Digital Window Watchdog Timer U5021M

Similar documents
Current Monitor IC U4793B

Flasher, 18-mΩ Shunt, Frequency Doubling Disabling U6433B

Flasher, 30 mω Shunt, Pilot Lamp to GND or V Batt U2043B

Flasher IC with U643B

Zero-voltage Switch with Adjustable Ramp T2117

ATA6140. Flasher Application Module. Application Note. ATA Flasher Application Module. 1. Description

PWM Power Control IC with Interference Suppression U6083B

Rear Window Heating Timer/ Long-term Timer U6046B

Zero-voltage Switch with Adjustable Ramp T2117

Low-power Flasher IC with 18-m Shunt U6432B

300-MHz Quadrature Modulator U2793B

IR Receiver for Data Communication U2538B

Low-cost Phase-control IC with Soft Start U2008B

Two-relay Flasher ATA6140

Low-power Audio Amplifier for Telephone Applications U4083B

Read/Write Crypto Transponder for Short Cycle Time TK5561A-PP

Phase-control IC with Current Feedback and. Overload. Protection U2010B

Application Note. 8-Bit Microcontrollers. AVR433: Power Factor Corrector (PFC) with AT90PWM2 Re-triggable High Speed PSC

1000-MHz Quadrature Modulator U2790B. Features. Benefits. Description. Electrostatic sensitive device. Observe precautions for handling.

8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter

Special Fail-safe IC U6808B

Multifunction Timer IC U2102B

MHz High Linearity SiGe Active Receive Mixer T0782. Preliminary

Flasher IC with 18-mΩ Shunt U6043B

Transceiver Base Station Board ATAB542x-x-B. Application Note. Bill of Materials and Implementation of the Transceiver Base Station Board ATAB542x-x-B

8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector

Standard Read/Write ID Transponder with Anticollision TK5551

Transceiver Base Station Board ATAB5823-x-B/ ATAB5824-x-B. Application Note

UHF ASK Transmitter U2745B

1-Megabit (64K x 16) OTP EPROM AT27C1024

2-Megabit (128K x 16) OTP EPROM AT27C2048

High-speed CAN Transceiver ATA6660

Application Note. 8-bit Microcontrollers. AVR092: Replacing ATtiny11/12 by ATtiny13. Features. Introduction

Atmel U6032B. Automotive Toggle Switch IC DATASHEET. Features. Description

1-Megabit (128K x 8) OTP EPROM AT27C010

Application Note. How to Connect C51 Microcontroller to ATR Microcontrollers

Read/Write Base Station U2270B

AVR443: Sensor-based control of three phase Brushless DC motor. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

Phase Control IC for Tacho Applications U209B

UHF ASK/FSK Transmitter U2741B

Read-only Transponder TK5530

128-bit Read-only IDIC for RF Identification. e5530

Atmel ATA6629/ Atmel ATA6631 Development Board V2.2. Application Note. Atmel ATA6629/ATA6631 Development Board V

2.4-GHz SiGe Power Amplifier for b/g WLAN Systems T7031. Preliminary

UHF ASK/FSK. Transmitter T5754

8-bit Microcontroller with 2K Bytes In-System Programmable Flash. ATtiny261A. Appendix A. Appendix A ATtiny261A Specification at 105 C

8-Megabit (1M x 8) OTP EPROM AT27C080. Features. Description. Pin Configurations

AVR443: Sensorbased control of three phase Brushless DC motor. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

Low-cost Phase-control IC with Soft Start

Programmable SLI AT94K AT94S. Application Note. DTMF Generator

AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC. 8-bit Microcontrollers. Application Note. Features.

AT91 ARM Thumb Microcontroller s. AT91R40807 Electrical Characteristics

Highperformance EE PLD ATF16LV8C

AVR122: Calibration of the AVR's internal temperature reference. 8-bit Microcontrollers. Application Note. Features.

