A Simple On-Chip Automatic Tuning Circuit for Continuous-Time Filter

Similar documents
A Robust Oscillator for Embedded System without External Crystal

SOLIMAN A. MAHMOUD Department of Electrical Engineering, Faculty of Engineering, Cairo University, Fayoum, Egypt

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

A MASH ΔΣ time-todigital converter based on two-stage time quantization

ADVANCES in CMOS technology have led to aggressive

An Analog Phase-Locked Loop

Fractional- N PLL with 90 Phase Shift Lock and Active Switched- Capacitor Loop Filter

DESIGN OF OTA-C FILTER FOR BIOMEDICAL APPLICATIONS

Low-Voltage Wide Linear Range Tunable Operational Transconductance Amplifier

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

Transconductance Amplifier Structures With Very Small Transconductances: A Comparative Design Approach

A Novel Continuous-Time Common-Mode Feedback for Low-Voltage Switched-OPAMP

Copyright 2007 Year IEEE. Reprinted from ISCAS 2007 International Symposium on Circuits and Systems, May This material is posted here

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS

Low Power Phase Locked Loop Design with Minimum Jitter

An Ultra Low-Voltage and Low-Power OTA Using Bulk-Input Technique and Its Application in Active-RC Filters

A Wide Tuning Range Gm-C Continuous-Time Analog Filter

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC

Seventh-order elliptic video filter with 0.1 db pass band ripple employing CMOS CDTAs

Research on Self-biased PLL Technique for High Speed SERDES Chips

A High-Driving Class-AB Buffer Amplifier with a New Pseudo Source Follower

A 2.4 GHz to 3.86 GHz digitally controlled oscillator with 18.5 khz frequency resolution using single PMOS varactor

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

/$ IEEE

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

NOVEL OSCILLATORS IN SUBTHRESHOLD REGIME

Design of New Full Swing Low-Power and High- Performance Full Adder for Low-Voltage Designs

DESIGN AND ANALYSIS OF LOW POWER CHARGE PUMP CIRCUIT FOR PHASE-LOCKED LOOP

Dual-Frequency GNSS Front-End ASIC Design

DESIGN OF A NOVEL CURRENT BALANCED VOLTAGE CONTROLLED DELAY ELEMENT

A PROCESS AND TEMPERATURE COMPENSATED RING OSCILLATOR

Design of Low Power Linear Multi-band CMOS Gm-C Filter

Phase Locked Loop using VLSI Technology for Wireless Communication

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital VLSI

DESIGN HIGH SPEED, LOW NOISE, LOW POWER TWO STAGE CMOS OPERATIONAL AMPLIFIER. Himanshu Shekhar* 1, Amit Rajput 1

Low-Voltage Low-Power Switched-Current Circuits and Systems

A CMOS Analog Front-End Circuit for MEMS Based Temperature Sensor

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage

A VCO-based analog-to-digital converter with secondorder sigma-delta noise shaping

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A novel RF envelope detector with ultra-wide operation frequency range and enhanced transient response speed

A NOVEL MDAC SUITABLE FOR A 14B, 120MS/S ADC, USING A NEW FOLDED CASCODE OP-AMP

A 6 th Order Ladder Switched-Capacitor Bandpass Filter with a center frequency of 10 MHz and a Q of 20

A 14-bit 2.5 GS/s DAC based on Multi-Clock Synchronization. Hegang Hou*, Zongmin Wang, Ying Kong, Xinmang Peng, Haitao Guan, Jinhao Wang, Yan Ren

LOW CURRENT REFERENCES WITH SUPPLY INSENSITIVE BIASING

Voltage Controlled Ring Oscillator Design with Novel 3 Transistors XNOR/XOR Gates

G m /I D based Three stage Operational Amplifier Design

CHAPTER 2 THE DESIGN OF ACTIVE POLYPHASE FILTER

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique

ECEN 474/704 Lab 7: Operational Transconductance Amplifiers

An ADC-BiST Scheme Using Sequential Code Analysis

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

A widely tunable continuous-time LPF for a direct conversion DBS tuner

Comparative Analysis of CMOS based Pseudo Differential Amplifiers

Design of Low Power CMOS Startup Charge Pump Based on Body Biasing Technique

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

Design and Simulation of Low Dropout Regulator

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

A single-slope 80MS/s ADC using two-step time-to-digital conversion

Low-voltage high dynamic range CMOS exponential function generator

VLSI Chip Design Project TSEK06

Lecture 7: Components of Phase Locked Loop (PLL)

