Fuzzy-Logic-Controller-Based Fault Isolation in PWM VSI for Vector Controlled Induction Motor Drives

Similar documents
by a reference vector which rotates at an angular speed of ω.

Analysis of Voltage Source Inverters using Space Vector PWM for Induction Motor Drive

FAULT LEG DETECTION FOR OPEN-CIRCUIT FAULTS IN PWM VOLTAGE-SOURCE INVERTERS OF RENEWABLE ENERGY VIA THE FUZZY LOGIC DIAGNOSTIC METHOD

FUZZY LOGIC BASED DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR

Simulation Analysis of Three Phase & Line to Ground Fault of Induction Motor Using FFT

Synchronous Current Control of Three phase Induction motor by CEMF compensation

OPTIMAL TORQUE RIPPLE CONTROL OF ASYNCHRONOUS DRIVE USING INTELLIGENT CONTROLLERS

A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques A Comparison

FAULT DETECTION AND DIAGNOSIS OF HIGH SPEED SWITCHING DEVICES IN POWER INVERTER

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Investigations of Fuzzy Logic Controller for Sensorless Switched Reluctance Motor Drive

SVM-DTC OF AN INDUCTION MOTOR BASED ON VOLTAGE AND STATOR FLUX ANGLE USING FUZZY LOGIC CONTROLLER

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI)

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Comparison of Different Modulation Strategies Applied to PMSM Drives Under Inverter Fault Conditions

A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive

SPEED CONTROL OF AN INDUCTION MOTOR USING FUZZY LOGIC AND PI CONTROLLER AND COMPARISON OF CONTROLLERS BASED ON SPEED

Resonant Controller to Minimize THD for PWM Inverter

A Fuzzy Sliding Mode Controller for a Field-Oriented Induction Motor Drive

Induction Motor Drive using SPWM Fed Five Level NPC Inverter for Electric Vehicle Application

A Performance Study of PI controller and Fuzzy logic controller in V/f Control of Three Phase Induction Motor Using Space Vector Modulation

Control of PMSM using Neuro-Fuzzy Based SVPWM Technique

II. PROPOSED CLOSED LOOP SPEED CONTROL OF PMSM BLOCK DIAGRAM

A DUAL FUZZY LOGIC CONTROL METHOD FOR DIRECT TORQUE CONTROL OF AN INDUCTION MOTOR

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

Webpage: Volume 3, Issue IV, April 2015 ISSN

DETECTION OF FAULT IN PWM VOLTAGE SOURCE INVERTER FOR PMSM DRIVE SYSTEM

Voltage Control of Variable Speed Induction Generator Using PWM Converter

Performance Enhancement of Sensorless Control of Z-Source Inverter Fed BLDC Motor

International Journal of Advance Engineering and Research Development

ADVANCED DC-DC CONVERTER CONTROLLED SPEED REGULATION OF INDUCTION MOTOR USING PI CONTROLLER

A Novel Fuzzy Control Approach for Modified C- Dump Converter Based BLDC Machine Used In Flywheel Energy Storage System

Design and implementation of Open & Close Loop Speed control of Three Phase Induction Motor Using PI Controller

On-Line Dead-Time Compensation Method Based on Time Delay Control

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

Abstract: PWM Inverters need an internal current feedback loop to maintain desired

Digital Control of Permanent Magnet Synchronous Motor

Open circuit fault detection in PWM voltage source inverter for PMSM drive system

Induction Motor Drive Using Indirect Vector Control with Fuzzy PI Controller

Improved direct torque control of induction motor with dither injection

ABSTRACT I. INTRODUCTION

Closed Loop Control of the Three Switch Serial Input Interleaved Forward Converter Fed Dc Drive

Modeling and Simulation of Five Phase Induction Motor Fed with Five Phase Inverter Topologies

Indirect Rotor Field Oriented Control (IRFOC) for Three Phase Induction Motor Drive Using MOSFET

International Journal of Intellectual Advancements and Research in Engineering Computations

A Fuzzy Based Approach for PWM Inverter fed Induction Motor V/f speed control

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE

A SPWM CONTROLLED THREE-PHASE UPS FOR NONLINEAR LOADS

SCOTT TRANSFORMER AND DIODE CLAMPED INVERTER FED INDUCTION MOTOR BASED ON FOC

Feed-Forward System Control for Solid- State Transformer in DFIG

DESIGN OF A MODE DECOUPLING FOR VOLTAGE CONTROL OF WIND-DRIVEN IG SYSTEM

Comparison between Scalar & Vector Control Technique for Induction Motor Drive

The Amalgamation Performance Analysis of the LCI and VSI Fed Induction Motor Drive