8-bit Microcontroller. Application Note. AVR084: Replacing ATmega323 by ATmega32. Features. Introduction. ATmega323 Errata Corrected in ATmega32

3-wire Serial EEPROM AT93C86. Features. Description. Pin Configurations. 16K (2048 x 8 or 1024 x 16)

UHF ASK/FSK Receiver ATA5721 ATA5722. Features

Read/Write Base Station U2270B

3-wire Serial EEPROM AT93C86. Features. Description. Pin Configurations 8-lead PDIP. 16K (2048 x 8 or 1024 x 16)

Application Note. Preliminary. 8-bit Microcontrollers

4-Megabit (256K x 16) OTP EPROM AT27C4096

AVR1311: Using the XMEGA Timer/Counter Extensions. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

1-Megabit (64K x 16) OTP EPROM AT27C1024

AT91 ARM Thumb Microcontrollers. AT91R40008 Electrical Characteristics

APPLICATION NOTE. ATA6629/ATA6631 Development Board V2.2 ATA6629/ATA6631. Introduction

AT91 ARM Thumb Microcontrollers. AT91R40008 Electrical Characteristics. Features. Description

AVR1302: Using the XMEGA Analog Comparator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

Low-noise, High-dynamicrange. Antenna Amplifier IC ATR4251. Preliminary

Frequency Synthesizer for Radio Tuning ATR4256

8-bit RISC Microcontroller. Application Note. AVR314: DTMF Generator

ATAVRAUTO User Guide

Power Management AT73C211

8-bit. Application Note. Microcontrollers. AVR077: Opto Isolated Emulation for the DebugWIRE

Phase-control IC with Current Feedback and. Overload. Protection

3-wire Serial EEPROM AT93C86A. Preliminary. Features. Description. Pin Configurations. 16K (2048 x 8 or 1024 x 16) VCC DC ORG GND CS SK DI DO

Can Transceiver IC B10011S

256K (32K x 8) Unregulated Battery-Voltage High-Speed OTP EPROM AT27BV256

Smart RF AT86RF401-EK1. Application Note. AT86RF401-EK1 Smart RF MicroTransmitter Evaluation Kit Application Note. Functional Description

Very Highresolution. Linear CCD Image Sensor (12000 Pixels) TH7834C. Features. Description

8-bit Microcontroller. Application Note. AVR083: Replacing ATmega163 by ATmega16

Standard Read/Write Crypto Identification IC. e5561

Low Power Windowed Watchdog with Reset, Sleep Mode Functions. Features. Applications. Selection Table. Part Number V REF

L-band Down-converter for DAB Receivers U2730B-N. Preliminary

Rad Hard 128K x volt Very Low Power CMOS SRAM M65609E

125 khz Transmitter IC for TPM ATA5275

ATAK57xx Software Description. Application Note. Preliminary. Software Description RF Design Kit ATAK57xx. Description

8-bit Microcontroller. Application Note. AVR085: Replacing AT90S8515 by ATmega8515. Features. Introduction. AT90S8515 Errata Corrected in ATmega8515

2-megabit (256K x 8) Unregulated Battery-Voltage High-speed OTP EPROM AT27BV020

Time-code Receiver T4227

Read/Write Transponder TK5552

4-Megabit (512K x 8) OTP EPROM AT27C040. Features. Description. Pin Configurations

Atmel ATA6628/ Atmel ATA6630 Development Board V1.1. Application Note. Atmel ATA6628/ATA6630 Development Board V

Rad Hard 16 MegaBit SRAM Multi Chip Module AT68166F AT68166FT. Preliminary

Standard R/W IDIC (264 Bit) with Integrated Capacitance T5554. Preliminary. Features. Description. System Block Diagram

All-in-One IC Solution for Active Antennas ATR4252. Summary

Battery-Voltage. 1-Megabit (64K x 16) Unregulated. High-Speed OTP EPROM AT27BV1024. Features. Description. Pin Configurations

APPLICATION NOTE. ATA6621, ATA6621N, ATA6622, ATA6622C, ATA6624, ATA6624C, ATA6626, ATA6626C Development Board ATA6621/22/24/26.