Full-Custom Design Fractional Step-Down Charge Pump DC-DC Converter with Digital Control Implemented in 90nm CMOS Technology

A 2.5V operation Wideband CMOS Active-RC filter for Wireless LAN

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

Ultra Low Power Multistandard G m -C Filter for Biomedical Applications

CDTE and CdZnTe detector arrays have been recently

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth

ISSN: X Impact factor: 4.295

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient

DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN WITH LATCH NETWORK. Thota Keerthi* 1, Ch. Anil Kumar 2

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier

A New Current-Mode Sigma Delta Modulator

CMOS fast-settling time low pass filter associated with voltage reference and current limiter for low dropout regulator

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

Phase interpolation technique based on high-speed SERDES chip CDR Meidong Lin, Zhiping Wen, Lei Chen, Xuewu Li

Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching

REALIZATION OF SOME NOVEL ACTIVE CIRCUITS SYNOPSIS

LINEAR IC APPLICATIONS

Low Power Design of Successive Approximation Registers

None Operational Amplifier (OPA) Based: Design of Analogous Bandgap Reference Voltage

An accurate track-and-latch comparator

Deep-Submicron CMOS Design Methodology for High-Performance Low- Power Analog-to-Digital Converters

Optimization of Digitally Controlled Oscillator with Low Power

A 3-10GHz Ultra-Wideband Pulser

A Modified Structure for High-Speed and Low-Overshoot Comparator-Based Switched-Capacitor Integrator

Chapter 7 PHASE LOCKED LOOP

EE247 Lecture 6. Frequency tuning for continuous-time filters

Design of 12-bit 100-MHz Current-Steering DAC for SOC Applications

A CMOS Phase Locked Loop based PWM Generator using 90nm Technology Rajeev Pankaj Nelapati 1 B.K.Arun Teja 2 K.Sai Ravi Teja 3

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters

A wide-range all-digital duty-cycle corrector with output clock phase alignment in 65 nm CMOS technology

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS

Design and noise analysis of a fully-differential charge pump for phase-locked loops

Front-End and Readout Electronics for Silicon Trackers at the ILC

Transcription:

Int. J. Communications, Network and System Sciences, 010, 3, 66-71 doi:10.436/ijcns.010.31009 Published Online January 010 (http://www.scirp.org/journal/ijcns/). A Simple On-Chip Automatic Tuning Circuit for Continuous-Time Filter Abstract Chia-Hsiung KAO, Ping-Yu TSAI, I-Fan CHANG Department of Electrical Engineering, National Sun Yat-Sen Uuniversity, Kaohsiung, Taiwan, China Email: p9301006@student.nsysu.edu.tw Received September 10, 009; revised October 1, 009; accepted November 17, 009 A simple on-chip automatic frequency tuning circuit is proposed. The tuning circuit is modified from voltage-controlled filter (VCF) frequency tuning circuit. We utilize an operational transconductance amplifier and a capacitor to from a single-time constant (STC) circuit which can produce a controllable delay time clock to tune the frequency of the filter. It can efficiently reduce the deviations in the 3 db bandwidth from the variations of PVT (Process, Voltage and Temperature). The design of the STC circuit is simpler than VCF and it has less chip area. The chip has been implanted using TCMC 0.35 μm CMOS technology and the power consumption is less than 9.05 mw. Keywords: Automatic, Tuning, Voltage-Controlled Filter (VCF), Single-Time Constant (STC) 1. Introduction Analog continuous-time filters [1] are popular in various application, such as video and audio signal processing, ADC, mobile phone, hard disk reading channels, CD- ROM, etc. Recently, the Gm-C filters are widely used in the CMOS technology. The Gm-C filters have higher frequency and flexibility than other analog filter types. However, their performances vary with process and environment variations. The frequency response of analog continuous-time filters is determined by resistors, capacitors or transconductors. However, the process variation, temperature drift and aging, make the integrated RC time constants vary about 30% [,3]. At extreme conditions, the maximum frequency response deviations could be up to 50% [4]. To achieve the desired filter performance, an on-chip automatic tuning scheme is usually required [5 14]. Many kinds of frequency automatic-tuning methods are derived from phase locked loop (PLL) for analog filters, such as sinusoidal oscillator based PLL tuning circuit, voltage-controlled filter (VCF) tuning circuit and etc [1,5,6,13]. The drawbacks of the sinusoidal oscillator based PLL tuning are large size and hard to design. As to the voltage-controlled filter tuning circuit, the power consumption is high and the reference clock needs to be a pure sine wave. According to the aforementioned, we try to make the tuning circuit have following advantages: simplicity, small chip area, good matching with the filter and less power consumption. In the following sections, Section presents the proposed tuning circuit and the Gm-C filter and the experimental results are discussed in Section 3. Section 4 summarizes the conclusions of this paper.. The Proposed Tuning Circuit and the Gm-C Filter.1. The Operation of Proposed Tuning Mechanism Figure 1 shows the proposed tuning circuit scheme. Firstly, the frequency tuning circuit is modified from voltage-controlled filter (VCF) frequency tuning circuit. We replace VCF by a single-time-constant (STC) circuit and the input signal could be square wave. The function of STC is to produce a delay clock which the delay can be controlled. The phase difference will make the charge pump (CP) produce a control voltage. The phase difference is 45 between the reference clock and the output of the voltage comparator. The tuning circuit depends on the constant phase difference to tune the slave filter. Finally, it generates the control voltage after the voltage signal is filtered by the low pass filter (LPF). Next, we discuss the STC circuit. The STC circuit consists of a tunable OTA, as shown in Figure, and a capacitor. We use the tunable OTA to simulate a variable resistance, and we obtain a STC circuit by connecting the OTA with a capacitor.

C. H. KAO ET AL. 67 Reference Clock (A) FSTC STC Circuit PD Tuning circuit (D) (B) Voltage Comparator Control Voltage Figure 1. The block diagram of tuning circuit. (PD: Phase Detector, CP: Charge Pump, LPF: Low Pass Filter). CP LPF Figure. The STC circuit. Figure 3. (A) Reference clock (B) STC output wave with three different Vc. (C) The transfer function of the STC is 1 T() s (1) s 1 w0 1 1 gm w0. () RC C If we input a reference clock, the STC will output a pseudo-triangular wave. The output wave of the STC circuit with three different control voltages V c are shown in Figure 3. When we input a reference clock with amplitude ± V D as shown in Figure 4(A), the STC circuit will output a pseudo-triangular wave with amplitude ± V a as shown in Figure 4(B). The pseudo-triangular wave is symmetrical with respect to the zero voltage. We will use a voltage comparator which is referenced at the zero voltage, so it will produce a clock with a delay time, t', as shown in Figure 4(C). We can find out the relation between the delay time and the time constant, τ, of the pseudo-triangular wave. From Figure 4(B), it can be derived that the relation between t' and τ is: ln( ) t ' T / 1 e (3) T T 1 T fo fclock (4) t'/t 1/8 4.87 Figure 5. t'/t VS T/τ. T/τ Figure 4. (A) Reference clock (B) The output of the STC circuit (C) The output of the voltage comparator (D) The output of the PD. Figure 6. Charge and discharge current.

