Power Analysis Application Module DPO4PWR MDO3PWR Datasheet

Similar documents
Power Measurement and Analysis Software

Advanced Power Measurement and Analysis 5 Series MSO Option 5-PWR Datasheet

Passive High Voltage Probes P5100A-TPP0850-P5122-P5150-P6015A Datasheet

Automated Frequency Response Measurement with AFG31000, MDO3000 and TekBench Instrument Control Software APPLICATION NOTE

Sophisticated Power Loss Analysis Using A Digital Phosphor Oscilloscope

Simplifying DC-DC Converter Characterization using a 2600B System SourceMeter SMU Instrument and MSO/DPO5000 or DPO7000 Series Scope APPLICATION NOTE

20X Low Capacitance Probe P6158 Datasheet

30 A AC/DC Current Probe TCP0030A Datasheet

1.5 GHz Active Probe TAP1500 Datasheet

High-voltage Differential Probes TMDP THDP THDP P5200A - P5202A - P5205A - P5210A

io n Data Sheet or The P5205 is a 100 MHz Active Differential Probe capable of measuring fast rise times of signals in floating circuits. This 1,300 V

High-voltage Differential Probes

AC/DC Current Probe TCP0150 Datasheet

Performing Safe Operating Area Analysis on MOSFETs and Other Switching Devices with an Oscilloscope APPLICATION NOTE

TekConnect Adapters TCA75 TCA-BNC TCA-SMA TCA-N TCA-292MM TCA292D Datasheet

Active Power Factor Correction Verification Measurements with an Oscilloscope APPLICATION NOTE

AC Current Probes CT1 CT2 CT6 Data Sheet

Passive Voltage Probes

AC/DC Current Measurement Systems TCPA300, TCP312A, TCP305A, TCP303, TCPA400, TCP404XL Datasheet

Verifying Power Supply Sequencing with an 8-Channel Oscilloscope APPLICATION NOTE

Simplifying FET Testing with 2600B System SourceMeter SMU Instruments APPLICATION NOTE

Measuring Power Supply Switching Loss with an Oscilloscope

100GBASE-KR4/CR4 & CAUI-4 Compliance and Characterization Solution

Differential Probes P6248 P6247 P6246 Datasheet

Measuring Vgs on Wide Bandgap Semiconductors APPLICATION NOTE

PatternPro Error Detector PED3200 and PED4000 Series Datasheet

AC/DC Current Measurement Systems TCPA300, TCP312A, TCP305A, TCP303, TCPA400, TCP404XL Datasheet

Ethernet Transmitter Test Application Software TekExpress 10GBASE-T and NBASE-T Datasheet

Soldering a P7500 to a Nexus DDR Component Interposer

12.5 Gb/s Driver Amplifier LABware Module PSPL8001 Datasheet

10 GHz Linear Amplifier PSPL5866 Datasheet

100GBASE-KR4, 100GBASE-CR4, & CAUI-4 Compliance and Characterization Solution for Real Time Scopes

Stress Calibration for Jitter >1UI A Practical Method

KickStart Instrument Control Software Datasheet

12.5 Gb/s PatternPro Programmable Pattern Generator PPG1251 Series Datasheet

Programmable Pulse Generators PSPL10050A, PSPL10060A, PSPL10070A Datasheet

Fundamentals of AC Power Measurements

12.5 Gb/s PatternPro Programmable Pattern Generator PPG1251 Series Datasheet

Using the Model 4225-RPM Remote Amplifier/ Switch to Automate Switching Between DC I-V, C-V, and Pulsed I-V Measurements APPLICATION NOTE

TriMode Probe Family P7700 Series TriMode Probes

Measuring Wireless Power Charging Systems for Portable Electronics

Low Capacitance Probes Minimize Impact on Circuit Operation

High-impedance Buffer Amplifier System

LE160 LE320 Linear Equalizer Datasheet Tektronix Linear Equalizer

Measurement Statistics, Histograms and Trend Plot Analysis Modes

P7600 Series TriMode Probes

P7500 Series Probes Tip Selection, Rework and Soldering Guide

Isolation Addresses Common Sources of Differential Measurement Error

Visual Triggering. Technical Brief

AC/DC Current Measurement Systems

12.5 Gb/s Driver Amplifier PSPL5865 Datasheet

Tektronix Logic Analyzer Probes P6800/P6900 Series Datasheet

Be Sure to Capture the Complete Picture

Replicating Real World Signals with an Arbitrary/Function Generator

Time and Frequency Measurements for Oscillator Manufacturers

DPO7OE1 33 GHz Optical Probe

SOURCE MEASURE UNITS. Make Multiple Measurements Accurately Using a Single Instrument All While Saving Space, Time and Money

