FFT Spectrum Analyzer

Similar documents
FFT Spectrum Analyzers

FFT Spectrum Analyzers

Photon Counters SR430 5 ns multichannel scaler/averager

Advanced Test Equipment Rentals ATEC (2832) FFT Spectrum Analyzers SR khz, 2-channel dynamic signal analyzer

Synthesized Function Generators DS MHz function and arbitrary waveform generator

SIGNAL RECOVERY. Model 7265 DSP Lock-in Amplifier

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators

Arbitrary/Function Waveform Generators 4075B Series

Analog Arts SF900 SF650 SF610 Product Specifications

RF Signal Generators. SG380 Series DC to 2 GHz, 4 GHz and 6 GHz analog signal generators. SG380 Series RF Signal Generators

Analog Arts SF990 SF880 SF830 Product Specifications

Keysight Technologies N9320B RF Spectrum Analyzer

Model 865 RF / Ultra Low Noise Microwave Signal Generator

Agilent N9320B RF Spectrum Analyzer

Models 296 and 295 combine sophisticated

khz to 2.9 GHz Spectrum Analyzer

Spectrum Analyzers. 2394A 1 khz to 13.2 GHz Spectrum Analyzer.

Analog Arts SL987 SL957 SL937 SL917 Product Specifications [1]

ArbStudio Arbitrary Waveform Generators

ArbStudio Arbitrary Waveform Generators. Powerful, Versatile Waveform Creation

Analog Arts SG985 SG884 SG834 SG814 Product Specifications [1]

Real-Time FFT Analyser - Functional Specification

Specification RIGOL. 6 Specification

Model SR780 Network Signal Analyzer

MODELS WW5061/2. 50MS/s Single/Dual Channel Arbitrary Waveform Generators

Advanced Test Equipment Rentals ATEC (2832)

Panasonic, 2 Channel FFT Analyzer VS-3321A. DC to 200kHz,512K word memory,and 2sets of FDD

RIGOL Data Sheet. DG3000 Series Function/Arbitrary Waveform Generator DG3121A, DG3101A, DG3061A. Product Overview. Easy to Use Design.

DG5000 Series Specifications

Chapter 5 Specifications

AWG-GS bit 2.5GS/s Arbitrary Waveform Generator

DSA800. No.1 RIGOL TECHNOLOGIES, INC.

Dual Channel Function/Arbitrary Waveform Generators 4050B Series

Model 745 Series. Berkeley Nucleonics Test, Measurement and Nuclear Instrumentation since Model 845-HP Datasheet BNC

Spectrum Analyzer R&S FS300

SC5307A/SC5308A 100 khz to 6 GHz RF Downconverter. Datasheet SignalCore, Inc.

Model 7000 Series Phase Noise Test System

DG5000 series Waveform Generators

Model MHz Arbitrary Waveform Generator Specifications

SC5407A/SC5408A 100 khz to 6 GHz RF Upconverter. Datasheet. Rev SignalCore, Inc.

Moku:Lab. Specifications INSTRUMENTS. Moku:Lab, rev

APPH6040B / APPH20G-B Specification V2.0

TS9050/60. microgen. electronics TM FM Modulation and Spectrum Analyser

DSA700 Series Spectrum Analyzer

Data Sheet SC5317 & SC5318A. 6 GHz to 26.5 GHz RF Downconverter SignalCore, Inc. All Rights Reserved

Analog Arts AG900 AG885 AG875 AG815 Product Specifications

Vector Signal Generators

WaveStation Function/Arbitrary Waveform Generators

2.9GHz SPECTRUM ANALYZER

2400C Series Microwave Signal Generators 10 MHz to 40 GHz. Preliminary Technical Datasheet. Low Phase Noise and Fast-Switching Speed in a Single Unit

Dual Channel Function/Arbitrary Waveform Generators 4050 Series

Model 7270 DSP Lock-in Amplifier

LeCroy 9304A, 9304AM Digital Oscilloscopes 200 MHz Bandwidth, 100 MS/s. Main Features

Spectrum Analyzers 2680 Series Features & benefits

2026Q CDMA/GSM Interferer MultiSource Generator

Model 865-M Wideband Synthesizer

Dual Channel Function/Arbitrary Waveform Generators 4050 Series

SC5306B 1 MHz to 3.9 GHz RF Downconverter Core Module. Datasheet SignalCore, Inc.

RIGOL Data Sheet. DG2000 Series Function/Arbitrary Waveform Generator DG2041A, DG2021A. Product Overview. Main Features.

