FSBS3CH60 Motion SPM 3 Series Features

Similar documents
FSAM30SH60A Motion SPM 2 Series

FSBB15CH60. Motion SPM 3 Series. FSBB15CH60 Motion SPM 3 Series. Features. General Description. Applications. Related Resources

FSBB10CH120D Motion SPM 3 Series

FSBF15CH60BT. Motion SPM 3 Series. FSBF15CH60BT Motion SPM 3 Series. Features. General Description. Applications.

FSBB30CH60DF. Motion SPM 3 Series. FSBB30CH60DF Motion SPM 3 Series. Features. General Description. Applications.

SPM TM. FSBB30CH60 Smart Power Module. FSBB30CH60 Smart Power Module. General Description. Features. Applications. Figure 1.

FSAM10SH60A Motion SPM 2 Series

FSB44104A Motion SPM 45 LV Series

FCBS0550 Smart Power Module (SPM)

Motion-SPM TM. FSBF15CH60BT Smart Power Module. FSBF15CH60BT Smart Power Module. General Description. Features. Applications. Figure 1.

FNA V Motion SPM 2 Series. FNA V Motion SPM 2 Series. Features. General Description. Applications.

FPDB30PH60 PFC SPM 3 Series for 2-Phase Bridgeless PFC

FPAB30BH60 PFC SPM 3 Series for Single-Phase Boost PFC

FPDB40PH60B PFC SPM 3 Series for 2-Phase Bridgeless PFC

FBA42060 PFC SPM 45 Series for Single-Phase Boost PFC

FSAM10SH60 FSAM10SH60. SPM TM (Smart Power Module) Features. General Description. Applications. External View. Fig. 1.

FPAM30LH60 PFC SPM 2 Series for 2-Phase Interleaved PFC

FPAB30BH60B PFC SPM 3 Series for Single-Phase Boost PFC

FNC42060F / FNC42060F2

FNB41060 Motion SPM 45 Series

Motion-SPM FPAB30BH60B. Smart Power Module(SPM ) for Front-End Rectifier. General Description. Features. Applications. April Fig. 1.

Motion-SPM. FSB50250UD Smart Power Module (SPM ) General Description. Features. Absolute Maximum Ratings. Symbol Parameter Conditions Rating Units

FCAS50SN60 Smart Power Module for SRM

Motion-SPM. FSB50550UTD Smart Power Module (SPM ) General Description. Features. Absolute Maximum Ratings. Symbol Parameter Conditions Rating Units

FSB50450S Motion SPM 5 Series

Is Now Part of To learn more about ON Semiconductor, please visit our website at

FSB50450UD Motion SPM 5 Series

FNA23512A V Motion SPM 2 Series. FNA23512A 1200 V Motion SPM 2 Series. General Description. Features. Applications.

FCAS20DN60BB Smart Power Module for SRM

Mitsubishi Semiconductors <Dual-In-Line Package Intelligent Power Module> PS21865 Transfer-Mold Type Insulated Type

FSB50250AS Motion SPM 5 Series

FSB50760SF, FSB50760SFT Motion SPM 5 SuperFET Series

FCAS30DN60BB Smart Power Module for SRM

FNA25012A V Motion SPM 2 Series

Applied between V UFB -V UFS, V VFB -V VFS,V WFB -V WFS. Applied between U P,V P,W P -V PC, U N,V N,W N -V NC

FNA41060 / FNA41060B2

PS21963-S Intellimod Module Dual-In-Line Intelligent Power Module 10 Amperes/600 Volts

Application Note Mitsubishi Semiconductors <Dual-In-Line Package Intelligent Power Module> PS21867 Transfer-Mold Type Insulated Type

PS , PS A, PS C Intellimod Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts

C L DETAIL "B" TERMINAL CODE 1 (VNC) 2 VUFB 3 VVFB 4 VWFB 5 UP 6 VP 7 WP 8 VP1 9 VNC* 10 UN 11 VN 12 WN 13 VN1 HEATSINK SIDE

