Chapter 2: Fourier Representation of Signals and Systems

Similar documents
Test 1 Review. Test 1 Review. Communication Systems: Foundational Theories. Communication System. Reference: Sections and

ECE ANALOG COMMUNICATIONS - INVESTIGATION 7 INTRODUCTION TO AMPLITUDE MODULATION - PART II

Example Message bandwidth and the transmitted signal bandwidth

Introduction: Analog Communication: Goal: Transmit a message from one location to another.

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation

Wrap Up. Fourier Transform Sampling, Modulation, Filtering Noise and the Digital Abstraction Binary signaling model and Shannon Capacity

Chapter 2 Summary: Continuous-Wave Modulation. Belkacem Derras

Passband Data Transmission II References Frequency-shift keying Chapter 6.5, S. Haykin, Communication Systems, Wiley. H.1

Principles of Communications Lecture 4: Analog Modulation Techniques (2) Chih-Wei Liu 劉志尉 National Chiao Tung University

Communications II Lecture 5: Effects of Noise on FM. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Chapter 2 Introduction: From Phase-Locked Loop to Costas Loop

f t 2cos 2 Modulator Figure 21: DSB-SC modulation.

UNIT IV DIGITAL MODULATION SCHEME

ECS455: Chapter 4 Multiple Access

Analog/Digital Communications Primer

6.976 High Speed Communication Circuits and Systems Lecture 19 Basics of Wireless Communication

Communication Systems. Department of Electronics and Electrical Engineering

Solution of ECE 342 Test 2 S12

Passband Data Transmission I References Phase-shift keying Chapter , S. Haykin, Communication Systems, Wiley. G.1

Lecture 12: Modulation Techniques for Mobile Radio. Amplitude Modulation (Full AM or Double Sideband with Carrier)

Communications II Lecture 7: Performance of digital modulation

Chapter 14: Bandpass Digital Transmission. A. Bruce Carlson Paul B. Crilly 2010 The McGraw-Hill Companies

Principles of Communications

Communication Systems. Communication Systems

EXPERIMENT #9 FIBER OPTIC COMMUNICATIONS LINK

ANALOG AND DIGITAL SIGNAL PROCESSING LABORATORY EXPERIMENTS : CHAPTER 3

Introduction to OFDM

Signals and communications fundamentals

Modulation exercises. Chapter 3

Negative frequency communication

LECTURE 1 CMOS PHASE LOCKED LOOPS

Angle Modulation (Phase & Frequency Modulation) EE442 Lecture 8. Spring 2017

Mobile Communications Chapter 2: Wireless Transmission

ELEG 3124 SYSTEMS AND SIGNALS Ch. 1 Continuous-Time Signals

x(at) 1 x(t) h(t) H( jω )X( jω ) x(t)p(t) 1 X( jω ) P( jω) x(t t d ) e jωt d x(t)e jω 0t X( j(ω ω 0 )) LECTURE OBJECTIVES Signal Processing First

Double Side Band Suppressed Carrier

Signals and the frequency domain ENGR 40M lecture notes July 31, 2017 Chuan-Zheng Lee, Stanford University

READING ASSIGNMENTS LECTURE OBJECTIVES. Problem Solving Skills. x(t) = cos(αt 2 ) ELEG-212 Signal Processing and Communications

University of Toronto Electrical & Computer Engineering ECE 316, Winter 2015 Thursday, February 12, Test #1

EXPERIMENT #4 AM MODULATOR AND POWER AMPLIFIER

Lecture 11. Digital Transmission Fundamentals

Analog Circuits EC / EE / IN. For

Receiver Architectures

ECE3204 Microelectronics II Bitar / McNeill. ECE 3204 / Term D-2017 Problem Set 7

EE.351: Spectrum Analysis and Discrete-Time Systems MIDTERM EXAM, 2:30PM 4:30PM, November 4, 2004 (closed book)

