Diodes

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

EE 422G - Signals and Systems Laboratory

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

EXPERIMENT 4: RC, RL and RD CIRCUITs

University of Pennsylvania Department of Electrical and Systems Engineering. ESE 206: Electrical Circuits and Systems II - Lab

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

Lab 4: Analysis of the Stereo Amplifier

Step Response of RC Circuits

Experiment 1: Instrument Familiarization (8/28/06)

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

EK307 Active Filters and Steady State Frequency Response

EE 233 Circuit Theory Lab 2: Amplifiers

Lab 9: Operational amplifiers II (version 1.5)

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

Experiment 8 Frequency Response

Experiment 1: Instrument Familiarization

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

Lab 6: Building a Function Generator

Wave Measurement & Ohm s Law

INTRODUCTION TO AC FILTERS AND RESONANCE

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format.

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics

LAB 7: THE OSCILLOSCOPE

Lab #2: Electrical Measurements II AC Circuits and Capacitors, Inductors, Oscillators and Filters

Notes on Experiment #3

EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1

ECE 2274 Lab 2 (Network Theorems)

Exercise 1: AC Waveform Generator Familiarization

ECE 2006 University of Minnesota Duluth Lab 11. AC Circuits

Notes on Experiment #12

Notes on Experiment #3

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

Lab 13 AC Circuit Measurements

EK307 Passive Filters and Steady State Frequency Response

Time-Varying Signals

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

PHASES IN A SERIES LRC CIRCUIT

EE431 Lab 1 Operational Amplifiers

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to

Experiment 9 AC Circuits

Chapter 1: DC circuit basics

Frequency Response and Filters

PHASORS AND PHASE SHIFT CIRCUITS

LRC Circuit PHYS 296 Your name Lab section

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes

USE OF BASIC ELECTRONIC MEASURING INSTRUMENTS Part II, & ANALYSIS OF MEASUREMENT ERROR 1

Equipment: You will use the bench power supply, function generator and oscilloscope.

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

ECE 53A: Fundamentals of Electrical Engineering I

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

Sonoma State University Department of Engineering Science Spring 2017

Equipment and materials to be checked out from stockroom: ECE 2210 kit, optional, if available. Analog BK precision multimeter or similar.

The Series RLC Circuit and Resonance

Experiment 2: Transients and Oscillations in RLC Circuits

Fig. 1. NI Elvis System

Figure E2-1 The complete circuit showing the oscilloscope and Bode plotter.

PHYS 235: Homework Problems

Precalculations Individual Portion Introductory Lab: Basic Operation of Common Laboratory Instruments

Operational Amplifiers 2 Active Filters ReadMeFirst

Real Analog - Circuits 1 Chapter 11: Lab Projects

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

Operational Amplifiers: Part II

OPERATIONAL AMPLIFIERS (OP-AMPS) II

AC CIRCUITS - CAPACITORS AND INDUCTORS

Transcription:

EE 462G Laboratory #1 Measuring Capacitance Drs. A.V. Radun and K.D. Donohue (1/24/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated 8/31/2007 by Stephen Maloney I. Instructional Objectives Introduce lab instrumentation with linear circuit elements Introduce lab report format Develop and analyze measurement procedures based on two theoretical models Introduce automated lab measurement and data analysis II. Background A circuit design requires a capacitor. The value of an available capacitor cannot be determined from its markings, so the value must be measured; however a capacitance meter is not available. The only available resources are different valued resistors, a variable frequency signal generator, a digital multi-meter (DMM), and an oscilloscope. Two possible ways of measuring the capacitor s value are described in the following paragraphs. For this experiment, the student needs to select resistors and frequencies that are convenient and feasible for the required measurements and instrumentation. Be sure to use the digital multi-meter (DMM) to measure and record the actual resistance values used in each measurement procedure. III. Pre-Laboratory Exercise Step Response Model 1. For a series circuit consisting of a voltage source v(t), resistor R, and capacitor C, derive (show all steps) the complete solution for the capacitor voltage v c (t) when the source is a step with amplitude A and the initial capacitor voltage is 0. 2. Assume the source v(t) is a function generator, where the source voltage can only be measured after the 50 Ω internal resistance. See Fig. 1. a) Find the step response of amplitude A in terms of R and C for v c (t). (Hint: this should look very similar to the answer to problem 1). b) Find the voltage measured at the output of the function generator, v m (t), as shown in Fig. 1. (Hint: Use the solution to part A to find R*i c (t) = RC*dv c /dt and KVL).

