Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Similar documents
Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme

Voltage Control and Power System Stability Enhancement using UPFC

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN: Volume 8 Issue 1 APRIL 2014.

Power Quality enhancement of a distribution line with DSTATCOM

Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load 1

Performance Improvement of Power System Using Static Synchronous Compensator (STATCOM) Priya Naikwad, Mayuri Kalmegh, Poonam Bhonge

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II 5 - Reactive Power and Voltage Control

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

Keywords: Stability, Power transfer, Flexible a.c. transmission system (FACTS), Unified power flow controller (UPFC). IJSER

ELEMENTS OF FACTS CONTROLLERS

Transient Stability Analysis of Multimachine System Using Statcom

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator

SIMULATION OF D-Q CONTROL SYSTEM FOR A UNIFIED POWER FLOW CONTROLLER

Increasing Dynamic Stability of the Network Using Unified Power Flow Controller (UPFC)

Power System Stability Improvement in Multi-machine 14 Bus System Using STATCOM

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER CSEA2012 ISSN: ; e-issn:

Volume I Issue VI 2012 September-2012 ISSN

Power System Stability Enhancement Using Static Synchronous Series Compensator (SSSC)

Transient Stability Improvement Of IEEE 9 Bus System With Shunt FACTS Device STATCOM

STATCOM-SMES SYSTEM Co-ordination in Controlling Power System Dynamic

Available ONLINE

Enhancement of Voltage Stability & reactive Power Control of Distribution System Using Facts Devices

Designing Of Distributed Power-Flow Controller

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Improving the Transient and Dynamic stability of the Network by Unified Power Flow Controller (UPFC)

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3

Interline Power Flow Controller: Review Paper

Damping Power system Oscillation using Static Synchronous Series Compensator (SSSC)

Improvement of Rotor Angle Stability and Dynamic Performance of AC/DC Interconnected Transmission System

Analysis of Effect on Transient Stability of Interconnected Power System by Introduction of HVDC Link.

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD

FUZZY CONTROLLED DSTATCOM FOR HARMONIC COMPENSATION

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Investigation of D-Statcom Operation in Electric Distribution System

ISSUES OF SYSTEM AND CONTROL INTERACTIONS IN ELECTRIC POWER SYSTEMS

VSC Based HVDC Active Power Controller to Damp out Resonance Oscillation in Turbine Generator System

A.V.Sudhakara Reddy 1, M. Ramasekhara Reddy 2, Dr. M. Vijaya Kumar 3

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

A Review on Mid-point Compensation of a Two-machine System Using STATCOM

Real and Reactive Power Control by using 48-pulse Series Connected Three-level NPC Converter for UPFC

factors that can be affecting the performance of a electrical power transmission system. Main problems which cause instability to a power system is vo

Analysis and Performance of PID Based STATCOM for Voltage Variations

Chapter 10: Compensation of Power Transmission Systems

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

Comparison of FACTS Devices for Power System Stability Enhancement

Power System Oscillations Damping and Transient Stability Enhancement with Application of SSSC FACTS Devices

Design and Simulation of Passive Filter

International Journal of Advance Engineering and Research Development

Robust controller design for LFO damping

Analysis of Power System Oscillation Damping & Voltage Stability Improvement Using SSSC in A Multimachine System

Voltage Level and Transient Stability Enhancement of a Power System Using STATCOM

Damping of Sub synchronous Resonance Using SSSC Based PWM Hysteresis Controller

Comparative Analysis of Multiple-pulse VSC-Based STATCOM s for Voltage-Dip Mitigation

FACTS devices in Distributed Generation

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar

Transfer Capability Enhancement of Transmission Line using Static Synchronous Compensator (STATCOM)

Modeling and Simulation of STATCOM

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

Modeling and Simulation of Wind Farm with STATCOM in PSCAD/EMTDC Environment

New HVDC Interaction between AC networks and HVDC Shunt Reactors on Jeju Converter Stations

Power Quality Compensation by using UPFC

Stability enhancement of hydroelectric multi-machines Power system using hybrid PSS-FACTS devices

D-STATCOM FOR VOLTAGE SAG, VOLTAGE SWELL MITIGATION USING MATLAB SIMULINK

Improvement of Power Quality Considering Voltage Stability in Grid Connected System by FACTS Devices