SPECTRUM ANALYZERS. MS710C/D/E/F 10 khz to 23 GHz (18 to 140 GHz) GPIB SPECTRUM ANALYZER

Rigol DG1022A Function / Arbitrary Waveform Generator

WaveStation Function/Arbitrary Waveform Generators

TEST & MEASURING INSTRUMENTS. Analyzer. (4 Ports) 4 Ports

WaveStation Function/Arbitrary Waveform Generators

EUROPE S LARGEST SELECTION OF TEST & MEASUREMENT EQUIPMENT FOR HIRE INLEC.COM. Nationwide Low Call

Agilent ENA Series 2, 3 and 4 Port RF Network Analyzers E5070A 300 khz to 3 GHz E5071A 300 khz to 8.5 GHz E5091A Multiport Test Set.

Vector Signal Generators

DSA800 RIGOL TECHNOLOGIES, INC.

DSA800. No.2 RIGOL TECHNOLOGIES, INC. All-Digital IF Technology 9 khz GHz Frequency Range

NI PXI-4461 Specifications

Agilent Technologies 3000 Series Oscilloscopes

RADIO COMMUNICATIONS TEST INSTRUMENTS

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers

SIGNAL GENERATORS. MG3633A 10 khz to 2700 MHz SYNTHESIZED SIGNAL GENERATOR GPIB

Arbitrary/Function Generators AFG3000C Series Datasheet

Unprecedented wealth of signals for virtually any requirement

Agilent 83711B and 83712B Synthesized CW Generators

TG1010A AIM & THURLBY THANDAR INSTRUMENTS. 10MHz programmable DDS function generator. Direct Digital Synthesis

Impedance 50 (75 connectors via adapters)

RIGOL Data Sheet. DG1000 Series Dual-Channel Function/Arbitrary Waveform Generator. Product Overview. Main Features. Applications. Easy to Use Design

Model 845-M Low Noise Synthesizer

Model 865-M Wideband Synthesizer

FREQUENCY SYNTHESIZERS, SIGNAL GENERATORS

Agilent ESA-L Series Spectrum Analyzers

MG3740A Analog Signal Generator. 100 khz to 2.7 GHz 100 khz to 4.0 GHz 100 khz to 6.0 GHz

CLIO Pocket is Audiomatica's new Electro-Acoustical Multi-Platform Personal measurement system.

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Advanced Test Equipment Rentals ATEC (2832)

HMC-T2240. Synthesized Signal Generator, 10 MHz to 40 GHz

Model 745 Series. Berkeley Nucleonics Test, Measurement and Nuclear Instrumentation since Model 845-M Specification 1.8 BNC

HMC-T2100B. Portable & Battery Operated! OBSOLETE PRODUCT. Portable Synthesized Signal Generator, 10 MHz to 20 GHz

Function/Arbitrary Waveform Generator

Data Sheet. DG1000 series Dual-Channel Function/Arbitrary Waveform Generators. Product Overview. Main Features. Applications. Easy to Use Design

Lab Exercise PN: Phase Noise Measurement - 1 -

Vector Network Analyzers T - Series

Characteristics. Frequency (DG1022) Sine, Square, Ramp, Triangle, Pulse, Noise, Arb. ±50 ppm in 90 days ±100 ppm in 1year 18 C ~ 28 C.

Spectrum Analyzers R3132/3132N/3162 R3132/3132N/3162. Low cost, high performance. General-Purpose Spectrum Analyzer Adaptable to Various Applications

Agilent Technologies 3000 Series Oscilloscopes

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc.

Agilent 8657A/8657B Signal Generators

Transcription:

FFT Spectrum Analyzer SR770 100 khz single-channel FFT spectrum analyzer SR7770 FFT Spectrum Analyzers DC to 100 khz bandwidth 90 db dynamic range Low-distortion source Harmonic, band & sideband analysis 100 khz real-time bandwidth Hardcopy output to printers/plotters GPIB and RS-232 interfaces The SR770 is a single-channel 100 khz FFT spectrum analyzers with a dynamic range of 90 db and a real-time bandwidth of 100 khz. Additionally, it includes a lowdistortion source which allows you to measure the transfer functions of electronic and mechanical systems. The speed and dynamic range of these instruments, coupled with their flexibility and many analysis modes, makes them the ideal choice for a variety of applications including acoustics, vibration, noise measurement, and general electronic use. High Dynamic Range The SR770 has a dynamic range of 90 db. This means that for a full-scale input signal, the instruments have no spurious responses larger than 90 dbc (1 part in 30,000). Even signals as small as 114 dbc (1 part in 500,000) may be observed by using averaging. The low front-end noise and low harmonic distortion of the SR770 allows you to see signals that would be buried in the noise of other analyzers. Powerful Processing SR770... $7500 (U.S. list) The SR770 uses a pair of high-speed, 24-bit digital signal processors (DSPs) to filter, heterodyne and transform sampled data from its 16-bit analog-to-digital converter. This computing capability allows the analyzers to operate at a real-time bandwidth of 100 khz. In other words, the SR770 processes the input signal with no dead time. Your measurements will be done in as little as a tenth of the time of