68 C. H. KAO ET AL. Figure 7. The structure of proposed tuning circuit ((1): STC circuit, (): Voltage comparator, (3): Phase Detector, (4): Charge Pump, (5): Low Pass Filter). Figure 5 is the curve of Equation (3). If we choose t'/t = 1/8, then α = 0.776. When T = 10MHz, the critical frequency of the STC is 7.76MHz. Figure 6 shows a diagram of the charge and discharge current in CP. We set the charge current and discharge current with a ration 3:1. At charge balance, the reference frequency and STC output will be locked at 45 phase difference such that t'/t = 1/8. For the other, we adjust the delay time of the STC with a constant reference clock. The STC circuit is transferred to a square wave, as shown in Figure 4(C). We will detect the phase difference of two square waves by a phase detector, as shown in Figure 4(D). This wave is applied to the charge pump to adjust τ, as shown in Figure 6. At the output of the charge pump, the charge current is three times the discharge current. Because of electric balance, the delay time will be T/8. where k=0.5µ n C ox W/L is the transconductance parameter, and µ n C ox W and L are the mobility, oxide capacitance per unit area, channel width and length, respectively. V T is the threshold voltage, and V c is the OTA s control voltage. We can adjust the STC s RC time by varying the OTA s control voltage, V c. It stands to reason that the tunable OTA s design is easier than a VCF and the size is much smaller than a VCF. When the Reference Clock is applied to the STC circuit, a differential pseudo-triangular wave will be produced. If the control voltage is higher, the g m will be bigger. The charge and discharge.. The Structure of Proposed Tuning Circuit Figure 7 shows the proposed circuit that is consisted of five sub circuits. The first part of the proposed circuit is the STC circuit. It consists of a tunable OTA [8] and a capacitor. We can find the transconductance of the OTA is: gm k( V V ) (5) c T Figure 8. Two-order Gm-C biquad filter [1].

C. H. KAO ET AL. 69 Figure 9. The 3-dB frequency variation in sixty corners (without tuning). Figure 10. The 3-dB frequency variation in sixty corners (with tuning). of the capacitor will be quicker. The phase difference between the output wave and the reference frequency will be smaller. Finally, the phase difference will be locked at the specified value. The voltage comparator is composed of a V-I converter, a current comparator and an inverter, as shown in Figure 7(). The delay of the voltage comparator is longer than the sum of these devices delay and the sum of these devices delay is shorter than a conventional high speed voltage comparator. Next, we want to detect the phase difference between the reference frequency and the output wave of the Inverter. We use a phase detector, which is constructed by an XNOR, as shown in Figure 7(3). Figure 7(4) is the charge pump (CP). The capacitor will be charged and discharged by current source. M36,M37, M38, M41 and M4 are three current mirrors. M37 and M38 will mirror M36 s current I bias and I discharge is equal to I bias because M4 s size is almost three times as M41. I charge is equal to 3I bias. We set the charge current and discharge current with a ratio 3:1. At charge balance, the reference frequency and STC output will be locked at 45 phase difference. If the current source of the CP is large, the phase will be quickly locked. But the ripple will be large. To reduce the ripple, we use a low-pass filter (LPF) like in Figure 7(5)..3. The Gm-C Filter Figure 8 shows a two-order Gm-C low-pass filter made by OTAs [1]. The cut-off frequency is 10 MHz by design. We will use this filter to prove our tuning circuit is working. The transfer function can be expressed as:

70 C. H. KAO ET AL. where V 4 o 1 ( o / ) V s Q s g g g m1 m3 m4 o gmcc and 1 Q o g g C m1 m4 1. g g C m m3 Figure 11. Die photo of the proposed circuit. (6) 3. Simulation and Experimental Results The simulation is carried out using HSPICE with TSMC 0.35um CMOS models. There are five modes of SPICE model, TT, FF, SS, FS and SF. These five models are used to simulate the CMOS process variation. Figure 9 shows the 3-dB frequency variation in sixty corners. The sixty corners include five CMOS models(tt FF SS FS SF), three voltages (±1.35 V ±1.5 V ±1.65 V) and four temperatures (-0, 0, 5, 70 ). Without the tuning circuit, the maximum variation of the 3-dB frequency in sixty corners is about 80%. Figure 10 shows the simulation result of the low-pass Gm-C filter with the tuning circuit in sixty corners. The maximum variation of the 3-dB frequency in sixty corners is about 1%. Comparing Figure 9 with Figure 10, we find that the frequency tuning circuit can reduce 3-dB frequency variation from 80% to 1%. The proposed circuit is implemented by 0.35 μm TSMC P4M CMOS process and its die photograph is shown in Figure 11. The chip area is 1477 μm x 167 μm. We have measured the delay clock to check if the tuning circuit operates correctly. Then we measure filter output to check the bandwidth. Figure 1 shows reference clock and delay clock. Figure 13 shows the filter frequency response in three samples. The measured performance of the filter are shown in Table 1. The performance of the proposed circuit was good, confirming the expectation that the tuning circuit can reduce the tolerance. Also the power consumption is small and less than 9.05 mw. Figure 1. Reference clock and delay clock. 4. Conclusions Figure 13. Filter frequency responses in three samples. Table 1. Filter performance parameter. Technology Supply Voltage Chip area 3-dB bandwidth Reference clock Power consumption Tuning error TSMC 0.35μm CMOS ±1.5 V 1477 μm x 167 μm 9.5~9.6 MHz 10 MHz < 9.05 mw <1.0% This paper has presented a simple automatic tuning circuit, which is applied to a ± 1.5 V 10 MHz low-pass Gm-C filter. The greatest advantage of the proposed tuning circuit is compact and easy to be realized without designing a complicated voltage controlled oscillator. The size of the tuning circuit is another advantage. The chip area is only about 0.1 x 0.14 mm. From the results, the frequency tuning circuit can reduce the frequency tolerance efficiently. All the circuits are designed based on the TSMC 0.35 μm P4M CMOS process technology. 5. Acknowledgment The authors would like to thank the national chip implementation center (CIC) for the chip fabrication. 6. References [1] Y. P. Tsividis, Integrated continuous-time filter design - an overview, IEEE Journal Solid-State Circuits, Vol. 9, No. 3, pp. 166 176, March 1994.

C. H. KAO ET AL. 71 [] M. Abo and P. R. Gray, A 1.5 V, 10-bit, 14 MS/s CMOS pipeline analog-to-digital converter, IEEE Journal Solid- State Circuits, Vol. 34, No. 5, pp. 599 606, May 1999. [3] L. Maurer, W. Schelmbauer, H. Pretl, B. Adler, A. Springer, and R. Weigel, On the design of a continuous-time channel select filter for azero-if UMTS receiver, IEEE Conference Vehicular Technology, Vol. 1, pp. 650 654, May 000. [4] M. Durham, W. Redman-White, and J. B. Hughes, High-linearity continuous-time filter in 5-V VLSI CMOS, IEEE Journal Solid-State Circuits, Vol. 7, No. 9, pp. 170 176, September 199. [5] J. Silva-Martinez, M. S. J. Steyaert, and W. Sansen, A 10.7-MHz 68-dB SNR CMOS continuous-time filter with on-chip automatic tuning, IEEE Journal Solid-State Circuits, Vol. 7, No. 1, pp. 1843 1853, December 199. [6] T. H. Teo, E.-S. Khoo, and D. Uday, Fifth order low-pass transitional Gm-C filter with relaxation oscillator frequency tuning circuit, IEEE Conference Electron Devices and Solid-State Circuits, pp. 9 3, December 003. [7] D. Johns and K. Martin, Analog integrated circuit design, John Wiley & Sons on Canada, 1997. [8] S. Szczepanski and S. Koziel, A 3.3 V linear fully balanced CMOS operational transconductance amplifier for high-frequency applications, IEEE Conference Circuits and Systems for Communications, pp. 38 41, June 00. [9] H. Traff, Novel approach to high speed CMOS current comparators, Electronics Letters, Vol. 8, No. 3, pp. 310 31, January 199. [10] H. T. Bui, A. K. Al-Sheraidah, Y. K. Wang, New 4-transistor XOR and XNOR designs, IEEE Asia Pacific Conference ASICs, pp. 5 8, August 000. [11] W. Rhee, Design of high-performance CMOS charge pumps in phase-locked loops, IEEE International Symposium Circuits and Systems, Vol., pp. 545 548, June 1999. [1] K. Su, Analog filters, Second Edition, Kluwer Academic Publishers, 001. [13] Y. P. Tsividis, Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video, IEEE Journal Solid- State Circuits, Vol. 5, No. 6, pp. 1368 1378, December 1990. [14] V. Agarwal and S. Sonkusale, A PVT independent subthreshold Constant-Gm stage for very low frequency applications, IEEE International Symposium Circuits and Systems, pp. 909 91, May 008.