HIGH POWER ELECTROMAGNETIC TRANSIENT PULSE IN-PHASE SYNTHESIS

Similar documents
A New TEM Horn Antenna Designing Based on Plexiglass Antenna Cap

z t h l g 2009 John Wiley & Sons, Inc. Published 2009 by John Wiley & Sons, Inc.

ULTRA-WIDEBAND ELECTRICAL PULSE GENERATOR USING PHOTOCONDUCTIVE SEMICONDUCTOR SWITCHES

Broadband Circular Polarized Antenna Loaded with AMC Structure

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM

SMART ANTENNA ARRAY PATTERNS SYNTHESIS: NULL STEERING AND MULTI-USER BEAMFORMING BY PHASE CONTROL

DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK

INTRODUCTION (STATE-OF-THE-ART OF HIGH GAIN GaAs PCSS)

3D radar imaging based on frequency-scanned antenna

MAKING TRANSIENT ANTENNA MEASUREMENTS

An Improved TEM Antenna Designing Used in Electromagnetic Pulse Directed Radiation

COUPLED SECTORIAL LOOP ANTENNA (CSLA) FOR ULTRA-WIDEBAND APPLICATIONS *

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

Universal Generator of Ultra-Wideband Pulses

J.-H. Ryu Agency for Defense Development Yuseong, P. O. Box 35-5, Daejeon , Korea

Wavelength-controlled hologram-waveguide modules for continuous beam-scanning in a phased-array antenna system

A HIGH-POWER LOW-LOSS MULTIPORT RADIAL WAVEGUIDE POWER DIVIDER

A Broadband Planar Quasi-Yagi Antenna with a Modified Bow-Tie Driver for Multi-Band 3G/4G Applications

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications

Terahertz Wave Spectroscopy and Analysis Platform. Full Coverage of Applications From R&D to Industrial Testing

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

AN ALTERNATIVE METHOD FOR DIFFERENCE PATTERN FORMATION IN MONOPULSE ANTENNA

Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure

Neural Network Synthesis Beamforming Model For Adaptive Antenna Arrays

SIMULATION AND ANALYSIS OF 60 GHz MILLIMETER- WAVE INDOOR PROPAGATION CHARACTERISTICS BASE ON THE METHOD OF SBR/IMAGE

SUPPLEMENTARY INFORMATION

ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS

WIDE SCANNING PHASED ARRAY ANTENNA USING PRINTED DIPOLE ANTENNAS WITH PARASITIC ELEMENT

Design of UWB Monopole Antenna for Oil Pipeline Imaging

High Power Over-Mode 90 Bent Waveguides for Circular TM 01 and Coaxial TEM Mode Transmission

A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array

High Power 12-Element Triangular-Grid Rectangular Radial Line Helical Array Antenna

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Progress In Electromagnetics Research Letters, Vol. 15, 89 98, 2010

A STUDY OF AM AND FM SIGNAL RECEPTION OF TIME MODULATED LINEAR ANTENNA ARRAYS

Ultra-Wideband Antenna Using Inverted L Shaped Slots for WLAN Rejection Characteristics

Compact Elliptically Tapered Slot Antenna with Nonuniform Corrugations for Ultra-wideband Applications

Design of Broadband Transition Structure from Microstrip to Slotline with Band Notched Characteristic

Adaptive Digital Beam Forming using LMS Algorithm

Novel Dual-Polarized Spiral Antenna

Application of Artificial Neural Networks System for Synthesis of Phased Cylindrical Arc Antenna Arrays

Some Notes on Beamforming.

Terahertz Wave Spectroscopy and Analysis Platform. Full Coverage of Applications From R&D to Industrial Testing

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Final Report for AOARD Grant FA Indoor Localization and Positioning through Signal of Opportunities. Date: 14 th June 2013

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

A COMPACT CPW-FED UWB SLOT ANTENNA WITH CROSS TUNING STUB

PROPAGATION OF UWB SIGNAL OVER CONVEX SURFACE MEASUREMENTS AND SIMULATIONS

Broadband array antennas using a self-complementary antenna array and dielectric slabs

DESIGN OF LEAKY WAVE ANTENNA WITH COM- POSITE RIGHT-/LEFT-HANDED TRANSMISSION LINE STRUCTURE FOR CIRCULAR POLARIZATION RADIA- TION

Linear Antenna SLL Reduction using FFT and Cordic Method

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

Research Article A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Instruction manual and data sheet ipca h

M. Shabani * and M. Akbari Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., P. O. Box , Tehran, Iran

SHORT-RANGE UWB WIRELESS LINK IN WPAN SCENARIOS. CNRS 6164, Université de Rennes 1, Rennes Cedex, France

C1587 UNIVERSAL STREAK CAMERA Selectable features to suit a variety of applications from the vacuum ultraviolet through the near infrared.

AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS

Implementation of Polarization Diversity for MIMO Application

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

Design of Vibration Sensor Based on Fiber Bragg Grating

PULSE PRESERVING CAPABILITIES OF PRINTED CIRCULAR DISK MONOPOLE ANTENNAS WITH DIFFERENT SUBSTRATES

Design of Terahertz Waveband Antenna Based on Fractal Photonic Crystal Structure

A New Dual Band E-shaped Slot Antenna Design for Wireless Applications

RECTANGULAR SLOT ANTENNA WITH PATCH STUB FOR ULTRA WIDEBAND APPLICATIONS AND PHASED ARRAY SYSTEMS

Laser Beam Analysis Using Image Processing

Time-Domain Modeling of Group-Delay Characteristics of Ultra-Wideband Printed-Circuit Antennas

A Broadband Reflectarray Using Phoenix Unit Cell

Compact UWB antenna with dual band-notches for WLAN and WiMAX applications

Researches on Far-Field Super-Resolution Imaging Based on Time-Reversed Electromagnetics at UESTC

A Method to Reduce the Back Radiation of the Folded PIFA Antenna with Finite Ground

MULTI-KILOVOLT SOLID-STATE PICOSECOND SWITCH STUDIES *

HIGH GAIN GaAs PHOTOCONDUCTIVE SEMICONDUCTOR SWITCHES: SWITCH LONGEVITY. Xerox Palo Alto Research Center Albuquerque, NM 87110

Adaptive Antennas. Randy L. Haupt

A NOVEL COMPACT ARCHIMEDEAN SPIRAL ANTENNA WITH GAP-LOADING

Microwave Metamaterial Antennas and Other Applications

Testing with Femtosecond Pulses

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Intra-Vehicle UWB MIMO Channel Capacity

Application Note AN-10 Copyright December, 2000

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND

FPGA-BASED CONTROL SYSTEM OF AN ULTRASONIC PHASED ARRAY

Design of the New Wideband Circular Dipole Antenna Bin Lin 1, Xian Chen 1, a, Hongjian Lin 1, Jiawei Zheng 1, Zijian Chen 1, Zijian Lin 1

Single frequency MOPA system with near diffraction limited beam

Proximity fed Gap Coupled Array Antenna with DGS Backed with Periodic Metallic Strips

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS

Research on Optical Fiber Flow Test Method With Non-Intrusion

PLANE-WAVE SYNTHESIS FOR COMPACT ANTENNA TEST RANGE BY FEED SCANNING

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

A BROADBAND BICONICAL ANTENNA FOR WIDE ANGLE RECEPTION

Photonic Integrated Beamformer for Broadband Radio Astronomy

DESIGN AND ANALYSIS OF RECTANGULAR MICROSTRIP PATCH ANTENNA USING METAMATERIAL FOR BETTER EFFICIENCY

Multi Slot Uwb Antennas to Minimize the Interferences from Wlan & X-Band Applications

PoS(PhotoDet 2012)051

Transcription:

Progress In Electromagnetics Research Letters, Vol. 8, 19 24, 2009 HIGH POWER ELECTROMAGNETIC TRANSIENT PULSE IN-PHASE SYNTHESIS G.-Y. Liu, L.-H. Zhang, and H.-C. Yang Institute of Applied Physics University of Electronic Science and Technology of China Chengdu 610054, China Abstract PCSS low jitter trigger can reach 65 ps in the condition of high bias electric under the non-liner mode [1 5]; high power transient pulse can be gained by virtue of it. The high power transient pulse in-phase characteristic and other tenets are verified by testing axial electric field strength and axial energy density, which is energy per area at the antenna main radiation direction. In the experiment, axial electric field strength and energy density of antenna array measured in different conditions indicate that axial electric field strength is proportional to the number of antenna elements and the energy density is proportional to the square of the number of radiation units, which means the transient electromagnetic pulses could synthesize in phase perfectly. 1. INTRODUCTION Around 1990, a series of laws about transient electromagnetic pulse transmission have been established, such as transient electromagnetic pulse slow decay theory, the array antenna beam focus theory, high efficient transmission theory, beam scanning theory and etc. [6]. There are two views about transient electromagnetic pulse: times and frequency domain. From the point of frequency domain, due to different phase velocities, it is difficult to achieve a rich spectrum of electromagnetic pulse in-phase synthesis in a given point on the axis. On the other hand, from the point of time-domain, the array of transient electromagnetic pulse is able to reach the observation point on the axis as long as distance and feed time to the antenna, which depends on the wave path difference are strictly controled. If Corresponding author: G.-Y. Liu (xuebingchan1116@yahoo.com.cn).

20 Liu, Zhang, and Yang the distance from array to observation points is far longer than the wave path difference, it will be able to achieve precise synchronization for series of time domain electromagnetic wave beam, and thus achieve transient electromagnetic pulses fields in-phase synthesis in the space. laser even device Fiber splitter Receiving Antenna 220v AC synchronous controller High-voltage pulse power antenna array PCSS and Attenuator Oscilloscope Figure 1. Experiment system. 2. EXPERIMENT DESIGN AND VERIFICATION The experiment picture is shown in Figure 1, which includes electricity feed system, optical feed systems, synchronous controller system, radiation and reception system. Electricity feed system is constituted by the 220 v AC power and compact high voltage pulse powers, which dimension is 124 mm 80 mm 45 mm; weight is 350 g. Its designment is based on the flyback transformer design method. While the optical feed system is composed by YAG laser, even device, fiber splitter, fibers shown in Figure 2 are arranged as hexagon. The feed time delay of electricity and optic is controlled by the synchronous controller, which makes the optical pulse in time incent PCSS when electric pulse reaches peak. The radiation system is made up of an antenna array of m m R 1 R=2(n-1/2)r Figure 2. Fibers arranged as hexagon.

Progress In Electromagnetics Research Letters, Vol. 8, 2009 21 Figure 3. Antenna array. Figure 4. Transient electromagnetic pulse at the distance of 100 m. units. The reception system is composed by an Vivaldi antenna. The way of radiation antenna array arrangement can be seen fin Figure 3 [7 9]. The electromagnetic beam signals from array of UWB antenna is received by reception system. Experiment procedures are as follows: synchronous controller sends a TTL level to the picosecond laser and ps laser sends it to panel controlled by pulsed power; just on pulse forming [10, 11], 271 beams laser through even device arrive to feed PCSS which are on antennas. Then the transient electromagnetic pulses generated by PCSS are radiated by antennas. In [12], we know that the calculation of antenna array radiation energy is similar to that of light grating intensity. In the paper, it analogizes with interference and diffraction theory, educes the calculation formula, which is in accordance well with the numerical results gained from the electromagnetic field theory. The antenna is placed as shown in Fig. 5. As shown in Fig. 5, h is antenna dimension, R0, R1, R2 is the distance from relevant reantenna to observation point respectively. From [12], we can conclude that in the experiment, despite generating electric pulse by PCSS has a jitter at non-linear model, the amplitude and timing jitter can be negligible to large array. Transient electromagnetic pulse arrays can achieve perfect synthesis. In order to improve voltage conversion efficiency, blumlein circuit has been introduced into the circuit [13]. In theory, PCSS conversion efficiency can reach 100%. First of all, we fix observation point on antenna axis 100 meters away from the array, change antenna array element number, and then measure the electric field strength of array at the point. Figure 6(a) is the experimental result. As can be seen from the chart, electric field strength is proportional to the

22 Liu, Zhang, and Yang Figure 5. Line element array at yz plane. Uout/V 80 70 60 50 40 30 20 10 experimental theoretical 0 0 50 100 150 200 250 300 N (a) G/G0 10 1 0.1 0.01 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 10 100 1000 D/m (b) 9 arrays 4 arrays Figure 6. Axis field component synthesis of different number subarrays. (a) Axis field component at distance of 100 m, (b) 4, 9 subarray axis energy at the same condition. number of array elements within the experiment error. Secondly, we fix the number of array element and measure axial energy density of the points. From Figure 6(b) we can see the curves of 4 sub-array and 9 sub-array basicly parallel, which indicates that the transient electromagnetic pulse synthesizes in phase perfectly.