PS , PS A, PS C Intellimod Module Dual-In-Line Intelligent Power Module 20 Amperes/600 Volts

PS S Intellimod Module Dual-In-Line Intelligent Power Module 20 Amperes/600 Volts

PS21353-GP. Intellimod Module Dual-In-Line Intelligent Power Module 10 Amperes/600 Volts

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Package Marking and Ordering Information. Device Device Marking Package Packing Type Quantity. FNA41560T2 FNA41560T2 SPMAB-C26 Rail 12

AB (2 PLACES) 30 NC 31 P 33 V 34 W

LDIP- IPM IM (Preliminary)

PS21867-P. Intellimod Module Dual-In-Line Intelligent Power Module 30 Amperes/600 Volts

APPLICATION AC100V~200V three-phase inverter drive for small power motor control (1.96) 17.7 (3.5) 35.9 ±0.5 (5.5)

Application Note DIP-Smart Power Module Test Board IV

PS21562-SP PS21562-SP. APPLICATION AC100V~200V inverter drive for small power motor control. PS21562-SP

PS21265-P PS21265-AP Intellimod Module Dual-In-Line Intelligent Power Module 20 Amperes/600 Volts

PS11035 Intellimod Module Application Specific IPM 20 Amperes/600 Volts

PS11036 Intellimod Module Application Specific IPM 30 Amperes/600 Volts

SLLIMM small low-loss intelligent molded module IPM, 3-phase inverter - 15 A, 600 V short-circuit rugged IGBT. Description. Table 1.

FPAB30PH60 FPAB30PH60. January, Smart Power Module for Front-End Rectifier. Features. General Description. Applications. Fig. 1.

PS21661-RZ/FR PS21661-FR. APPLICATION AC100V~200V, three-phase inverter drive for small power motor control.

PS , PS A, PS C Intellimod Module Dual-In-Line Intelligent Power Module 3 Amperes/600 Volts

MITSUBISHI INTELLIGENT POWER MODULES PM800HSA060 FLAT-BASE TYPE INSULATED PACKAGE

Application Note DIP-Smart Power Module Test Board V

AIM5D05B060M1S. Dual-In-Line Package Intelligent Power Module. Features. External View. Applications. Internal Equivalent Circuit / Pin Configuration

N P HEATSINK SIDE 25 UN 26 VUFB 27 UP 30 NC 31 NC 32 NC 33 NC 34 NC 35 NC 28 U(VUFS) 29 NC

PS21562-P. Intellimod Module Dual-In-Line Intelligent Power Module 5 Amperes/600 Volts

PS21A79 MAIN FUNCTION AND RATINGS 3 phase inverter with N-side open emitter structure 600V / 50A (CSTBT)

AIM5C05B060N1 Dual-In-Line Package Intelligent Power Module

PS22A78-E Transfer-Mold Type Insulated Type

Motion-SPM TM. FNB41060/B2 Smart Power Module. General Description. Features. Applications. Additional Information. Figure 1.

NFVA23512NP2T. ASPM34 Series. Automotive 3 Phase 1200 V, 35 A IGBT Intelligent Power Module

Is Now Part of To learn more about ON Semiconductor, please visit our website at

PS21965, PS21965-A, PS21965-C Intellimod Module Dual-In-Line Intelligent Power Module 20 Amperes/600 Volts

Package BIP Features (18)VD(HW) VD COM IN (17)IN(HW) (20)VS(W) (15)VB(V) VB (14)VD(HV) VD COM IN (13)IN(HV) Cbsc (16)VS(V) (11)VB(U)

APPLICATION AC100V~200V three-phase inverter drive for small power motor control (1.96) 17.7 (12.78) (3.5) 35.9 ±0.5 (5.5) (13.5)

N 36 NU 37 W 38 V 39 U 40 P 41 U 42 V

PM300DSA060 Intellimod Module Single Phase IGBT Inverter Output 300 Amperes/600 Volts