Programmable Pulse/Pattern Generator PSPL1P601 and PSPL1P602 Datasheet

Debugging SENT Automotive Buses with an Oscilloscope APPLICATION NOTE

Characterize Phase-Locked Loop Systems Using Real Time Oscilloscopes

16 Gb/s, 30 Gb/s, and 32 Gb/s PatternPro Pattern Generator PPG1600, PPG3000, and PPG3200 Series Datasheet Notice to EU customers

Power Supply Measurement and Analysis with the MSO/DPO Series Oscilloscopes

30 Gb/s and 32 Gb/s Programmable Pattern Generator PPG Series Datasheet

Using the Ramp Rate Method for Making Quasistatic C-V Measurements with the 4200A-SCS Parameter Analyzer APPLICATION NOTE

16 Gb/s, 30 Gb/s Gb/s, and 32 Gb/s Programmable PatternPro Pattern Generator PPG PPG1600, PPG3000, and PPG3200 Series Datasheet Key features

Programmable DC Electronic Loads. Series Programmable DC Electronic Loads. Programmable DC electronic loads DC POWER SUPPLIES

Keysight Technologies DSOX3PWR/DSOX4PWR/DSOX6PWR Power Measurement Options

10GBASE-KR/KR4 Compliance and Debug Solution

16 Gb/s, 30 Gb/s, and 32 Gb/s PatternPro Pattern Generator PPG1600, PPG3000, and PPG3200 Series Datasheet Key features

Agilent U1881A and U1882A Power Measurement Application for Agilent InfiniiVision and Infiniium Oscilloscopes

Advanced Test Equipment Rentals ATEC (2832)

U1881A and U1882A Power Measurement Application for InfiniiVision and Infiniium Oscilloscopes

Keysight U1882B Measurement Application for Infiniium Oscilloscopes. Data Sheet

U1881A and U1882A Power Measurement Application for InfiniiVision and Infiniium Oscilloscopes

S540 Power Semiconductor Test System Datasheet

TriMode Probe Family. P7500 Series Data Sheet. Features & Benefits. Applications

Switching Between C-V and I-V Measurements Using the 4200A-CVIV Multi-Switch and 4200A-SCS Parameter Analyzer APPLICATION NOTE

AC/DC Current Measurement Systems

Using the 4200A-CVIV Multi-Switch to Make High Voltage and High Current C-V Measurements APPLICATION NOTE

Passive High Voltage Probes P5100 P5102 P5120 P6015A

46 GBaud Multi-Format Optical Transmitter OM5110 Datasheet

In-circuit Measurements of Inductors and Transformers in Switch Mode Power Supplies APPLICATION NOTE

Z-Active Differential Probe Family P7313 P7380A P7360A P7340A Datasheet

PA1000 Single Phase AC/DC Power Analyzer Datasheet

Don t Let EMI/EMC Compliance Certification Slow You Down TUTORIAL

Arbitrary Function Generator AFG1022 Datasheet

TriMode Probe Family. P7500 Series Datasheet. Features & Benefits. Applications

S540 Power Semiconductor Test System Datasheet

Arbitrary/Function Generator AFG1000 Series Datasheet

Performing Cyclic Voltammetry Measurements Using Model 2450-EC or 2460-EC Electrochemistry Lab System

Arbitrary Function Generator AFG1000 Series Datasheet

Power Analyzer PA4000 Datasheet

Trouble-shooting Radio Links in Unlicensed Frequency Bands TUTORIAL

Choosing an Oscilloscope for Coherent Optical Modulation Analysis

Testing with Versatile Pulse Generation Solutions

Automotive EMI/EMC Pre-compliance Tests

Advanced Statistical Analysis Using Waveform Database Acquisition

Tire Pressure Monitoring Systems and Remote/Passive Keyless Entry

Basics of Using the NetTek YBA250

Evaluating and Optimizing Radio Frequency Identification (RFID) Systems Using Real-Time Spectrum Analysis