Rad. Tolerant 8K x 8-5 volts Very Low Power CMOS SRAM AT65609EHW

256K (32K x 8) Unregulated Battery. Programmable, Read-only Memory

AT91 ARM Thumb Microcontrollers. AT91M42800A Electrical Characteristics

Transcription:

Features Low Current Consumption: I DD < 100 µa RC Oscillator Internal Reset During Power-up and Supply Voltage Drops (POR) Short Trigger Window for Active Mode, Long Trigger Window for Sleep Mode Cyclical Wake-up of the Microcontroller in Sleep Mode Trigger Input Single Wake-up Input Reset Output Enable Output Digital Window Watchdog Timer 1. Description The digital window watchdog timer,, is a CMOS integrated circuit. In applications where safety is critical, it is especially important to monitor the microcontroller. Normal microcontroller operation is indicated by a cyclically transmitted trigger signal, which is received by a window watchdog timer within a defined time window. A missing or a wrong trigger signal causes the watchdog timer to reset the microcontroller. The IC is tailored for microcontrollers which can work in both full-power and sleep mode. With an additional voltage monitoring (power-on reset and supply voltage drop reset), the offers a complete monitoring solution for microsystems in automotive and industrial applications. Rev.

Figure 1-1. Block Diagram with External Ciruit C V DD 10 nf V DD R 1 C 1 OSC 8 RC Oscillator 6 Reset 5 OSC Microcontroller Trigger Mode 2 3 OSC Input signal conditioning POR Power-on reset POR State machine Test logic 4 Enable External switching circuitry Wake-up 1 7 GND 2. Pin Configuration Figure 2-1. Pinning SO8 WAKE-UP 1 8 OSC TRIG 2 7 GND MODE 3 6 VDD ENA 4 5 RESET 2

3. Pin Description Pin Symbol Function 1 WAKE-UP 2 TRIG 3 MODE 4 ENA Wake-up input (pull-down resistor) There is one digitally debounced wake-up input. During the long watchdog window, each signal slope at the input initiates a reset pulse at pin 5. Trigger input (pull-up resistor) It is connected to the microprocessor s trigger signal. Mode input (pull-up resistor) The processor s mode signal initiates the switchover between the long and the short watchdog time. Enable output (push-pull) It is used for the control of peripheral components. It is activated after the processor triggers three times correctly. 5 RESET Reset output (open drain) Resets the processor in the case of a trigger error or if a wake-up pulse occurs during the long watchdog period. 6 VDD Supply voltage 7 GND Ground, reference voltage 8 OSC RC oscillator 4. Functional Description 4.1 Supply Voltage, Pin 6 The requires a stabilized supply voltage V DD = 5 V ±5% to comply with its electrical characteristics. An external buffer capacitor of C = 10 nf may be connected between pin 6 and GND. 4.2 RC Oscillator, Pin 8 The clock frequency, f, can be adjusted by the components R 1 and C 1 according to the formula: f = 1 -- t where t = 1.35 + 1.57 R 1 (C 1 + 0.01) R 1 in kω, C 1 in nf and t in µs The clock frequency determines all time periods of the logic part as shown in the table Electrical Characteristics under the subheading Timing on page 9. With an appropriate component selection, the clock frequency, f, is nearly independent of the supply voltage as shown in Figure 4-1 on page 4. Frequency tolerance f max = 10% with R 1 ±1%, C 1 = ±5% 3

Figure 4-1. Period t versus R 1, at C 1 = 500 pf 1000.00 100.00 t (µs) 10.00 4.5 V 5.0 V 5.5 V C 1 = 500 pf 1.00 1 10 100 1000 R 1 (kω) Figure 4-2. Power-on Reset and Switch-over Mode VDD Pin 6 Reset Out t 0 t 6 Pin 5 Mode t 1 Pin 3 4.3 Supply Voltage Monitoring, Pin 5 During ramp-up of the supply voltage and in the case of supply-voltage drops the integrated power-on reset (POR) circuitry sets the internal logic to a defined basic status and generates a reset pulse at the reset output, pin 5. A hysteresis in the POR threshold prevents the circuit from oscillating. During ramp-up of the supply voltage, the reset output stays active for a specified period of time (t 0 ) in order to bring the microcontroller into its defined reset status (see Figure 4-2). Pin 5 has an open-drain output. 4.4 Switch-over Mode Time, Pin 3 The switch-over mode time enables the synchronous operation of microcontroller and watchdog. When the power-on reset time has elapsed, the watchdog has to be switched to monitoring mode by the microcontroller by a low signal transmitted to the mode pin (pin 3) within the time-out period, t 1. If the low signal does not occur within t 1 (see Figure 4-2), the watchdog generates a reset pulse, t 6, and t 1 starts again. Microcontroller and watchdog are synchronized with the switch-over mode time, t 1, each time a reset pulse is generated. 4