FSB50450S Smart Power Module (SPM)

Detail of Signal Input/Output Terminals

FSB FSB50325 Smart Power Module (SPM ) Smart Power Module (SPM ) Features. General Description. Absolute Maximum Ratings

FSBB20CH60C. Motion SPM 3 Series. FSBB20CH60C Motion SPM 3 Series. General Description. Features. Applications. Related Resources

FSAM75SM60A Motion SPM 2 Series

U P V VPI VFO WFO UP UFO V VPC GND GND

U P V VPI VFO R (2 TYP.) WFO UP UFO V VPC GND GND

Is Now Part of To learn more about ON Semiconductor, please visit our website at

APPLICATION AC100V~200V three-phase inverter drive for small power motor control. (2.2) 21.4 ±0.5 (10) (11) (10) (4.65) (2.9) 34.9 ± ±0.5 (1.

Chapter 1. Product Outline

PM30CSJ060 Intellimod Module Three Phase IGBT Inverter Output 30 Amperes/600 Volts

Smart Pack Electric Co., Ltd <Intelligent Power Module> SPE10S60F-A TRANSFER-MOLD TYPE FULL PACK TYPE

PP400B060-ND. H-Bridge POW-R-PAK IGBT Assembly 400 Amperes/600 Volts

Y Y D T SQ PIN (10 PLS) L N TERMINAL CODE 5 : FNO 4 : VNC N 3 : CN1 2 : NC 1 : VN1 5 : FPO 4 : VPC P 3 : CP1 2 : NC 1 : VP1. FWDi IGBT C2E1.

V VPI V (14 TYP.) VFO R (2 TYP.) WFO UP UFO V VPC GND GND GND GND GND GND VCC

T - 4 TYP. XØ (2 PLACES) W SQ. PIN (10 PLACES) TERMINAL CODE 1. VN1 2. SNR 3. CN1 4. VNC 5. FNO VP1 RFO AMP E2 C2E1 C1

TENTATIVE PP225D120. POW-R-PAK TM 225A / 1200V Half Bridge IGBT Assembly. Description:

U (2 TYP.) T WFO VUPC IN F O GND GND OUT OT OUT OT S I

PS21767 Intellimod Module Dual-In-Line Intelligent Power Module 30 Amperes/600 Volts

Description of Terminal Symbols and Terminology

Integrated Power Hybrid IC for Appliance Motor Drive Applications

Is Now Part of To learn more about ON Semiconductor, please visit our website at

P Q SIGNAL TERMINAL 1 F O (L) 5 F O (H) V S DETAIL "A"

L M 1 F O (L) 5 F O (H) DETAIL "A"

PS22A74. < Dual-In-Line Package Intelligent Power Module > Publication Date : January 2012 TRANSFER MOLDING TYPE INSULATED TYPE

PM25RSB120 Intellimod Module Three Phase + Brake IGBT Inverter Output 25 Amperes/1200 Volts

Transcription:

FSBS3CH60 Motion SPM 3 Series Features UL Certified No.E209204(SPM27-BA package) 600 V-3 A 3-Phase IGBT Inverter Bridge Including Control ICs for Gate Driving and Protection Three Separate Negative DC-link Terminals for Inverter Current Sensing Applications Single-Grounded Power Supply for Built-In HVICs Isolation Rating of 2500 Vrms/min. Very Low Leakage Current by Using Ceramic Substrate Sense-IGBT General Description March 2013 FSBS3CH60 is a Motion SPM 3 series That Fairchild Has Developed to Provide a Very Compact and High Performance Inverter Solution for AC Motor Drives in Low-Power Applications Such as Air Conditioners and Washing Machines. It Combines Optimized Circuit Protections and Drives Matched to Low-Loss IGBTs. The System Reliability is Further Enhanced by The Integrated Under-Voltage Lock-Out and Over-Current Protection. The High Speed Built-in HVIC Provides Optocoupler- Less Single-Supply IGBT Gate Driving Capability That Further Reduces The Overall Size of The Inverter System. Each Phase Leg Current of The Inverter Can be Monitored Thanks to Three Separate Negative DC Terminals.. RoHS compliant Applications Motion Control - Home Appliance/Industrial MotorFeatures Resource AN-9035: Motion SPM 3 Series Ver.2 User's Guide Package Marking and Ordering Information Device Marking Device Package Reel Size Packing Type Quantity FSBS3CH60 FSBS3CH60 SPMBA-027 - RAIL 10 2005 Fairchild Semiconductor Corporation 1 www.fairchildsemi.com FSBS3CH60 Rev. C03