v(t) 50Ω + v m (t) _ R C v c (t) Figure 1. Test Circuit accounting for output impedance of function generator. 3. For the step response model derived in Problem 1, determine the value of C if R = 200, A = 5 volts, and the step response is approximately 3. 2 volts at t = 10ms (assume input step turns on at t = 0). 4. Describe an experimental procedure that uses ideas from the model of Problem 1 along with a known resistor value, a periodic function generator, and an oscilloscope to estimate a capacitor value. This description must include: Circuit diagram General function generator settings Placement of oscilloscope probes (label positive and common ground connections) A graph of what you would expect to see on the scope (including both v c (t) and v m (t)) and any pertinent measurements. Formula or procedure used to estimate capacitor value Frequency Response Model: 5. For a series circuit consisting of a voltage source v(t), resistor R, and capacitor C: a) Derive the transfer function H(f) with input v(t) and output v c (t). b) Write an explicit equation for the magnitude of the transfer function. c) Write an explicit equation for the phase of the transfer function. 6. Repeat Problem 5 for the circuit of Fig. 1, and find transfer function from input v m (t) to output v c (t). (Note: If you did the derivation correctly the 50Ω resistor does not affect this transfer function. Therefore, if the phase difference and magnitude scaling between v m and v c are measured directly, and the 50Ω internal impedance will not have to be accounted for even when small resistors values are used). 7. For the frequency response model derived in Problem 5, determine the value of C, given v(t) is a 4 volt peak-to-peak sinusoid at frequency f = 1.5kHz, R = 200, and the amplitude of the sinusoidal voltage across the capacitor voltage v c (t) is 2.8 volts peak-topeak. 8. For the frequency response model derived in Problem 5, determine the value of C, given v(t) is a sinusoid at frequency f = 4kHz, R = 6k, and the phase between v(t) and capacitor voltage v c (t) is 45 ( /4 radians).

9. Describe an experimental procedure that uses ideas from the frequency model along with a known resistor value, a periodic function generator, and a 2-channel oscilloscope to estimate a capacitor value. Automated Measurement and Data Analysis Method 10. Assume that data was automatically collected from a first-order low-pass filter (as shown in Fig. 2 at several frequency points list below in Table 1. R v(t) C Figure 2. Circuit B measurement for frequency response model. Table 1. Measurements on a Low-Pass Filter Circuit Frequency (Hertz) Peak-to-Peak Input (Voltage) Peak-to-Peak Output (Voltage) Phase of Output - Input (Degrees) 120 4.1202 3.7137-23.7380 160 4.0984 3.6122-27.6350 200 4.0939 3.4766-32.5860 240 4.0995 3.3042-37.1420 280 4.1080 3.1847-38.8100 320 4.0994 3.0345-41.8310 360 4.0994 2.8817-45.8470 400 4.0833 2.7716-47.4650 440 4.0875 2.5484-52.3820 Write a Matlab script file to find the 3dB cut-off frequency that results in the best-fitting transfer function for the above data in a mean squared error sense. Fit using magnitude and phase separately (in the same script), print out the code, and write the resulting magnitude and phase fit cutoff frequencies on the page. The script must be commented in such a way as to allow someone to understand how the code works quickly and without in depth analysis of individual commands. (Hint - generate a range of values to compare with the input values by using the single pole transfer function, input frequency readings, and looping through a set of "good guess" cutoff frequencies. Record the sum of the square of the difference, and use this to determine where the least difference occurs).

IV. Laboratory Exercise 1. To use the step response model in the capacitor measurement, build the Circuit A shown in Fig. 3. Use a 0 to 5V square wave input (function generator and voltage offset setting so that the wave starts at 0 volts), and use the oscilloscope to measure the voltage waveform across the capacitor. Enter on your data sheet the critical time and amplitude points for 4 different values of R (measure the resistance values with the DMM). Use the waveform save feature on the scope to record ONE of the capacitor voltage waveforms from the 4 trials that you used to obtain the time and amplitude point measurement. Proper use of the horizontal and vertical cursers can be helpful in making this measurement. The waveform should be presented as a figure in the results section and just sketched in the data sheet. Compute the mean and 95% confidence limits over the capacitor values determined from each trial, and present this in the results section also. In the procedure section, address/include the following: a. Introduce your procedure by stating what it should accomplish. Describe the quantities you want to measure and their relationship to what you ultimately want to find (i.e. capacitor estimate). Identify the independent and dependent variables over the set of trials. b. Describe the set up (equipment and supplies used and configured). Include a description of probe placement, and grounding issues associated with your circuit if appropriate. (Where are the grounds for the oscilloscope and signal generator this circuit, and why should they be there?) Draw a circuit diagram including probe locations and grounding connections. c. Describe formulae used on the measured data to estimate final results, if applicable. d. For this experiment you must select a square wave frequency and resistor values. So describe the critical issues in selecting a square wave frequency for the experimental measurement and indicate how you determined the specific square wave frequencies used in your measurements. Likewise, describe how you determined the resistor values you used. R v(t) C Figure 3. Circuit A measurement for step response model. 2. Find the LabVIEW programs test_use_files_freq.exe and test_use_keyboard.exe. located on the lab computer s hard drive (most likely in a directory off the C drive called EE462G_LabVIEW) or if they don t exist or are corrupted