TELE4652 Mobile and Satellite Communications

Sensing, Computing, Actuating

Multipath. Introduction. Theory. Multipath 7.1

COMM702: Modulation II

Synchronization of single-channel stepper motor drivers reduces noise and interference

Optical phase locked loop for transparent inter-satellite communications

Modulation Introduction

EECE 301 Signals & Systems Prof. Mark Fowler

Connection. Input II EEx ia IIC without SC red. Composition

EEM 306 Introduction to Communications

3. Carrier Modulation Analog

Signal detection, Fouriertransformation, phase correction and quadrature detection

Development of Temporary Ground Wire Detection Device

FROM ANALOG TO DIGITAL

Offset Phase Shift Keying Modulation in Multiple-Input Multiple-Output Spatial Multiplexing

weight: amplitude of sine curve

MX629. DELTA MODULATION CODEC meets Mil-Std DATA BULLETIN. Military Communications Multiplexers, Switches, & Phones

arxiv: v1 [physics.optics] 9 May 2016

Phase-Shifting Control of Double Pulse in Harmonic Elimination Wei Peng1, a*, Junhong Zhang1, Jianxin gao1, b, Guangyi Li1, c

Optical Short Pulse Generation and Measurement Based on Fiber Polarization Effects

Table of Contents. 3.0 SMPS Topologies. For Further Research. 3.1 Basic Components. 3.2 Buck (Step Down) 3.3 Boost (Step Up) 3.4 Inverter (Buck/Boost)

ISSCC 2007 / SESSION 29 / ANALOG AND POWER MANAGEMENT TECHNIQUES / 29.8

7 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a n i a, M a y 27 29,

Pulse Train Controlled PCCM Buck-Boost Converter Ming Qina, Fangfang Lib

6.776 High Speed Communication Circuits Lecture 17 Noise in Voltage Controlled Oscillators

Digital Communications - Overview

Lecture 4. EITN Chapter 12, 13 Modulation and diversity. Antenna noise is usually given as a noise temperature!

dm t t A cos 2 10 t 10

EE 40 Final Project Basic Circuit

Performance Analysis of High-Rate Full-Diversity Space Time Frequency/Space Frequency Codes for Multiuser MIMO-OFDM

COURSE OUTLINE. Introduction Signals and Noise Filtering: Band-Pass Filters 1 - BPF1 Sensors and associated electronics. Sensors, Signals and Noise 1

4.5 Biasing in BJT Amplifier Circuits

An Open-Loop Class-D Audio Amplifier with Increased Low-Distortion Output Power and PVT-Insensitive EMI Reduction

Lecture 5: DC-DC Conversion

Notes on the Fourier Transform

EECS 380: Wireless Communications Weeks 5-6

Accurate Tunable-Gain 1/x Circuit Using Capacitor Charging Scheme

Power losses in pulsed voltage source inverters/rectifiers with sinusoidal currents

Deblurring Images via Partial Differential Equations

CHAPTER CONTENTS. Notes. 9.0 Line Coding. 9.1 Binary Line Codes

4 20mA Interface-IC AM462 for industrial µ-processor applications

Multiuser Interference in TH-UWB

Lecture 19: Lowpass, bandpass and highpass filters

Question 1 TELE4353. Average Delay Spread. RMS Delay Spread = = Channel response (2) Channel response (1)

Sound. Audio DSP. Sound Volume. Sinusoids and Sound: Amplitude

MODEL: M6SXF1. POWER INPUT DC Power R: 24 V DC

unmodulated carrier phase refference /2 /2 3π/2 APSK /2 3/2 DPSK t/t s

Sound. Audio DSP. Sinusoids and Sound: Amplitude. Sound Volume

MODEL: M6NXF1. POWER INPUT DC Power R: 24 V DC

Digital Encoding And Decoding

The ramp is normally enabled but can be selectively disabled by suitable wiring to an external switch.