Integrated Power Functions 600 V-3 A IGBT Inverter for Three-Phase DC/AC Power Conversion (Please Refer to Figure 3) Integrated Drive, Protection and System Control Functions For Inverter High-Side IGBTs: Gate Drive Circuit, High Voltage Isolated High-Speed Level Shifting Control Circuit Under-Voltage (UV) Protection Note) Available Bootstrap Circuit Example is Given in Figures 10 and 11. For Inverter Low-Side IGBTs: Gate Drive Circuit, Short Circuit Protection (SC) Control Supply Circuit Under-Voltage (UV) Protection Fault Sgnaling: Corresponding to a UV Fault (Low-Side Supply) Input interface: Active - High Interface, Can Work with 3.3/5 V Logic Pin Configuration Top View 13.3 (1) V CC(L) (2) (3) IN (UL) (4) IN (VL) (5) IN (WL) (6) V FO (7) C FOD (8) C SC 19.1 (21) N U (22) N V (23) N W (9) IN (UH) (10) V CC(UH) (11) V B(U) (12) V S(U) (13) IN (VH) (14) V CC(VH) (15) V B(V) (16) V S(V) (17) IN (WH) (18) V CC(WH) (19) V B(W) (20) V S(W) (24) U (25) V (26) W (27) P Case Temperature (T C ) Detecting Point Ceramic Substrate Figure 2. 2005 Fairchild Semiconductor Corporation 2 www.fairchildsemi.com

Pin Descriptions Pin Number Pin Name Pin Description 1 V CC(L) Low-side Common Bias Voltage for IC and IGBTs Driving 2 Common Supply Ground 3 IN (UL) Signal Input for Low-side U Phase 4 IN (VL) Signal Input for Low-side V Phase 5 IN (WL) Signal Input for Low-side W Phase 6 V FO Fault Output 7 C FOD Capacitor for Fault Output Duration Time Selection 8 C SC Capacitor (Low-pass Filter) for Short-Current Detection Input 9 IN (UH) Signal Input for High-side U Phase 10 V CC(UH) High-side Bias Voltage for U Phase IC 11 V B(U) High-side Bias Voltage for U Phase IGBT Driving 12 V S(U) High-side Bias Voltage Ground for U Phase IGBT Driving 13 IN (VH) Signal Input for High-side V Phase 14 V CC(VH) High-side Bias Voltage for V Phase IC 15 V B(V) High-side Bias Voltage for V Phase IGBT Driving 16 V S(V) High-side Bias Voltage Ground for V Phase IGBT Driving 17 IN (WH) Signal Input for High-side W Phase 18 V CC(WH) High-side Bias Voltage for W Phase IC 19 V B(W) High-side Bias Voltage for W Phase IGBT Driving 20 V S(W) High-side Bias Voltage Ground for W Phase IGBT Driving 21 N U Negative DC Link Input for U Phase 22 N V Negative DC Link Input for V Phase 23 N W Negative DC Link Input for W Phase 24 U Output for U Phase 25 V Output for V Phase 26 W Output for W Phase 27 P Positive DC Link Input 2005 Fairchild Semiconductor Corporation 3 www.fairchildsemi.com