4.5 Microcontroller in Active Mode 4.5.1 Monitoring with the Short Trigger Window After the switch-over mode the watchdog operates in short watchdog mode and expects a trigger pulse from the microcontroller within the defined time window, t 3, (enable time). The watchdog generates a reset pulse which resets the microcontroller if the trigger pulse duration is too long the trigger pulse is within the disable time, t 2 there is no trigger pulse Figure 4-3 shows the pulse diagram with a missing trigger pulse. Figure 4-3. Pulse Diagram with no Trigger Pulse During the Short Watchdog Time Pin 6 V DD Reset out t 0 t 1 Pin 5 Mode t 2 t 3 Pin 3 Trigger Pin 2 Figure 4-4 on page 6 shows a correct trigger sequence. The positive edge of the trigger signal starts a new monitoring cycle with the disable time, t 2. To ensure correct operation of the microcontroller, the watchdog needs to be triggered three times correctly before it sets its enable output. This feature is used to activate or deactivate safety-critical components which have to be switched to a certain condition (emergency status) in the case of a microcontroller malfunction. As soon as there is an incorrect trigger sequence, the enable signal is reset and it takes a sequence of three correct triggers before enable is active. 4.6 Microcontroller in Sleep Mode 4.6.1 Monitoring with the Long Trigger Window The long watchdog mode allows cyclical wake-up of the microcontroller during sleep mode. As in short watchdog mode, there is a disable time, t 4, and an enable time, t 5, in which a trigger signal is accepted. The watchdog can be switched from the short trigger window to the long trigger window with a high potential at the mode pin (pin 3). In contrast to the short watchdog mode, the time periods are now much longer and the enable output remains inactive so that other components can be switched off to effect a further decrease in current consumption. As soon as a wake-up signal at the wake-up input (pins 1) is detected, the long watchdog mode ends, a reset pulse wakes-up the sleeping microcontroller and the normal monitoring cycle starts with the mode switch-over time. 5

Figure 4-4. Pulse Diagram of a Correct Trigger Sequence During the Short Watchdog Time V DD Pin 6 Reset out t 0 t 1 Pin 5 t 2 t 3 t 2 Mode Trigger Pin 3 Pin 2 Enable t trig Pin 4 Figure 4-5 shows the switch-over from the short to the long watchdog mode. The wake-up signal during the enable time, t 5, activates a reset pulse, t 6. The watchdog can be switched back from the long to the short watchdog mode with a low potential at the mode pin (pin 3). Figure 4-5. Pulse Diagram of the Long Watchdog Time Reset out t 6 t 1 Pin 5 Wake-up Pins 1 Mode t 4 t 5 Pin 3 Trigger t 2 Pin 2 Enable Pin 4 5. State Diagram The kernel of the watchdog is a finite state machine. Figure 5-1 shows the state diagram with all possible states and transmissions. Many transmissions are controlled by an internal timer. The numbers for the time-outs are the same as on the pulse diagrams. 6