(Download the LabVIEW programs in zip files associated with the link: http://www.engr.uky.edu/~zhichen/teaching/teaching.html. The unzipped files form a directory called EE462G_LabVIEW. Enter that directory and you will find the executable files needed for this lab. The source code is included in a subdirectory, but you will not need these for this lab.) Move the executables to a directory you want to work in. For testing how the GPIB interface works make sure the oscilloscope and function generator are attached as in Fig. 2, instruments are turned on, and USB GPIB cables are connected to the computer and instruments. Put Channel 1 over the input (function generator) and Channel 2 over the output (capacitor). Then execute the program test_use_keyboard.exe. Once the interface comes up, enter an amplitude and frequency in the boxes and click the RUN button. The scope and function generator will respond to the GPIB commands sent from the program to the instruments. Once the instruments have stabilized, the program will then read from the instruments (using the MEASURE features of the oscilloscope) and present the data in table on the GUI. The green indicator light will toggle to indicate the program has finished making the measurement. Try this again for other frequencies and amplitudes. Select 4 resistors (they do not have to be the same ones used in the step response experiments. Then try to find the frequency that results in an approximate 45 degree phase shift. It does not have to be very close (between 40 and 50 degrees is fine). Record this frequency and the actual phase shift for each resistor. If any resistors force the cutoff into a very high or very low range, making measurements difficult, select another resistor and repeat the measurements. 3. For each resistor, create an ASCII file (you can use Notepad, MS word with the save as TEXT file option, or even Matlab s editor to do this) with a list of frequency values in Hz (separated by carriage returns), where the frequencies span a range that includes the cutoff frequency of low-pass circuit. Start about a decade before and go to about a decade after the frequency cut-off (the frequencies do not have to be uniformly spaced, however, you should make them more dense around the expected cut-off value). Do not use more than 20 points as it may take too long to finish. Save this file in convenient directory (remember were you put it) and execute the test_use_file_freq.exe program. Enter an amplitude of 4. Then click the Input frequency from file button and direct the program to open the file you just saved. The program will start to run and you can see the instruments respond while filling the table on the GUI with the measure values. When finished, the green indicator light in the GUI will go on. Click the button to save the measured data. Select a descriptive file name so you know what data goes with what resistor. (You should also save these files to a floppy or on the network where you can access them later when doing the report). Then run your Matlab script to estimate the cutoff frequency based on the magnitude and phase of your measured transfer function (don t forget to update the resistor values and file names). Run this program several times making adjustments on the cut-off frequency range value or increments as needed until you are satisfied with the results. You may notice frequencies at which bad measurements occurred (they will typically have number way out of range, like

99999999 for a phase angle). You can delete these lines from the text file before processing with the curve fit program. Record the results (printouts of the table values, with estimates of center frequency, and capacitor values written on your data sheet) form each trial in your datasheet. Present the tables of measured frequencies in results section and data sheet (you should have table for the 4 different values of R clearly labeled). For the results section of your final report, also compute the mean and 95% confidence limits over all your best-fit transfer function magnitude capacitor estimates, and the same for all your best-fit transfer function angle estimates. Then combine the estimate from both magnitude and phase estimates to compute the mean and 95% confidence limits of that. In the procedure section, address/include the following: a. Describe the quantities you want to measure and/or the relationship you want to find. Identify independent and dependent variables. b. Describe the set up (equipment and supplies used and configured). Include a description of probe placement, and grounding issues associated with your circuit if appropriate. (Where are the grounds for the oscilloscope and signal generator this circuit, and why should they be there?) Add proper ground symbols to your circuit and measurement equipment. c. Indicate the name of the program used to apply multiple frequency values and how you determined the frequency for each resistor. d. Describe program used on the measured data to estimate final results. Include the script or sample script as an appendix. The discussion section should explain the results relative to the theory. You should be as quantitative as possible here. If you are comparing measurements, don t say the measurement were about the same. Indicate differences numerically. Also indicate whether the capacitor values estimated by the different methods were significantly different. If so, try to explain why the difference existed and suggest which values are probably more accurate. The different method were the step response estimates, the frequency response estimate with transfer function magnitude, with transfer function angle, and combined transfer function magnitude and phase. If variations were within the confidence limits of the estimates from different methods you can attribute that to experimental error. However, even if they are within the range and you feel something went wrong in the experiment resulting in too high of a variance because of a mistake or malfunctioned piece of equipment, you should indicate this. If differences between methods were outside each other s confidence range consider contributions from mistakes in your implementation of the procedures, faulty connections, components, equipment, or a limitation of the theory used to develop the estimation process. Comment on the difficulty or efficiency of each measurement procedure. In the conclusion section summarize what was accomplished in your experiment and discuss how well the lab exercise met the lab objectives.