Internal Equivalent Circuit and Input/Output Pins (19) V B(W ) VB (18) V CC(W H) VCC OUT (17) IN (W H) (20) V S(W ) IN VS (15) V B(V) VB (14) V CC(VH) VCC OUT (13) IN (VH) IN VS (16) V S(V) (11) V B(U) VB (10) V CC(UH) VCC OUT (9) IN (UH) (12) V S(U) IN VS P (27) W (26) V (25) U (24) (8) C SC (7) C FOD (6) V FO C(SC) OUT(W L) C(FOD) VFO N W (23) (5) IN (W L) IN(W L) OUT(VL) (4) IN (VL) IN(VL) N V (22) (3) IN (UL) (2) (1) V CC(L) IN(UL) VCC OUT(UL) V SL N U (21) Note: 1. Inverter low-side is composed of three IGBTs, freewheeling diodes for each IGBT and one control IC. It has gate drive and protection functions. 2. Inverter power side is composed of four inverter dc-link input terminals and three inverter output terminals. 3. Inverter high-side is composed of three IGBTs, freewheeling diodes and three drive ICs for each IGBT. Figure 3. 2005 Fairchild Semiconductor Corporation 4 www.fairchildsemi.com

Absolute Maximum Ratings (T J = 25 C, Unless Otherwise Specified) Inverter Part Note: Symbol Parameter Conditions Rating Unit V PN Supply Voltage Applied between P- N U, N V, N W 450 V V PN(Surge) Supply Voltage (Surge) Applied between P- N U, N V, N W 500 V V CES Collector-emitter Voltage 600 V ± I C Each IGBT Collector Current T C = 25 C 3 A ± I CP Each IGBT Collector Current (Peak) T C = 25 C, Under 1ms Pulse Width 6 A P C Collector Dissipation T C = 25 C per One Chip 23 W T J Operating Junction Temperature (Note 1) -20 ~ 125 C 1. The maximum junction temperature rating of the power chips integrated within the SPM is 150 C(@T C 100 C). However, to insure safe operation of the SPM, the average junction temperature should be limited to T J(ave) 125 C (@T C 100 C) Control Part Symbol Parameter Conditions Rating Unit V CC Control Supply Voltage Applied between V CC(UH), V CC(VH), V CC(WH), V CC(L) - V BS High-side Control Bias Voltage 20 V Applied between V B(U) - V S(U), V B(V) - V S(V), V B(W) - 20 V V S(W) V IN Input Signal Voltage Applied between IN (UH), IN (VH), IN (WH), IN (UL), IN (VL), IN (WL) - -0.3~17 V V FO Fault Output Supply Voltage Applied between V FO - -0.3~V CC +0.3 V I FO Fault Output Current Sink Current at V FO Pin 5 ma V SC Current Sensing Input Voltage Applied between C SC - -0.3~V CC +0.3 V Total System Thermal Resistance Note: Symbol Parameter Conditions Rating Unit V PN(PROT) Self Protection Supply Voltage Limit (Short Circuit Protection Capability) 2. For the measurement point of case temperature(t C ), please refer to Figure 2. V CC = V BS = 13.5 ~ 16.5V T J = 125 C, Non-repetitive, less than 2µs 400 V T C Module Case Operation Temperature -20 C T J 125 C, See Figure 2-20 ~ 100 C T STG Storage Temperature -40 ~ 125 C V ISO Isolation Voltage 60Hz, Sinusoidal, AC 1 minute, Connection Pins to ceramic substrate 2500 V rms Symbol Parameter Conditions Min. Typ. Max. Unit R th(j-c)q Junction to Case Thermal Inverter IGBT part (per 1/6 module) - - 4.1 C/W R th(j-c)f Resistance Inverter FWD part (per 1/6 module) - - 5.9 C/W 2005 Fairchild Semiconductor Corporation 5 www.fairchildsemi.com