I. INTRODUCTION IJSRST Volume 3 Issue 2 Print ISSN: Online ISSN: X

Power Upgrading of Transmission Line by Injecting DC Power in to AC Line with the help of ZIG-ZAG Transformer

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Joe Warner, Electric Power Industry Conference (EPIC), November 15, 2016 Advances in Grid Equipment Transmission Shunt Compensation

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation

PERFORMANCE COMPARISON OF POWER SYSTEM STABILIZER WITH AND WITHOUT FACTS DEVICE

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Improvement of Power Quality in PMSG Based Wind Integrated System Using FACTS Controller

Long lasting transients in power filter circuits

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS

Implementing Re-Active Power Compensation Technique in Long Transmission System (750 Km) By Using Shunt Facts Control Device with Mat Lab Simlink Tool

Application of SSSC-Damping Controller for Power System Stability Enhancement

Application Of Power System Stabilizer At Serir Power Plant

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Improvement in Power Quality of Distribution System Using STATCOM

Power flow improvement using Static Synchronous Series Compensator (SSSC)

II. RESEARCH METHODOLOGY

CONTROLLING A STATIC SYNCHRONOUS COMPENSATOR WITH SUPERCONDUCTING MAGNETIC ENERGY STORAGE FOR APPLICATIONS ON PRIMARY FREQUENCY CONTROL

Development and Simulation of Voltage Regulation System of A.C. Transmission lines using Static Synchronous Compensator (STATCOM)

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller

Fuzzy Control Scheme for Damping of Oscillations in Multi Machine. Power System with UPFC

Comparison and Performance Analysis of FACTs Controller in System Stability

Energy-Based Damping Evaluation for Exciter Control in Power Systems

Analysis the Modeling and Control of Integrated STATCOM System to Improve Power System

Performance and Analysis of Reactive Power Compensation by Unified Power Flow Controller

Development of Dynamic Test Cases in OPAL-RT Real-time Power System Simulator

Voltage Improvement Using SHUNT FACTs Devices: STATCOM

Power System Stability. Course Notes PART-1

Improvement of Power system transient stability using static synchronous series compensator

Power Control Scheme of D-Statcom

Performance of DVR & Distribution STATCOM in Power Systems

Enhancement of Power Quality in Distribution System Using D-Statcom

Power Quality Analysis in Power System with Non Linear Load

Performance of Indirectly Controlled STATCOM with IEEE 30-bus System

Transcription:

e t International Journal on Emerging Technologies 4(1): 10-16(2013) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Control of Synchronous Generator Excitation and Rotor Angle Stability by using Static Synchronous Compensator (STATCOM) with Reference Voltage Compensation (RVC) Simulation Method Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India (Received 15 October, 2012 Accepted 10 January, 2013) ABSTRACT: The static synchronous compensator (STATCOM) is one type of FACTS devices which resembles in many respects a rotating synchronous condenser used for voltage control and reactive power compensation. The STATCOM can increase transmission capacity, damping low frequency oscillation, and improving transient stability. This paper investigated for the transient stability improvement by using static synchronous compensator (STATCOM). The MATLAB software model is used for simulation of test system. Control scheme for STATCOM (PID controller) and generator excitation to achieve transient stability, damping oscillation is controlled by power system (PSS) and voltage regulation enhancement of power systems is presented. First, the model of STATCOM in a power system is derived. Then, the nonlinearities of the generator and the STATCOM model are alleviated. With the help of robust control theory, the fluctuation of system structure, the parameter uncertainties and the interconnection between the generator and STATCOM are taken into consideration in the controller design. The results present the system performance with all operating conditions. It is shown that the proposed control can provide better stability, voltage control and damping of rotor angle than other schemes. Keywords: Transient stability, FACTS, STATCOM, PSS, damping and voltage regulation. 1. INTRODUCTION The relatively recent development and use of FACTS controllers in power transmission systems has many applications of these controllers to improve the stability of power system networks. Several FACTS equipment is available or still under development, based on the solid state switch with conventional thyristors and on the voltage source inverter with GTO switches [1,2]. All these equipment provide controllability to the AC transmission system by adjusting the reactive power, the series impedance of transmission line, or the active and reactive power system. The STATCOM was proposed by several researchers to compensate the reactive current from or to the power system. This function is identical to the synchronous condenser with rotating mass, but its response time is extremely faster than of the synchronous condenser. This is very effective to increase transient stability, to enhance voltage support, and to damping low frequency oscillation for the transmission system. In this paper a MATLAB software package are performed to verify the transient stability and compensation of reactive power of AC transmission system. Under these conditions, transmission networks are called upon to operate at high transmission levels, and thus power engineers have had to confront some major operating problems such as transient stability, damping of oscillations and voltage regulation, etc. While generator excitation controllers are helpful in achieving rotor angle stability or voltage regulation enhancement, with only excitation control, the system stability may not be maintained if a large fault occurs close to the generator terminal, or simultaneous transient stability and voltage regulation enhancement may be difficult to achieve. Researchers have found that the performance of power systems can be further improved by applying the recently developed FACT device [1]. FACTS (flexible AC transmission systems) controllers. Among the FACTS family, the static synchronous compensator (STATCOM) is a device which can provide smooth and fast reactive power compensation to power systems, and therefore can be used to provide voltage support, increase transient stability and improve damping oscillation. Its ability for energy storage is not a rigid necessity but is only required for system imbalance or harmonic absorption. As a consequence, the not-so-strict requirement for a large energy storage device makes STATCOM more robust and also enhances the response speed.