Transcription:

Power Analysis Application Module DPO4PWR MDO3PWR Datasheet Applications Power loss measurement at switching device Characterization of power semiconductor devices Optimal drive characterization of synchronous rectifiers Measurement and analysis of ripple and noise Precompliance testing to IEC standard EN61000 3-2 Class A, MIL Standard 1399 Section 300A, and up to 400 harmonics Debugging active power factor correction circuits Additional power analysis solutions are available. Please go to www.tek.com/power for more solutions. With a Power Analysis Application Module installed on an oscilloscope, an embedded designer who rarely deals with power measurements can quickly get the same accurate, repeatable results as a power supply expert. Key performance specifications Power Loss measurements at the switching device for improving switching power supply efficiency Automated Ripple measurement setup eliminates manual processes Automated THD, True Power, Apparent Power, Power Factor, and Crest Factor features eliminate tedious manual calculations Key features Customizable safe operating area mask testing with linear and log scale for reliability testing Precompliance testing to the EN61000-3-2 Class A and MIL Standard 1399 Section 300A Standards reduces compliance test time and risk Modulation analysis quickly provides accurate active power factor characterization Deskew wizard ensures accurate, time-correlated results Correct scale factor and unit display while using third-party current probes eliminates manual calculations and human error DPO4PWR MDO3PWR With the DPO4PWR Power Analysis Application Module installed on an MDO4000 Series oscilloscope, or an MDO3PWR Power Analysis Application Module installed on an MDO3000 Series oscilloscope, an embedded designer who rarely deals with power measurements can quickly get the same accurate, repeatable results as a power supply expert. A Power Analysis Application Module with an oscilloscope and differential voltage and current probes form a complete measurement system for power supply design and test. The Power Analysis application provides a number of specific measurements to characterize power supplies: Switching Component Analysis, Input Analysis, and Output Analysis. Switching component analysis The accurate calculation and evaluation of energy loss in power supplies has become even more critical with the drive to higher power conversion efficiency and greater reliability. www.tek.com 1

Datasheet Switching loss measurements Although almost all components of a power supply contribute to energy losses, the majority of energy losses in a switch-mode power supply (SMPS) occur when the switching transistor transitions from an OFF to an ON state (turn-on loss) and vice versa (turn-off loss). By measuring the voltage drop across the switching device and the current flowing through the switching device, the Power Analysis application measures the switching losses as shown in the following figure. Input analysis Power quality measurements and current harmonics are two common sets of measurements made on the input section of a power supply to analyze the effects of the power supply on the power line. Power quality Power quality refers to a power supply's ability to function properly with the electric power that is supplied to it. These measurements help to understand the effects of distortions caused by nonlinear loads, including the power supply itself. The measurements include RMS voltage and current, true and apparent power, crest factor, line frequency, and power factor, as shown in the following figure. Switching loss measurements Safe operating area The Safe Operating Area (SOA) plot is a graphical technique for evaluating a switching device to ensure that it is not being stressed beyond its maximum specifications. SOA testing can be used to validate performance over a range of operating conditions, including load variations, temperature changes, and variations in input voltages. Limit testing can also be used with SOA plots to automate the validation. An example of an SOA plot is shown in the following figure. Power quality measurements Safe operating area (SOA) display 2 www.tek.com