An Induction Motor Control by Space Vector PWM Technique

COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION MOTOR DRIVES

GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY COMPENSATION

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

Modeling and Simulation Analysis of Eleven Phase Brushless DC Motor

Performance Analysis of Matrix Converter Fed Induction Motor with Different Switching Algorithms

Torque Control of BLDC Motor using ANFIS Controller M. Anka Rao 1 M. Vijaya kumar 2 H. Jagadeeswara Rao 3

HARDWARE IMPLEMENTATION OF DIGITAL SIGNAL CONTROLLER FOR THREE PHASE VECTOR CONTROLLED INDUCTION MOTOR

Simulation And Comparison Of Space Vector Pulse Width Modulation For Three Phase Voltage Source Inverter

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR BY USING FOUR SWITCH INVERTER

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

A Dynamic Modeling Permanent Magnet Synchronous Motor Drive System

The Occurrence of Faults in Permanent Magnet Synchronous Motor Drives and its Effects on the Power Supply Quality

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 ISSN

Journal of Engineering Technology

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

Performance Analysis of Induction Motor Drive Fed by VSI for Various Modulation Index

Simulation of Fuzzy Controller based Isolated Zeta Converter fed BLDC motor drive

Analysis, Simulation and Implementation of Space Vector Pulse Width Modulation For Speed Control Of Induction Motor

Speed Control of Induction Motor by Using Cyclo-converter

SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BLDC MOTOR BASED ON A COMMON DC SIGNAL

FUZZY LOGIC CONTROLLER BASED SPEED CONTROL OF THREE PHASE INDUCTION MOTOR

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

Direct Torque Control of Induction Motors

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online):

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications

Improved Power Quality Bridgeless Isolated Cuk Converter Fed BLDC Motor Drive

Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2

DC Link approach to Variable-Speed, Sensorless, Induction Motor Drive

Modeling and Simulation of Induction Motor Drive with Space Vector Control

A NEW CIRCUIT TOPOLOGY FOR OPEN CIRCUIT AND SHORT CIRCUIT FAULT TOLERANT DC-DC CONVERTER

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE

Modeling and Implementation of Closed Loop PI Controller for 3 Phase to 3 Phase Power Conversion Using Matrix Converter

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

Symmetrical Components in Analysis of Switching Event and Fault Condition for Overcurrent Protection in Electrical Machines

Speed control of sensorless BLDC motor with two side chopping PWM

SPEED CONTROL OF BRUSHLESS DC MOTOR USING FUZZY BASED CONTROLLERS

A Sliding Mode Controller for a Three Phase Induction Motor

Sensorless Speed Control Scheme for Induction Motor Drive Using DC link Measurements

Study on DC-DC Converters for a Pfc BLDC Motor Drive

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

ANALYSIS OF V/f CONTROL OF INDUCTION MOTOR USING CONVENTIONAL CONTROLLERS AND FUZZY LOGIC CONTROLLER

Transcription:

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 6 Ver. II (Nov Dec. 2015), PP 07-15 www.iosrjournals.org Fuzzy-Logic-Controller-Based Fault Isolation in PWM VSI for Vector Controlled Induction Motor Drives Varsharani J. More 1, N. G. Kulkarni 2, Dr. R. M. Nagarale 3 1(PG student, M.B.E. Society s college of engineering, Ambajogai, Maharashtra, India) 2,3 (PG Department, M.B.E. Society s College of engineering, Ambajogai, Maharashtra, India) Abstract : This paper presents a simple method for isolation of open circuit fault in pulse width modulated voltage source inverters (PWM VSIs) feeding vector controlled induction motor drives. The VSI operation process is repeated over the period of time. This repetitive operation is divided into six operating statges by certain rules depending upon the phase angle of one phase current. At each stage, only three power switches make vital influece and the other three perform negligible influence on the operation of VSI. The open circuit fault affects the operation and introduces the repetitive distortions in current waveforms. These distortions are observed at faulty stage and gets disappeared at healthy stage. Here, fuzzy logic controller is used for isolation of fault which shows it s effectiveness in simulations and results. Keywords Fault detection, fault isolation, fuzzy logic controller, open circuit fault. PWM VSI. I. Introduction The electric drive systems are used widely in the most of industrial manufacturing processes. Many times these drive systems are exposed to overloading or different environmental conditions, which result into aging process, to faults concern with induction motor or the inverter. These faults can be the reason for unpredicted downtime or damages to human life. Hence demand for maintainability and reliability is increasing largely. Fig.1. General configuration of an induction motor drive system Generally, a motor drive system includes a microcontroller unit (MCU) for implementation of the control algorithms, a power electronic device such as pulse width modulated voltage source inverter (PWM VSI), and an induction motor as shown in Fig.1. Within this drive system, faults can occur in the inverter, dc bus, or in the motor itself. A voltage-source inverter is the most commonly used inverter topology in these systems and also in power quality applications. By considering their complexity, these power converters are found very susceptible in suffering critical failures. The fact is that about 38% of the failures in variable speed ac drives in industry are occurred in power electronics [1]. Recently, a survey of reliability in power electronic converters shows that semiconductor power device is the most fragile component, which is followed by capacitors and gate drives [2]. Now-a-days, the power converters designed for industrial use can be equipped with some diagnostic units to protect against disturbances and execute a shutdown in case of severe faults in order to avoid greater damages. It has become a standard feature for the inverters to protect against power transistor over current or short circuit by monitoring the transistor collector emitter voltage but the open-circuit failures often cause slow DOI: 10.9790/1676-10620715 www.iosrjournals.org 7 Page