0 Electrical Characteristics (T J = 25 C, Unless Otherwise Specified) Inverter Part Symbol Parameter Conditions Min. Typ. Max. Unit V CE(SAT) Collector-Emitter Saturation Voltage V CC = V BS = 15 V V IN = 5 V I C = 3 A, T J = 25 C - - 2.3 V V F FWD Forward Voltage V IN = 0 V I C = 3 A, T J = 25 C - - 2.1 V HS t ON Switching Times V PN = 300 V, V CC = V BS = 15 V - 0.39 - µs t C(ON) I C = 3 A V IN = 0 V 5 V, Inductive Load - 0.19 - µs t OFF (Note 3) - 0.56 - µs t C(OFF) - 0.19 - µs t rr - 0.10 - µs LS t ON V PN = 300 V, V CC = V BS = 15 V - 0.57 - µs t C(ON) I C = 3 A V IN = 0 V 5 V, Inductive Load - 0.24 - µs t OFF (Note 3) - 0.62 - µs t C(OFF) - 0.20 - µs t rr - 0.10 - µs I CES Collector-Emitter Leakage Current V CE = V CES - - 250 µa Note: 3. t ON and t OFF include the propagation delay time of the internal drive IC. t C(ON) and t C(OFF) are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4. 100% I C 100% I C t rr V CE I C I C V CE V IN V IN t ON t OFF t C(ON) t C(OFF) V IN(ON) 10% I C 90% I C 10% V CE (a) turn-on V IN(OFF) 10% V CE 10% I C (b) turn-off Figure 4. Switching Time Definition 2005 Fairchild Semiconductor Corporation 6 www.fairchildsemi.com

Electrical Characteristics (T J = 25 C, Unless Otherwise Specified) Control Part Symbol Parameter Conditions Min. Typ. Max. Unit I QCCL I QCCH I QBS Quiescent V CC Supply Current Quiescent V BS Supply Current V CC = 1 5V IN (UL, VL, WL) = 0 V V CC = 15V IN (UH, VH, WH) = 0 V V BS = 15 V IN (UH, VH, WH) = 0 V V CC(L) - - - 23 ma V CC(UH), V CC(VH), V CC(WH) - - - 100 µa V B(U) - V S(U), V B(V) -V S(V), - - 500 µa V B(W) - V S(W) V FOH Fault Output Voltage V SC = 0 V, V FO Circuit: 4.7 kω to 5 V Pull-up 4.5 - - V V FOL V SC = 1 V, V FO Circuit: 4.7 kω to 5 V Pull-up - - 0.8 V V SC(ref) Short Circuit Trip Level V CC = 15 V (Note 4) 0.45 0.5 0.55 V UV CCD Supply Circuit Under- Detection Level 10.7 11.9 13.0 V UV CCR Voltage Protection Reset Level 11.2 12.4 13.2 V UV BSD Detection Level 10.1 11.3 12.5 V UV BSR Reset Level 10.5 11.7 12.9 V t FOD Fault-out Pulse Width C FOD = 33 nf (Note 5) 1.0 1.8 - ms V IN(ON) ON Threshold Voltage Applied between IN (UH), IN (VH), IN (WH), IN (UL), 3.0 - - V V IN(OFF) OFF Threshold Voltage IN (VL), IN (WL) - - - 0.8 V Note: 4. Short-circuit current protection is functioning only at the low-sides. 5. The fault-out pulse width t FOD depends on the capacitance value of C FOD according to the following approximate equation : C FOD = 18.3 x 10-6 x t FOD [F] Recommended Operating Conditions Symbol Parameter Conditions Value Min. Typ. Max. V PN Supply Voltage Applied between P - N U, N V, N W - 300 400 V V CC Control Supply Voltage Applied between V CC(UH), V CC(VH), V CC(WH), V CC(L) - Unit 13.5 15 16.5 V V BS High-side Bias Voltage Applied between V B(U) - V S(U), V B(V) - V S(V), V B(W) - V S(W) 13.0 15 18.5 V DV CC /Dt, DV BS /Dt t dead Control supply variation -1-1 V/µs Blanking Time for Preventing Arm-short For Each Input Signal 2 - - µs f PWM PWM Input Signal -20 C T C 100 C, -20 C T J 125 C - - 20 khz V SEN Voltage for Current Sensing Applied between N U, N V, N W - (Including surge voltage) -4 4 V 2005 Fairchild Semiconductor Corporation 7 www.fairchildsemi.com