Universal microprocessor-based ON/OFF and P programmable controller MS8122A MS8122B

MATLAB/SIMULINK TECHNOLOGY OF THE SYGNAL MODULATION

Principles of Communications Lecture 3: Analog Modulation Techniques (1) Chih-Wei Liu 劉志尉 National Chiao Tung University

Transcription:

Tes 1 Review Tes 1 Review Proessor Deepa Kundur Universiy o Torono Reerence: Secions: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 o S. Haykin and M. Moher, Inroducion o Analog & Digial Communicaions, 2nd ed., John iley & Sons, Inc., 2007. ISBN-13 978-0-471-43222-7. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 1 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 2 / 58 Communicaion Sysems: Foundaional Theories Chaper 2: Fourier Represenaion o Signals and Sysems Modulaion Theory: piggy-back inormaion-bearing signal on a carrier signal Deecion Theory: esimaing or deecing he inormaion-bearing signal in a reliable manner Probabiliy and Random Processes: model channel noise and uncerainy a receiver Fourier Analysis: view signal and sysem in anoher domain o gain new insighs inormaion source ransmier receiver inormaion consumpion channel Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 3 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 4 / 58

The Fourier Transorm (FT) Energy Signals Noaion: G( ) = g() = g()e j2π G( )e +j2π g() G( ) G( ) = F [g()] g() = F 1 [G( )] The energy o a signal g() is given by: g() 2 d I g() represens a volage or a curren, hen we say ha his is he energy o he signal across a 1 ohm resisor. hy? Because a curren i() or volage v() exhibis he ollowing energy over a R ohm resisor. E = i 2 ()Rd = v 2 () R d Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 5 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 6 / 58 Energy Signals and he Fourier Transorm FT Synhesis and Analysis Equaions Pracical physically realizable signals (e.g., energy signals) ha obey: have Fourier ransorms. g() 2 d < G( ) = g() = g()e j2π g() G( ) G( )e +j2π Since he FT is inverible boh g() and G( ) conain he same inormaion, bu describe i in a dieren way. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 7 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 8 / 58

FT Synhesis Equaion e j2π = cos(2π) + j sin(2π) cos(2π) g() = G( )e j2π d 0 g() is he sum o scaled complex sinusoids sin(2π) e j2π = cos(2π) + jsin(2π) complex sinusoid 0 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 9 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 10 / 58 FT Analysis Equaion G( ) and G( ) G( ) = g()e j2π d g() = = G( )e j2π d G( ) e j(2π + G( )) d The analysis equaion represens he inner produc beween g() and e j2π. The analysis equaion saes ha G( ) is a measure o similariy beween g() and e j2π, he complex sinusoid a requency Hz. G( ) dicaes he relaive presence o he sinusoid o requency in g(). G( ) dicaes he relaive alignmen o he sinusoid o requency in g(). Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 11 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 12 / 58

Low, Mid and High Frequency Signals Imporance o FT Theorems and Properies Q: hich o he ollowing signals appears higher in requency? 1. cos(4 10 6 π + π/3) 2. sin(2π + 10π) + 17 cos 2 (10π) The Fourier ransorm convers a signal or sysem represenaion o he requency-domain, which provides anoher way o visualize a signal or sysem convenien or analysis and design. A: cos(4 10 6 π + π/3). The properies o he Fourier ransorm provide valuable insigh ino how signal operaions in he ime-domain are described in he requency-domain. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 13 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 14 / 58 FT Theorems and Properies Time-Bandwidh Produc Propery/Theorem Time Domain Frequency Domain Noaion: g() G( ) g 1 () G 1 ( ) g 2 () G 2 ( ) Lineariy: c 1 g 1 () + c 2 g 2 () c 1 G 1 ( ) + ( c 2 ) G 2 ( ) 1 Dilaion: g(a) a G a Conjugaion: g () G ( ) Dualiy: G() g( ) Time Shiing: g( 0 ) G( )e j2π 0 Frequency Shiing: e j2πc g() G( c) Area Under G( ): g(0) = G( )d Area Under g(): g()d = G(0) d Time Diereniaion: g() j2πg( ) d Time Inegraion : g(τ)dτ 1 j2π G( ) Modulaion Theorem: g 1 ()g 2 () G 1(λ)G 2 ( λ)dλ Convoluion Theorem: g 1(τ)g 2 ( τ) G 1 ( )G 2 ( ) Correlaion Theorem: g 1()g2 ( τ)d G 1( )G 2 ( ) Rayleigh s Energy Theorem: g() 2 d = G( ) 2 d ime-duraion o a signal requency bandwidh = consan T larger -T/2 duraion Arec(/T) A T /2-4/T -3/T -2/T -1/T AT sinc(t) AT 0 1/T null-o-null bandwidh 2/T 3/T 4/T Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 15 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 16 / 58