Pahade and Saxena 11 Traditionally, the generator excitation controller (e.g. PSS/AVR) and STATCOM controller are designed separately without considering their interactions, which is mainly due to the difficulty of getting control signals from these geographically distributed pieces of equipment. While generator excitation controllers are helpful in achieving rotor angle stability or voltage regulation maintenance, with only excitation control, the system stability may not be maintained if a large fault occurs close to the generator terminal, or simultaneous transient stability and voltage regulation enhancement may be difficult to achieve. Researchers have found that the performance of power systems can be further improved by applying the recently developed FACTS (flexible AC transmission systems) controllers. II. POWER SYSTEM STABILIZERS (PSS) Power system stabilizers (PSS) have been extensively used as supplementary excitation controllers to damping out the low frequency oscillations and enhance the overall power system stability. Fixed structure power system stabilizers have practical applications and generally provide acceptable dynamic performance [4]. There have been arguments that these controllers, being tuned for one nominal operating condition and provide optimal performance when there are variations in the system connected load. There are two main approaches to stabilize a power system over a wide range of operating conditions, namely multi band and generic mode operation for controlling damping oscillation. Show fig.1 a generation unit consisting of a synchronous generator, a turbine a governor and an excitation system an automatic voltage regulator (AVR) and a PSS [3]. Fig. 1. Generation unit diagram. Next, a transient model of a synchronous machine is considered and its mechanical parts are modeled by; Where, ωδ is speed variation, ω is mechanical speed of rotor, H is the inertia constant, T M / T E are mechanical / electrical torque respectively and K d is a damping factor. Electrical parts of synchronous machine can be described by a sixth order state space model. III. STATCOM (Static synchronous compensator) The STATCOM generates a balanced 3-phase voltage whose magnitude and phase can be adjusted rapidly by using semiconductor switches. The STATCOM is composed of a voltage source inverter with a dc capacitor, signal generation and control circuit [2]. A STATCOM is a controlled reactive-power source. It provides the desired reactive-power generation and absorption entirely by means of electronic processing of the voltage and current waveforms in a voltage source converter (VSC). A single line STATCOM power circuit is shown in Fig. 1(a), where a VSC is connected to a bus through magnetic coupling. In Fig. 1(b), a STATCOM is an adjustable voltage source behind a reactance meaning that capacitor banks and shunt reactors are not needed for reactive-power generation and absorption, thereby giving a STATCOM a compact design, as well as low noise and low magnetic impact. The exchange of reactive power between the converter and the ac system can be controlled by varying the amplitude of the 3-phase output voltage, Es, of the converter, as illustrated in Fig. 1(c). That is, if the amplitude of the output voltage is increased above that of the bus voltage, Et, then a current flows through the reactance from the converter to the ac system and the converter generates capacitive-reactive power for the ac system. If the amplitude of the output voltage is decreased below the bus voltage, then the current flows from the ac system to the converter and the converter absorbs inductive-reactive power.