response. This type of fault may result the disconnection of the semiconductor due to lifting of bonding wires caused by thermic cycling or due to a problem in the gate control signal [3]. This kind of failure does not necessarily cause the system shutdown and can remain undetected for an extended period of time [4]. Since, it degrades the performance of the system by causing the operating topology imbalance, raising the current pressure of healthy transistors and thus a secondary fault may occur in the converter or in the remaining drive components which may result the total system shutdown and higher repairing costs, or even personal injury. So this paper introduces a simple and effective approach for detection of the open-circuit faults in inverter switches and isolation by using fuzzy logic controller. Several papers and research works have been published and developed in the literature on the opencircuit fault diagnosis in the motor drive systems. Initially, a fault tolerant system was proposed for a brushless DC motor [4]. Further, the methods based on voltage, such as the error voltage method which compares the actual voltage with voltage command and lower switch voltage method [5], where the measurement of the voltages is used, show a fast diagnosis performance and thus reduce the time between the fault occurrence and diagnosis. But its major drawback is to increase system cost as it requires extra hardware equipments such as voltage sensors and electric circuits. The centroid determination method presented in [6] detects and identifies the faults in an inverter-fed induction motor from the centroid of the three-phase currents transformed from a b c to α β plane. In [7], two methods based on the analysis of these current vectors are proposed by the authors. The first one is known as slope method which uses the current vector trajectory in the Concordia plane to detect and localize faults on a PWM inverter. The second is called instantaneous frequency method that allows to detect an inverter fault, but not to identify the faulty switch. Moreover, the Park current vector method was introduced in [8], [9] by monitoring the average motor supply current trajectory to diagnose the faults in variable speed ac drives. The main drawback of all these earlier mentioned methods is the susceptibility to the load torque. In [9], the authors suggested the normalized direct component (DC) current method. To make the scheme independent from the load, the mean values of the three-phase currents are divided by the absolute value of its own first harmonic coefficients and by comparing with a threshold, faults are diagnosed. These suggested current-based methods have shown active performances in current open-loop control scheme such as scalar (V /f) control, but are not seen quite effective in current closed-loop control scheme such as vector control [10]. Fig.2. Ordinary indirect vector control system of an induction motor. In this paper a simple method for detection and isolation of open-circuit faults of VSI feeding a vectorcontrolled induction motor drive by using fuzzy logic controller is presented. The principle of vector control gives a deep analysis and thus the relative features such as change in current distortions in faulty condition are obtained to detect and identify the faults. In this proposed scheme waveforms for three different conditions are observed: 1) Open loop response at normal stage, 2) open loop response with fault and 3) closed loop response with fault using controller. By introducing the fault in the circuit and setting required reference speed, the simulation results are obtained. These results are introduced with a distortion in current waveforms due to fault. In order to overcome this faulty stage, a fuzzy logic controller is used. The proposed fault isolation is configured without extra hardware equipment and excessive computational effort and thus allows to be embedded into an existing vector-controlled induction motor drive system. To test and validate the proposed method, open-circuit faults are introduced in the VSI for a vector-controlled induction motor drive. Simulation results show the validity of the proposed approach. II. Open-Circuit Fault Analysis In The VSI When a transistor of an inverter does not work or turn on, the phase current of a machine are no longer sinusoidal. In a majority of fault detection methods, used for induction motor drives, three phase currents are DOI: 10.9790/1676-10620715 www.iosrjournals.org 8 Page