Time-Bandwidh Produc ime-duraion o a signal requency bandwidh = consan LTI Sysems and Filering LTI Sysem impulse response he consan depends on he deiniions o duraion and bandwidh and can change wih he shape o signals being considered I can be shown ha: ime-duraion o a signal requency bandwidh 1 4π wih equaliy achieved or a Gaussian pulse. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 17 / 58 LTI Sysem requency response For sysems ha are linear ime-invarian (LTI), he Fourier ransorm provides a decoupled descripion o he sysem operaion on he inpu signal much like when we diagonalize a marix. This provides a ilering perspecive o how a linear ime-invarian sysem operaes on an inpu signal. The LTI sysem scales he sinusoidal componen corresponding o requency by H( ) providing requency seleciviy. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 18 / 58 Dirac Dela Funcion Dirac Dela Funcion Deiniion: 1. δ() = 0, 0 2. The area under δ() is uniy: δ()d = 1 Noe: δ(0) = undeined can be inerpreed as he limiing case o a amily o uncions o uni area bu ha become narrower and higher 1 all uncions have 1 uni area T 1 T 2 T 3 T 1 T 2 T 3 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 19 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 20 / 58

Dirac Dela Funcion Siing Propery: Convoluion wih δ(): g()δ( 0 )d = g( 0 ) The Fourier Transorm and he Dirac Dela δ() 1 cos(2π 1 ) = ej2π1 2 sin(2π 1 ) = ej2π1 2j cosine 1 1 1 δ( ) e j2π0 δ( 0 ) + e j2π1 2 e j2π1 2j 1 2 δ( 1) + 1 2 δ( + 1) 1 2j δ( 1) 1 2j δ( + 1) 1/2 1/2 g() δ( 0 ) = g( 0 ) - 1 0 sine 1 1 0.5j - 1 1 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 21 / 58 0 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 22 / 58-0.5j Fourier Transorms o Periodic Signals g() A g() = c n e j2πn 0 n= G( ) = c n δ( n 0 ) n= sinc c k -5-4 -3 3 4 5-2 -1 0 1 2 k sinc -5-4 -3 3 4 5 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 23 / 58-2 -1 0 2 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 24 / 58

Transmission o Signals Through Linear Sysems LTI Sysem LTI Sysem Transmission o Signals Through Linear Sysems impulse response impulse response LTI Sysem LTI Sysem requency response requency response Time domain: y() = x() h() = Causaliy: h() = 0 or < 0 Sabiliy: h() d < x(τ)h( τ)dτ Freqeuncy domain: x() X ( ) y() Y ( ) h() H( ) Y ( ) = H( ) X ( ) Y ( ) = H( ) }{{} X ( ) req selecive sysem Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 25 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 26 / 58 Ideal Low-Pass Filers Ideal Low-Pass Filers H LP ( ) = { e j2π 0 B 0 > B STOPBAND PASSBAND STOPBAND -B B h LP () = 2Bsinc(2B( 0 )) H LP ( ) = { e j2π 0 B 0 > B -B B Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 27 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 28 / 58