Pahade and Saxena 12 in which the STATCOM is needed to support the system voltage during and after faults where voltage collapse would otherwise be a limiting factor [2]. Power circle diagram of STATCOM absorbs and deliver reactive power in power system. Shown in fig.4 Fig. 2. The STATCOM principle diagram: (a) a power circuit; (b) an equivalent circuit; and (c) a power exchange from the ac system. IV. THE V-I CHARACTERISTIC A typical V-I characteristic of a STATCOM is depicted in Fig. 3. As can be seen, the STATCOM can supply both the capacitive and the inductive compensation and is able to independently control its output current over the rated maximum capacitive or inductive range irrespective of the amount of ac system voltage. Fig. 4. The power exchange between the STATCOM and the ac system. V. MODEL OF STATCOM IN POWER SYSTEMS Show the fig. of power system model single line three bus systems with transmission line fault occurs. Fig. 5. Single line diagram infinite bus with fault. Fig. 3. The V-I characteristic of the That is, the STATCOM can provide full capacitive-reactive power at any system voltage even as low as 0.15 pu. The characteristic of a STATCOM reveals strength of this technology: that it is capable of yielding the full output of capacitive generation almost independently of the system voltage (constant -current output at lower voltages). This capability is particularly useful for situations The STATCOM generates a balanced 3-phase voltage whose magnitude and phase can be adjusted rapidly by using semiconductor switches. The STATCOM is composed of a voltage source inverter with a dc capacitor, coupling transformer [5], and signal generation and control circuit Assuming balanced, fundamental frequency voltages, the controller can he accurately represented in transient stability studies using the basic model shown in fig.5 Without losing generality, a STATCOM system is employed to derive the model. It resembles the case where power is transmitted through an electrical transmission line connecting various generators and loads at its sending and

Pahade and Saxena 13 receiving end. It should be noted that except the STATCOM parameters, all the transmission network parameters are not known in practice [5]. VI. TRANSIENT STABILITY The double machine three bus systems qualitatively exhibits important characteristics of the behavior of machine system, it is extremely useful to describe the general concepts of power systems stability and is relatively simple to study [1]. Shown in Fig.6 is thus used to show the effect of STATCOM in improving system transient stability [2]. The compensation capacitor is omitted during this investigation. During the fault the transmitted electrical power decreases significantly while mechanical input power to generator remains constant, as a result, the generator continuously accelerates as can be seen in the generator speed and power angle shown in Fig.6 (With STATCOM) respectively. When the fault is cleared, the speed is continuously increasing and system is not able to retain stability due to the lack of damping. During the fault, the generator terminal experiences voltage sag of more than 90% without the STATCOM as shown in Fig.6. This voltage is not recovered after the fault clearance due to the lack of reactive power support, the shaft sections of the turbine generator set are subjected to high torsional oscillations and force as seen in the electromechanical torques [6]. When the STATCOM is connected to the midpoint terminals, reactive power controller adapts the value of the inverter firing angle according to system requirements. As shown in Fig.6. STATCOM firing angle, the firing angle should remain zero at normal operating conditions and there is no reactive power exchange between the system and the When the fault occurs, the firing angle is changed instantly and the reactive power is supplied by the STATCOM to the system. When the fault is cleared, the firing angle is reduced to zero again and the STATCOM back to the idle condition [6]. The impact of reactive power modulation using STATCOM on system performance can be seen in Fig.6 Connecting the STATCOM to the midpoint terminals will maintain the rotor speed and the power angle at their nominal values even during the fault. The voltage sag at the generator terminals will be reduced substantially. The shaft oscillations and torsion forces will be reduced to almost the normal steady state condition [7,8,9]. VII. EXPERIMENTAL TEST MODEL For the purpose of studying the transient phenomena and obtaining more practical results, the proposed MATLAB/SIMULINK control scheme in computer hardware and software designed specifically for the solution of power system electromagnetic transients. Because real time operation can be achieved, it can be applied in areas traditionally reserved for analogue simulators, and Testing of system controller. Double machine three bus models are power system for evaluating the proposed design method is considered. Using this model, we consider a typical two 1000MVA, 11KV, 50Hz synchronous generator to connect with a 1000MVA, 11/400KV two transformers and two transmission lines operating voltage label are 400KV and 300KM length connected to three buses. MATLAB/ SIMULINK model are shown in fig.6 Generator: S=1000MVA, V=11 kv, ω 0 = 314.159rad/s, D=5.0 pu., H= 4.0s, X d = 1.863 pu, X d = 0.657pu, X d =0.245pu, T d0 = 6.9s T d0 = 0.03s, X q = 0.657 pu., X q = 0.27pu, T d0 = 0.06s, X ad =1.712pu, k c = 1, and Max [Ef(t)] = 6.Opu. Transformer: S = 1000 MVA, winding 1(Y) = 11 kv, winding 2( ) = 400 kv, and X T = 0.227 pu. Transmission line: Length =300km, X L1 = X L2 = 0.24265 pu, R L1 = RL2 = 0.016pu and f= 50Hz STATCOM: 220MVAR, R s =0.01 pu., L=0.1 pu, C dc = 100OpF, snubber circuit: Rb = 5000 Ω, and C, = 0.05 µf. Test system controllability and observe ability is shown under fig.