Mechanical Characteristics and Ratings Parameter Conditions Limits Min. Typ. Max. Unit Mounting Torque Mounting Screw: - M3 Recommended 0.62N m 0.51 0.62 0.72 N m Device Flatness Note Figure 5 0 - +120 µm Weight - 15.4 - g ( + ) ( + ) Figure 5. Flatness Measurement Position 2005 Fairchild Semiconductor Corporation 8 www.fairchildsemi.com

Time Charts of SPM Protective Function Input Signal Protection Circuit State Control Supply Voltage Output Current UV CCR RESET a1 a2 UV CCD SET a3 a4 RESET a6 a7 Fault Output Signal a5 a1 : Control supply voltage rises: After the voltage rises UV CCR, the circuits start to operate when next input is applied. a2 : Normal operation: IGBT ON and carrying current. a3 : Under voltage detection (UV CCD ). a4 : IGBT OFF in spite of control input condition. a5 : Fault output operation starts. a6 : Under voltage reset (UV CCR ). a7 : Normal operation: IGBT ON and carrying current. Figure 6. Under-Voltage Protection (Low-side) Input Signal Protection Circuit State RESET SET RESET Control Supply Voltage UV BSR b1 b2 UV BSD b3 b4 b5 b6 Output Current Fault Output Signal High-level (no fault output) b1 : Control supply voltage rises: After the voltage reaches UV BSR, the circuits start to operate when next input is applied. b2 : Normal operation: IGBT ON and carrying current. b3 : Under voltage detection (UV BSD ). b4 : IGBT OFF in spite of control input condition, but there is no fault output signal. b5 : Under voltage reset (UV BSR ) b6 : Normal operation: IGBT ON and carrying current Figure 7. Under-Voltage Protection (High-side) 2005 Fairchild Semiconductor Corporation 9 www.fairchildsemi.com

Lower arms control input Protection circuit state SET RESET Internal IGBT Gate-Emitter Voltage Output Current c1 c4 c3 c2 SC c6 c7 c8 Sensing Voltage of the shunt resistance Fault Output Signal c5 SC Reference Voltage CR circuit time constant delay (with the external shunt resistance and CR connection) c1 : Normal operation: IGBT ON and carrying current. c2 : Short circuit current detection (SC trigger). c3 : Hard IGBT gate interrupt. c4 : IGBT turns OFF. c5 : Fault output timer operation starts: The pulse width of the fault output signal is set by the external capacitor C FO. c6 : Input L : IGBT OFF state. c7 : Input H : IGBT ON state, but during the active period of fault output the IGBT doesn t turn ON. c8 : IGBT OFF state Figure 8. Short-Circuit Current Protection (Low-side Operation only) 2005 Fairchild Semiconductor Corporation 10 www.fairchildsemi.com

CPU 1nF 100 Ω 5V-Line R PF = 4.7kΩ C PF = 1nF,, IN (UH) IN (VH) IN (W H),, IN (UL) IN (VL) IN (WL) V FO SPM Note: 1. RC coupling at each input (parts shown dotted) might change depending on the PWM control scheme used in the application and the wiring impedance of the application s printed circuit board. The SPM input signal section integrates 3.3kΩ (typ.) pull-down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal. 2. The logic input is compatible with standard CMOS or LSTTL outputs. Figure 9. Recommended CPU I/O Interface Circuit These Values depend on PWM Control Algorithm 15V-Line R E(H) R BS D BS One-Leg Diagram of SPM Vcc VB P 22uF 0.1uF IN HO VS 1000uF 1uF Vcc IN OUT Inverter Output V SL N Note: 1. It would be recommended that the bootstrap diode, D BS, has soft and fast recovery characteristics. 2. The bootstrap resistor (R BS ) should be 3 times greater than R E(H). The recommended value of R E(H) is 5.6Ω, but it can be increased up to 20Ω (maximum) for a slower dv/dt of high-side. 3. The ceramic capacitor placed between V CC - should be over 1uF and mounted as close to the pins of the SPM as possible. Fig. 10. Recommended Bootstrap Operation Circuit and Parameters 2005 Fairchild Semiconductor Corporation 11 www.fairchildsemi.com