Ideal Low-Pass Filers h LP () = 2Bsinc(2B( 0 )) 2B 0 1/B LTI Sysems, Sinusoids and Ideal Lowpass Filering Q: Suppose he ollowing signals are passed hrough an ideal lowpass iler wih cuo requency such ha 1 < < 2 c. ha are he corresponding oupus: 1. m() = sin(2π 1 + π 4 ) 2. m() = sin(2π 1 + π 4 ) + cos(2π 2 π 5 ) 3. m() = sin(2π 1 + π 4 ) + cos(2π c) 4. s() = sin(2π 1 + π 4 ) cos(2π c) 5. s() = sin(2π 1 + π 4 ) sin(2π c) 6. s() = sin(2π 1 + π 4 ) + cos2 (2π c ) Noe: cos 2 A = 1 2 + 1 2 cos(2a) 7. s() = sin(2π 1 + π 4 ) cos2 (2π c ) 8. s() = sin(2π 1 + π 4 ) cos(2π c) sin(2π c ) Noe: sin A cos B = 1 2 sin(a + B) 1 2 sin(b A) Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 29 / 58 A: 1. sin(2π 1 + π 4 ), 2. sin(2π 1 + π 4 ), 3. sin(2π 1 + π ), 4. 0, 5. 0, 4 6. sin(2π 1 + π 4 ) + 1 2, 7. 1 2 sin(2π 1 + π ), 8. 0. 4 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 30 / 58 Modulaion Chaper 3: Ampliude Modulaion Modulaion: o adjus or adap o a cerain proporion Used o superimpose one signal ono anoher. In modulaion need wo hings: 1. a modulaed signal ha is changed: carrier signal: c() 2. a modulaing signal ha dicaes how o change: message signal: m() Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 31 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 32 / 58

Ampliude Modulaion Ampliude Modulaion In modulaion need wo hings: 1. a modulaed signal: carrier signal: c() 2. a modulaing signal: message signal: m() carrier: c() = Ac cos(2π c ); phase φ c = 0 is assumed. message: m() (inormaion-bearing signal) assume bandwidh/max req o m() is Three ypes sudied: 1. Ampliude Modulaion (AM) (yes, i has he same name as he class o modulaion echniques) 2. Double Sideband-Suppressed Carrier (DSB-SC) 3. Single Sideband (SSB) Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 33 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 34 / 58 Ampliude Modulaion (he speciic echnique) Ampliude Modulaion Suppose s AM () = A c [1 + k a m()] cos(2π c ) % Modulaion = 100 max(k a m()) k a m() < 1 (% Modulaion < 100%) [1 + ka m()] > 0, so he envelope o s AM () is always posiive; no phase reversal c he movemen o he message is much slower han he sinusoid Then, m() can be recovered wih an envelope deecor. AM wave + - + Oupu - Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 35 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 36 / 58

Ampliude Modulaion Double Sideband-Suppressed Carrier s AM () = A c [1 + k a m()] cos(2π c ) s AM () = A c [1 + k a m()] cos(2π c ) = A c cos(2π c ) +k }{{} a A c m() cos(2π c ) }{{} excess energy message-bearing signal s DSB () = A c m() cos(2π c ) Transmiing only he message-bearing componen o he AM signal, requires more a complex (coheren) receiver sysem. Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 37 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 38 / 58 Double Sideband-Suppressed Carrier Double Sideband-Suppressed Carrier S () AM s DSB () = A c m() cos(2π c ) S () DSB S () USSB upper SSB Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 39 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 40 / 58

carrier carrier message message ampliude modulaion ampliude modulaion DSB-SC DSB-SC Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 41 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 42 / 58 Double Sideband-Suppressed Carrier carrier An envelope deecor will no be able o recover m(); i will insead recover m(). message Coheren demodulaion is required. ampliude modulaion s() Produc Modulaor iler v () 0 Demodulaed Signal DSB-SC Local Oscillaor Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 43 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 44 / 58