Figure 5-1. State Diagram Reset state time out t 0 mode = 1 Mode switch state mode = 0 Short window disable state mode = 0 Long window disable state time out t 4 time out t 1 trg_ok = 1 time out t 2 mode = 1 mode = 0 trg_ok = 1 time out t 6 trg = 0 Short window enable state Long window enable state time out t 3 trg_err = 1 Reset out state trg_err = 1 time out t 5 or wedge = 1 trg = 0 or wedge = 1 Notes: "mode" and "trg" are the debounced input signals from the pins MODE and TRG trg_ok = 1 after the rising edge of the trg signal trg_err = 1 when the trg signal low period is too long wedge = 1 after detecting the debounced changing of a signal level from the WUP pin Every state change restarts the internal timer If a state change is generated from an external debounced pin signal exactly one clock cycle before the internal timer initiates a state change itself, the state machine changes its state twice. The first state change is created by the signal change, and the second by the timeout of the internal timer. This occurs due to the timer getting its reset one clock cycle after a state change. 7

6. Absolute Maximum Ratings Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Parameters Symbol Value Unit Supply voltage V DD 6.5 V Output current I OUT ±2 ma Input voltage V IN -0.4 V to V DD +0.4 V V Ambient temperature range T amb -40 to +125 C Storage temperature range T stg -55 to +150 C 7. Thermal Resistance Parameters Symbol Value Unit Junction ambient R thja 180 K/W 8. Electrical Characteristics V DD = 5 V; T amb = -40 C to +85 C; reference point is pin 7, unless otherwise specified Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Supply voltage 6 V DD 4.5 5.5 V Current consumption R 1 = 66 kω 6 I DD 60 µa Power-on reset Release reset state with rising voltage 6 V POR1 3.9 4.5 V Get reset state with falling voltage 6 V POR2 3.8 4.4 V Power-on reset hysteresis V POR_hys 40 200 mv Reset level for low V DD V DD = 1 V to V POR1 I RST = -300 µa V RST 0.1 V DD Inputs 1, 2, 3 Logical high V IH 3.4 V Logical low V IL 1.6 V Hysteresis V IN_hys 0.6 1.4 V Input voltage range V IN -0.3 V DD + 0.3 V Input current 2, 3 I IN1 5 20 µa Input current 1 I IN2-20 -5 µa Outputs Maximum output current 4, 5 I OUT -2 2 ma Logical output low I OUT = -1 ma 4, 5 V OL 0.2 V V Logical output high I OUT = -1 ma 4 V DD - OH 0.2 V Leakage current V OUT = 5 V 5 I leak 2 µa 8

8. Electrical Characteristics (Continued) V DD = 5 V; T amb = -40 C to +85 C; reference point is pin 7, unless otherwise specified Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Timing Frequency deviation (1) R 1 = 66 kω, C 1 = 470 pf, V DD = 4.5 V to 5.5 V f 5 % Debounce time 2, 3 3 4 Cycle Debounce time 1 96 128 Cycle Maximum trigger pulse length t trgmax 45 Cycle Power-up reset time t o 201 Cycle Switch over mode time t 1 1,112 Cycle Disable time Short watchdog window t 2 130 Cycle Enable time Short watchdog window t 3 124 Cycle Disable time Long watchdog window t 4 71,970 Cycle Enable time Long watchdog window t 5 30,002 Cycle Reset-out time t 6 40 Cycle Note: 1. Frequency deviation also depends on the tolerances of the external components 9. Ordering Information Extended Type Number Package Remarks -NFPY SO8 Tubed, Pb-free -NFPG3Y SO8 Taped and reeled, Pb-free 10. Package Information Package SO8 Dimensions in mm 5.00 4.85 5.2 4.8 3.7 1.4 0.4 1.27 3.81 0.25 0.10 3.8 6.15 5.85 0.2 8 5 technical drawings according to DIN specifications 1 4 9

11. Revision History Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document. Revision No. History 4756D-AUTO-11/05 4756C-AUTO-09/04 4756B-AUTO-07/04 Put datasheet in a new template First page: Pb-free logo added Page 7: figure 5-1 changed Page 9: Ordering Information changed Electrical Characteristics Table, page 8, row Reset capability changed in Reset level for low VDD Electrical Characteristics Table, page 8, row Reset capability added 10

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL S TERMS AND CONDI- TIONS OF SALE LOCATED ON ATMEL S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN- TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. Atmel Corporation 2005. All rights reserved. Atmel, logo and combinations thereof, Everywhere You Are and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Printed on recycled paper.