SR770 FFT Spectrum Analyzer other analyzers, which typically have a real-time bandwidth of about 10 khz. Easy To Use The SR770 is easy to use. The simple, menu-oriented interface logically groups related instrument functions. Context-sensitive help is available for all keys and menus, and entire instrument setups can be saved to disk and recalled with a single keystroke. Octave Measurements The SR770 also compute both the 15 and 30 band 1/3 octave spectra, commonly used in acoustics and noise measurement applications. A-weighting compensation is available for Spectrum Measurements The spectrum, power spectral density, and input time record can be displayed in a variety of convenient linear and logarithmic units including Vp, Vrms, dbvp, dbvrms or user-defined engineering units (EUs). The magnitude, phase, and real and imaginary parts of complex signals can all be Octave analysis octave measurements. Amplitudes are computed for band 2 (630 mhz) through band 49 (80 khz). Synthesized Source Spectrum analysis displayed. Several window functions including Hanning, Flat-Top, Uniform and Blackman-Harris can be chosen to optimize in-band amplitude accuracy or minimize out-of-band side lobes. The SR770 includes a low-distortion ( 80 db), synthesized source which can be used to make frequency response measurements. It generates single frequency sine waves, two-tone signals for intermodulation distortion (IMD) testing, pink and white noise for audio and electronic applications, and frequency chirp for transfer function analysis. This direct digital synthesis (DDS) source provides an output level from 100 µv to 1 V, and delivers up to 50 ma of current. Frequency Response Measurements With its low-distortion DDS source, the SR770 is capable of performing accurate frequency response measurements. The Triggering and Averaging Flexible triggering and averaging modes let you see signals as low as 114 db below full scale. RMS averaging provides an excellent estimate of the true signal and noise levels in the input signal, while vector averaging can be used with a triggered input signal to actually reduce the measured noise level. Both rms and vector averaging can be performed exponentially, where the analyzer computes a running average (weighting new data more heavily than older data), or linearly, where the analyzer computes an equally weighted average of a specified number of records. Triggering can be used to capture transient events or to preserve spectral phase information. Both internal and external triggering are available with adjustable pre-trigger and post-trigger delays. Transfer function (magnitude and phase) Stanford Research Systems phone: (408)744-9040

SR770 FFT Spectrum Analyzer source is synchronized with the instrument s input allowing transfer functions to be measured with 0.05 db precision. The SR770 measures the magnitude and phase response of control systems, amplifiers and electro-mechanical systems, and displays the resulting Bode plot. Limit and Data Tables Sometimes it is important to keep track of a few key portions of a spectrum. Data tables allow up to 200 selected frequencies to be displayed in tabular format. Automated entry makes it easy to set up data tables for harmonic or sideband analysis. analysis lets you easily integrate the power in a selected frequency band. All three analysis modes provide clear, on-screen markers which make it easy to pick out frequencies of special interest, such as harmonics or sidebands. Markers The SR770 has a marker that is designed to be fast, responsive and flexible. The marker can be configured to read the maximum, minimum or mean of a selected width of display, or can be set to tracking mode to lock on to a moving peak. Delta-mode readouts let you easily view frequency or amplitude differences between two peaks. Automated peakfind lets you quickly move between the peaks in a spectrum. And the markers for the upper and lower displays can be linked to display similarities or differences in the two spectra. Math Functions Data taken with the SR770 can be processed with the built-in trace calculator. Basic arithmetic functions such as addition, subtraction, multiplication, division, square roots and logarithms can be performed on traces. Traces can be combined with other on-screen traces, or with traces stored on disks. These calculator functions are quite useful for performing background subtraction or normalization of data. Convenient limit tables allow the entry of up to 100 separate upper or lower limit segments for pass-fail testing. On exceeding a limit, the analyzers can be configured to generate a screen message, an audio alarm, or a GPIB service request. Analysis Modes Limit and data tables Three built-in analysis modes simplify common measurements. Harmonic analysis computes both harmonic power and THD (Total Harmonic Distortion) relative to a specified fundamental. Sideband analysis lets you compute power in a set of sidebands relative to the carrier power. And band Flexible Storage and Output All traces, data tables and limit tables can be stored using the USB drive. Data can be saved in a space-saving binary format, or an easy-to-access ASCII format for off-line analysis. A variety of hardcopy options let you easily print data from the instruments. The screen can be dumped to a dot-matrix printer or a LaserJet compatible laser printer via the standard rearpanel Centronics printer interface. Complete limit and data tables, as well as a summary of the instrument settings, can be printed. Data can be plotted to any HP-GL compatible plotter with an RS-232 or GPIB interface. Easy to Interface All functions of the analyzers can be queried and set via the standard RS-232 and GPIB interfaces. A comprehensive set of commands allows complete control of your analyzer from a computer. Data can be quickly transferred in binary format, or more conveniently in ASCII format. The complete command list is available as a help screen in the instruments for convenient reference while programming. Harmonic distortion