Cosas Receiver Cosas Receiver Coheren Demodulaion I-Channel (in-phase coheren deecor) Produc Modulaor iler local oscillaor oupu Demodulaed Signal v () 0 Produc Modulaor v () I iler Demodulaed Signal DSB-SC wave Volage-conrolled Oscillaor Phase Discriminaor DSB-SC wave Volage-conrolled Oscillaor Phase Discriminaor -90 degree Phase Shier -90 degree Phase Shier Produc Modulaor Filer Produc Modulaor v () Q Filer Circui or Phase Locking Q-Channel (quadraure-phase coheren deecor) Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 45 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 46 / 58 Muliplexing and QAM Quadraure Ampliude Modulaion Muliplexing: o send muliple message simulaneously s() = A c m 1 () cos(2π c ) + A c m 2 () sin(2π c ) Produc Modulaor iler Quadraure Ampliude Muliplexing (QAM): (a.k.a quadraure-carrier muliplexing) ampliude modulaion scheme ha enables wo DSB-SC waves wih independen message signals o occupy he same channel bandwidh (i.e., same requency channel) ye sill be separaed a he receiver. Muliplexed Signal -90 degree Phase Shier Produc Modulaor Filer Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 47 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 48 / 58

Quadraure Ampliude Modulaion Quadraure Ampliude Modulaion s() = A c m 1 () cos(2π c ) + A c m 2 () sin(2π c ) s() = A c m 1 () cos(2π c ) + A c m 2 () sin(2π c ) S () DSB Suppose m 1 () and m 2 () are wo message signals boh o bandwidh. QAM allows wo messages o be communicaed wihin bandwidh. S () QAM Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 49 / 58 S USSB Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 50 / 58 () upper SSB Is here anoher way o gain his bandwidh eiciency? Single Sideband S LSSB () S () QAM Modulaion: lower SSB S () USSB lower SSB upper SSB s SSB () = A c 2 m() cos(2π c) A c 2 ˆm() sin(2π c) where he negaive (posiive) applies o upper SSB (lower SSB) ˆm() is he Hilber ransorm o m() S LSSB() upper SSB lower SSB Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 51 / 58 M() H() = -j sgn() -j H() j M() m() h() = 1/( ) Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 52 / 58 m()

Single Sideband Single Sideband Modulaion: s SSB () = A c 2 m() cos(2π c) A c 2 ˆm() sin(2π c) Coheren Demodulaion: m() Produc Modulaor Band-pass iler s() s() Produc Modulaor iler v () 0 Demodulaed Signal Local Oscillaor upper SSB H () BP upper SSB Noe: Cosas receiver will work or SSB demodulaion. - c lower SSB lower SSB c Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 53 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 54 / 58 Comparisons o Ampliude Modulaion Techniques AM: Comparisons o Ampliude Modulaion Techniques DSB-SC: S AM() s AM () = A c [1 + k a m()] cos(2π c ) S AM ( ) = A c 2 [δ( c) + δ( + c )] + k aa c [M( c ) + M( + c )] 2 S AM() s DSB () = A c cos(2π c )m() S DSB ( ) = A c 2 [M( c) + M( + c )] S DSB() S DSB() S USSB () highes power B T = lowes complexiy S USSB () Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 55 / 58 lower power B T = higher complexiy S LSSB () Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 56 / 58

S DSB() Comparisons o Ampliude Modulaion Techniques SSB: Comparisons o Ampliude Modulaion Techniques SSB: S USSB () upper SSB s USSB () = A c 2 m() cos(2π c) A c 2 ˆm() sin(2π c) { Ac S USSB ( ) = 2 [M( c) + M( + c )] c 0 < c s LSSB () = A c 2 m() cos(2π c) + A c 2 ˆm() sin(2π c) { 0 > c S LSSB ( ) = A c 2 [M( c) + M( + c )] c S LSSB () lower SSB lowes power B T = highes complexiy Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 57 / 58 Proessor Deepa Kundur (Universiy o Torono) Tes 1 Review 58 / 58