C P U Gating WH Gating VH Gating UH 5V line 15V line R BS R BS R BS R F D BS C BS D BS C BS D BS C BS C BSC C BSC C BSC (19) V B(W) (18) V CC(WH) (17) IN (WH) (20) V S(W) (15) V B(V) (14) V CC(VH) (13) IN (VH) (16) V S(V) (11) V B(U) (10) V CC(UH) (9) IN (UH) (12) V S(U) VB VCC IN VB VCC IN VB VCC IN R E(WH) R E(VH) R E(UH) OUT VS OUT VS OUT VS P (27) W (26) V (25) U (24) M C DCS Vdc C SC (8) C SC C(SC) OUT(WL) Fault R S R PF C FOD (7) C FOD (6) V FO C(FOD) VFO N W (23) R SW Gating WL (5) IN (WL) IN(WL) OUT(VL) Gating VL (4) IN (VL) IN(VL) N V (22) R SV Gating UL (3) IN (UL) IN(UL) C BPF C PF (2) (1) V CC(L) VCC OUT(UL) V SL N U (21) R SU C SP15 C SPC15 Input Signal for Short- Circuit Protection W-Phase Current V-Phase Current U-Phase Current R FW R FV R FU C FW C FV C FU Note: 1. To avoid malfunction, the wiring of each input should be as short as possible. (less than 2-3cm) 2. By virtue of integrating an application specific type HVIC inside the SPM, direct coupling to CPU terminals without any opto-coupler or transformer isolation is possible. 3. V FO output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 4.7kΩ resistance. Please refer to Figure 9. 4. C SP15 of around 7 times larger than bootstrap capacitor C BS is recommended. 5. V FO output pulse width should be determined by connecting an external capacitor(c FOD ) between C FOD (pin7) and (pin2). (Example : if C FOD = 33 nf, then t FO = 1.8ms (typ.)) Please refer to the note 5 for calculation method. 6. Input signal is High-Active type. There is a 3.3kΩ resistor inside the IC to pull down each input signal line to GND. When employing RC coupling circuits, set up such RC couple that input signal agree with turn-off/turn-on threshold voltage. 7. To prevent errors of the protection function, the wiring around R F and C SC should be as short as possible. 8. In the short-circuit protection circuit, please select the R F C SC time constant in the range 1.5~2 µs. 9. Each capacitor should be mounted as close to the pins of the SPM as possible. 10. To prevent surge destruction, the wiring between the smoothing capacitor and the P&GND pins should be as short as possible. The use of a high frequency non-inductive capacitor of around 0.1~0.22 uf between the P&GND pins is recommended. 11. Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the CPU and the relays. 12. C SPC15 should be over 1uF and mounted as close to the pins of the SPM as possible. Fig. 11. Typical Application Circuit 2005 Fairchild Semiconductor Corporation 12 www.fairchildsemi.com

Detailed Package Outline Drawings 2005 Fairchild Semiconductor Corporation 13 www.fairchildsemi.com

Detailed Package Outline Drawings (Continued) 2005 Fairchild Semiconductor Corporation 14 www.fairchildsemi.com

Detailed Package Outline Drawings(Continued) 2005 Fairchild Semiconductor Corporation 15 www.fairchildsemi.com

2005 Fairchild Semiconductor Corporation 16 www.fairchildsemi.com