Pahade and Saxena 14 VIII. SIMULATION AND RESULTS Fig. 6. MATLAB experiment model for transient stability test system. In this model, performance of controller is evaluated conventional PSS multiband operation from IEEE standard. The simulations carried out using MATLAB/ SIMULINK environment for power system Fig.7 for evaluating robustness of proposed PSS stabilizations of these PSS is simulated of disturbances. 1. Without STATCOM- Shows d_theta angle instability of synchronous generator, angular velocity ω1 and ω2 and terminal voltage unstable due to occurs single phase fault. When no compensation allows- Fig. 7. d_theta angle of without

Pahade and Saxena 15 2. With STATCOM- Shows d_theta angle stability of synchronous generator, angular velocity ω1 and ω2 and terminal voltage stable single phase fault on a generator bus. When RVC compensation allows- 4. This simulation result shows that line power fluctuation and bus voltage fluctuation With Fig. 8. d_theta angle of with 3. This simulation result shows that line power fluctuation and bus voltage fluctuation Without Fig. 9. Line power and bus voltage of without Fig. 10. Line power and bus voltage of with IX. CONCLUSION In this paper a control system of the STATCOM was presented for the transient stability enhancement. The test system is two synchronous machine transmission systems. And a simulation model with the MATLAB/SIMULINK was developed to verify the interaction between the STATCOM and AC transmission system. The main circuit configuration of STATCOM was represented by 6 pulse voltage source inverter with gate turn off (GTO) switches in the Power System SIMULINK. Also the signal generation and control circuit were modeled with the SIMULINK toolbox in the SIMULINK/MATLAB model. In this paper MATLAB technique is used for decreasing transient instability of STATCOM output signal parameter. Using STATCOM can improve the transient stability of AC transmission system and it is able to compensating the reactive power. Therefore STATCOM can also increase reliability and capability of AC transmission system. REFERENCES [1]. P. Kundur, Power System Stability and Control, New York: Mc Graw Hill 1992. [2]. Narain G. Hingorani, Laszlo Gyugyi, Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems.IEEE Power Engineering Society 2000.

Pahade and Saxena 16 [3]. A. A. Gharaveisi1, M. Kashki1 A Novel Automatic Designing Technique for Tuning Power System Stabilizer Proceedings of the World Congress on Engineering 2008 Vol 3. [4]. E. Larsen and D. Swann, Applying Power System Stabilizers, IEEE Transaction PAS, Vol. 100, No. 6 1981, pp. 3017-3046. [5]. S. A. Soman, T. B. Nguyen, M. A. Pai, and R. Vaidyanathan, Analysis of angle stability problems: a transmission protection systems perspective, IEEE Trans. Power Del., vol. 19, no. 3, pp. 1024 1033, Jul. 2004. [6]. L. Cong and Y. Wang. Co-ordinated control of generator excitation and STATCOM for rotor angle stability and voltage regulation enhancement of power systems. IEE Proc Gmcr.Tsunsrii. Dlytrib. Vol 149, No. 6. November 2002. [7]. C. A. Canizares, Power flow and transient stability models of FACTS controllers for voltage and angle stability studies, in Proc. IEEE Power Eng. Soc. Winter Meeting, Singapore, Jan. 23-27, 2000, vol. 2, pp. 1447 1452. [8]. Ch. Paring, T. Tran Quoc, Impact of FACTS Devices on Voltage and Transient Stability of a Power System Including Long Transmission Lines, Power Engineering Society Winter Meeting 2000, IEEE, Vol. 2, pp. 1906-1911. [9]. Claudio A. Canizares, Power Flow and Transient Stability Models of FACTS Controllers for Voltage and Angle Stability Studies, Power Engineering Society Winter Meeting 2000, IEEE, Vol. 2, pp. 1447-1454.