Progress In Electromagnetics Research Letters, Vol. 8, 2009 23 3. CONCLUSIONS Fiber splitter can feed 271 PCSS simultaneously, which solves the problem in optic synchronization. PCSS arrays with small trigger jitter can output high power ns width pulse in the condition of high bias voltage in the non-linear mode. The transient electromagnetic pulse in-phase synthesis feature and other tenets are verified by array axial transmission energy of 271 units ultra-wideband antenna. Transient electromagnetic pulse has very bright prospects in future [14]. The experiment provides direct experimental foundation. ACKNOWLEDGMENT This work was supported in part by the State Key Laboratory Funds of China and Defense Innovation and Technology Fund of China. REFERENCES 1. Yang, H.-C. and C.-L. Ruan, Study of linear GaAs saturation parameters, Chinese Science Bulletin, Vol. 13, No. 53, 2008. 2. Kelkar, K. S., N. E. Islam, and C. M. Fessler, Silicon carbide photoconductive switch for high-power, linear-mode operations through sub-band-gap triggering, Journal of Applied Physics, Vol. 98, No. 9, 3102 3106, 2005. 3. Ma, K., R. Uratra, D. A. B. Miller, et al., Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches, IEEE Journal of Quantum Electronics, Vol. 40, No. 6, 800 804, 2004. 4. Mar, A., G. M. Louberiel, F. J. Zutarvern, et al., Fireset applications of improved longevity optically activated GaAs photoconductive semiconductor switches, IEEE Pulsed Power Plasma Science, Vol. 1, 166 169, 2002. 5. Louberiel, G. M., J. F. Aurand, G. J. Dension, et al., Opticallyactivated GaAs switches for ground penetrating radar and firing set applications, IEEE Pulsed Power Conference, Vol. 2, 673 676, 1999. 6. Agostino, F., C. Gennarelli, G. Riccio, and C. Savarese, Theoretical foundations of near-field-far-field transformations with spiral scannings, Progress In Electromagnetics Research, PIER 61, 193 214, 2006. 7. Choi, W., J. M. Kim, J. H. Bee, and C. Pyo, High gain and broadband microstrip array antenna using combined structure of

24 Liu, Zhang, and Yang corporate and series feeding, IEEE Antennas and Propagation Society International Symposium, Vol. 3, 2484 2487, 2004. 8. Mouhamadou, M., P. Armand, P. Vaudon, and M. Rammal, Interference supression of the linear antenna arrays controlled by phase with use of sqp algorithm, Progress In Electromagnetics Research, PIER 59, 251 265, 2006. 9. Mouhamadou, M., P. Vaudon, and M. Rammal, Null steering and multi-user beamforming by phase control, Progress In Electromagnetics Research, PIER 60, 95 106, 2006. 10. Mukerji, S. K., G. K. Singh, S. K. Goel, and S. Manuja, A theoretical study of electromagnetic transients in a large conducting plate due to current impact excitation, Progress In Electromagnetics Research, PIER 76, 15 29, 2007. 11. Mukerji, S. K. and G. K. Singh, A theoretical study of electromagnetic transients in a large plate due to voltage impact excitation, Progress In Electromagnetics Research, PIER 78, 377 392, 2008. 12. Yang, H. C. and L. C. Ruan, Line element antenna array beamscanning study, Electronics and Information Technology, Vol. 25, No. 3, 427 732, 2003. 13. Schoenberg, J. S. H., J. W. Burger, and J. S. Tyo, Ultra-wideband source using gallium arsenide photoconductive semiconductor switches, Transactions on Plasma Science, Vol. 25, No. 2, 327 334, Apr. 1997. 14. Buttram, M., Some future directions for repetitive pulsed power, IEEE Transactionson Electron Devices, Vol. 30, No. 1, 262 266, Feb. 2002.