Power Analysis Application Module -- DPO4PWR MDO3PWR Current harmonics Because a switching power supply presents a nonlinear load to the power line, the input voltage and current waveforms are not identical. Current is drawn for some portion of the input cycle, causing the generation of harmonics on the input current waveform. Excessive harmonic energy can affect the operation of other equipment connected to the power line, as well as increase the cost of delivering the electric power. Therefore, power supply designers can use the current harmonics measurements to assure precompliance of their designs to industry standards (such as IEC61000-3-2 Class A and MIL Standard 1399 Section 300A) before investing in the official compliance testing. An example of the current harmonics graph display is shown in the following figure. The output line ripple is usually twice the line frequency; whereas the switching ripple is typically coupled with noise and in the khz frequency range. The Power Analysis application greatly simplifies the separation of line ripple from switching ripple. Output ripple measurements Current harmonics measurements Modulation analysis Modulation is important in a feedback system to control the loop. However, too much modulation can cause the loop to become unstable. The Power Analysis application calculates and shows the trend in the on-time and offtime information of a modulated signal controlling the output control loop on a power supply, as shown in the following figure. Output analysis The ultimate goal of a DC-output power supply is to transform input power into one or more DC-output voltages. Especially for switching power supplies, the output measurements are essential. These measurements include line ripple, switching ripple, and modulation analysis. Line and switching ripple The quality of a power supply's DC output should be clean with minimal noise and ripple. Line ripple measures the amount of AC-output signal related to the input line frequency. Switching ripple measures the amount of AC signal related to the switching frequency. Modulation analysis on a MOSFET s gate drive during power-up The modulation analysis could also be used to measure the response of the power supply s control loop to change in input voltage ( line regulation ) or change in load ( load regulation ). www.tek.com 3

Datasheet Specifications All specifications apply to all models unless noted otherwise. Instrument compatibility Recommended Oscilloscopes DPO4PWR MDO3PWR DPO3PWR All models of MDO/MSO/DPO4000 Series All models of MDO3000 Series All models of MSO/DPO3000 Series Measurements Power quality measurements Switching loss measurements Power loss Energy loss Harmonics Ripple measurements Modulation analysis Safe operating area dv/dt and di/dt measurements V RMS, V Crest Factor, Frequency, I RMS, I Crest Factor, True Power, Apparent Power, Reactive Power, Power Factor, Phase Angle T On, T Off, Conduction, Total T On, T Off, Conduction, Total THD-F, THD-R, RMS measurements up to 400 harmonics Graphical and table displays of harmonics Test to IEC61000-3-2 Class A and MIL-STD-1399 Section 300 A V Ripple and I Ripple Graphical display of +Pulse Width, Pulse Width, Period, Frequency, +Duty Cycle, and Duty Cycle modulation types Graphical display and mask testing of switching device safe operating area measurements Cursor measurements of slew rate 4 www.tek.com

Power Analysis Application Module -- DPO4PWR MDO3PWR Deskew Recommended deskew values automatically calculated based on propagation delay. Deskews can be set to recommended values or adjusted manually. Tektronix Deskew Pulse Generator and Deskew fixture TekVPI and TekProbe II Built-in probe model list Other Nominal propagation delay value automatically loaded Nominal propagation delay value provided when probe is selected Propagation delay can be manually entered Ordering information DPO4PWR MDO3PWR Power Analysis Application modules MDO4000 Series MDO3000 Series DPO4PWR MDO3PWR Recommended accessories 067-1686-xx TEK-DPG Deskew fixture Deskew pulse generator Tektronix oscilloscopes and probes supported For a complete listing of compatible probes for each oscilloscope, please refer to www.tek.com/probes for specific information on the recommended models of probes and any necessary probe adapters. Additional information Additional information about power analysis is available at www.tek.com/power. www.tek.com 5

Datasheet ASEAN / Australasia (65) 6356 3900 Austria 00800 2255 4835* Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium 00800 2255 4835* Brazil +55 (11) 3759 7627 Canada 1 800 833 9200 Central East Europe and the Baltics +41 52 675 3777 Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401 Finland +41 52 675 3777 France 00800 2255 4835* Germany 00800 2255 4835* Hong Kong 400 820 5835 India 000 800 650 1835 Italy 00800 2255 4835* Japan 81 (3) 6714 3010 Luxembourg +41 52 675 3777 Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 Middle East, Asia, and North Africa +41 52 675 3777 The Netherlands 00800 2255 4835* Norway 800 16098 People's Republic of China 400 820 5835 Poland +41 52 675 3777 Portugal 80 08 12370 Republic of Korea +822 6917 5084, 822 6917 5080 Russia & CIS +7 (495) 6647564 South Africa +41 52 675 3777 Spain 00800 2255 4835* Sweden 00800 2255 4835* Switzerland 00800 2255 4835* Taiwan 886 (2) 2656 6688 United Kingdom & Ireland 00800 2255 4835* USA 1 800 833 9200 * European toll-free number. If not accessible, call: +41 52 675 3777 For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tek.com. Copyright Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies. 28 Apr 2016 61W-26736-4 www.tek.com