SR770 Specifications Frequency Measurement range 476 µhz to 100 khz Spans 191 mhz to 100 khz in a binary sequence Center frequency Anywhere within the 0 to 100 khz measurement range Accuracy 25 ppm from 20 C to 40 C Span/400 Window functions Blackman-Harris, Hanning, Flat-Top and Uniform Real-time bandwidth 100 khz Signal Input Number of channels 1 Input Single-ended or differential Input impedance 1 MΩ, 15 pf Coupling AC or DC CMRR (at 1 khz) 90 db (input range < 6 dbv) 80 db (input range <14 dbv) 50 db (input range 14 dbv) Noise Typical 5 nvrms/ Hz at 1 khz ( 162 dbvrms/ Hz) Maximum 10 nvrms/ Hz ( 155 dbvrms/ Hz) Amplitude Full-scale input range Dynamic range Harmonic distortion Spurious Input sampling Accuracy Averaging Trigger Input 60 dbv (1.0 mvp) to +34 dbv (50 Vp) in 2 db steps 90 db (typ.) No greater than 80 db from DC to 100 khz (input range 0 dbv) No greater than 85 db below full scale (<200 Hz). No greater than 90 db below full scale (to 100 khz). ( 50 dbv input range) 16-bit A/D at 256 khz ±0.3 db ± 0.02 % of full scale (excluding windowing effects) RMS, Vector and Peak Hold. Linear and exponential averaging up to 64k scans. External TTL Requires TTL level (low <0.7 V, high >2 V) Post-trigger Measurement record is delayed by 1 to 65,000 samples (1/512 to 127 time records) after the trigger. Delay resolution is 1 sample (1/512 of a record). Pre-trigger Measurement record starts up to 51.953 ms prior to the trigger. Delay resolution is 3.9062 ms. Phase indeterminacy <2 Display Functions Display Real, imaginary, magnitude or phase Measurements Spectrum, power spectral density, time record and 1/3 octave Analysis Band, sideband, total harmonic distortion and trace math Graphic expand Display expand up to 50 about any point Harmonic marker Displays up to 400 harmonics Data tables Lists Y values of up to 200 points Limit tables Detects data exceeding up to 100 user-defined upper and lower limit trace segments. Source Amplitude range Amplitude resolution DC offset Output impedance Sine Source Amplitude accuracy Spectral purity Two-Tone Source 0.1 mvp to 1.0 Vp 1 mvp (output >100 mvp), 0.1 mvp (output <100 mvp) <10.0 mv (typ.) <5 Ω, 50 ma peak output current DC to 100 khz 15.26 mhz ±1 % (0.09 db) of setting (Harmonics and sub-harmonics) 80 dbc, f <10 khz 70 dbc, f >10 khz (Spurious) < 100 db full scale Modes Continuous, internal, external, TTL Internal level Adjustable to ±100 % of input scale, positive or negative slope Min. trigger amplitude 10 % of input range External level ±5 V in 40 mv steps, positive or negative slope, 10 kω impedance Min. trigger amplitude 100 mv Amplitude accuracy Spectral purity DC to 100 khz 15.26 mhz ±1 % (0.09 db) of setting (Harmonics and sub-harmonics) 80 dbc (f <10 khz) 70 dbc (f >10 khz) (Spurious) < 100 db full scale Stanford Research Systems phone: (408)744-9040

SR770 Specifications White Noise Source Pink Noise Source Chirp Source Output Phase DC to 100 khz (all spans) <1.0 dbpp (rms averaged spectra) DC to 100 khz (all spans) <4.0 dbpp (using 1/3 oct. analysis) Equal amplitude sine waves at each frequency bin of the current span <0.05 dbpp (typ.) <0.2 dbpp (max.) AutoPhase function calibrates to current phase spectrum. Hardcopy Data storage Power Dimensions Weight Warranty Screen dumps and table and setting listings to dot matrix and LaserJet compatible printers. Data plots to HP-GL compatible plotters (RS-232 or IEEE-488.2). USB drive 60 W, 100/120/220/240 VAC, 50/60 Hz 17" 6.25" 18.5" (WHD) 36 lbs. One year parts and labor on defects in materials and workmanship General Monitor Interfaces Monochrome CRT, 640H by 480V resolution, adjustable brightness and position IEEE-488.2, RS-232 and Printer interfaces standard. An XT keyboard input is provided for additional flexibility. Ordering Information SR770 FFT spectrum analyzer w/source $7500 O760H Carrying handle $100 O760RM Rack mount kit $100 SR770 rear panel