inputs for detection of faults. The ultimate purpose of vector control is to drive the induction motor as a shuntwound dc motor which means to control the field excitation and the torque-generating current separately. Fig.2 shows an ordinary indirect vector control system of an induction motor drive without consideration of flux weakening. Here, the three phase currents are first transformed by using coordinate transformation into two synchronously rotating Cartesian vector components i d and i q which are controlled independently to control the rotor flux and torque respectively. It can be expressed by the set of equations with d q frame with rotor-flux orientation. T e = n plm Lr r = r i q (1) L m Lr Rrp +1 i d (2) where, i d and i q denote d- and q-axis rotor currents, ψ r is the rotor flux in rotor reference frame, T e stands for the electromagnetic torque, n p is the number of pole pairs, L m and L r are the magnetizing inductance and rotor self-inductance, respectively, R r is the rotor resistance, and p is the differential operator d/dt. The currents i d and i q in the d q frame can be derived from the currents in the α β frame by Park transformation which is defined as i d = i α cos θ + i β sin θ (3) i q = i α sin θ + i β cos θ (4) where θ is the rotor flux angle or transform angle, generated from the speed signal and slip signal and the currents iα and iβ in stationary frame are transformed by Clarke transformation defined as i α = 2 3 i a 1 2 i b 1 2 i c (5) i β = 2 3 3 i 2 b 3 i 2 c (6) where i a, i b and i c are the motor phase currents. The vector control is based on projections which transform a three-phase time and speed dependent system into a two-coordinate (d- and q-coordinate) time invariant system and lead to a structure similar to a dc machine control. The vector control machine needs two variables as input references: the torque component (i * q ) and the flux component (i * d). The vector control structure handles the instantaneous electrical quantities, as it is based on projections. This makes the control accurate in every working operation (steady states and transient) and independent of the limited bandwidth mathematical model. Without consideration of flux weakening, the amplitude of the rotor flux (ψ r ) is maintained at a fixed value and thus there is a linear relationship between torque and torque component (i q ). Thereby, the torque can be control by controlling the torque component of stator current vector. With regard to the current, the complex stator current vector is defined by i s = i a + i b + 2 i c = i d + i q = i α + i β (7) where γ = e j2π/3 and γ = e j4π/3 represent the spatial operator. Considering the d-axis aligned with the rotor flux, Fig. 3 shows the relationship between the α β reference frame and the d q frame. Fig.3. Current vector in the d q frame and its relationship with the α β frame. DOI: 10.9790/1676-10620715 www.iosrjournals.org 9 Page

Fig.4. Three-phase currents distribution in the power switches III. Design Of Proposed FLC The main reason for choosing a fuzzy approach is the very nature of the changes in the attributes. It is nonlinear, and in addition, it would be unreasonable to expect that each time the same level of a particular fault arises, the attributes would measure exactly the same values. The boundaries between two levels of a certain fault are not sharply defined, and therefore the use of a fuzzy logic control is appropriate. Membership functions and the degree of membership, rather than yes or no membership, give the opportunity, using previously acquired knowledge about the system attributes. Fig.5. Structure of Proposed FLC The input membership functions are usually a symmetric triangle with equal distribution over the universe of discourse. The formulation of membership functions of output variables show more variety frequently. In FLC design, one should identify the main control variables and determine the sets that describe the values of each linguistic variable. The specific structure of the FLC is shown in Fig.5. The input variables of the FLC are the reference speed and the change in the speed. The triangular membership functions are used for the FLC for easier computation. The Mamdani fuzzy inference method is used for the proposed FLC. In this controller, membership functions (N, Z, P) assigned with linguistic variables are used to fuzzify physical quantities. For inputs e(k) and e 0 (k) we have (e.n, e.z, e.p) and (e 0.n, e 0.z, e 0.p). For the output u(k), we have (o.n, o.z, o.p). The fuzzified inputs are inferred to a fuzzy rule base, which is used to characterize the relationship between fuzzy inputs and fuzzy outputs. In this study, the fuzzy rule base of the fuzzy logic controller is fixed. It consists of the following nine fuzzy rules: 1. If e(k)=n and e 0 (k)=p then u(k)=z. 2. If e(k)=z and e 0 (k)=p then u(k)=p. 3. If e(k)=p and e 0 (k)=p then u(k)=p. 4. If e(k)=n and e 0 (k)=z then u(k)=n. 5. If e(k)=n and e 0 (k)=n then u(k)=n. 6. If e(k)=p and e 0 (k)=z then u(k)=p. 7. If e(k)=z and e 0 (k)=n then u(k)=n. The response of each fuzzy rule is weighted according to the degree of membership of its input conditions. The inference engine provides a set of control actions according to fuzzified inputs. The commonly used inference engine is the MAX-MIN method and the centroid method is used for the defuzzification process. DOI: 10.9790/1676-10620715 www.iosrjournals.org 10 Page

IV. Results And Simulation Simulation was applied on MATLAB/Simulink to the proposed fuzzy controller for the PWM VSI. The PI controller is selected for comparison because of its severe use in industry applications. The motor used in the simulation was a 5.5 kw squirrel cage motor with 400 V rated voltage, 12.5 A rated current and 1430 r/min rated speed. The PWM VSI was running with a switching frequency of 20 khz. 4.1 Open Loop Response At Normal Condition: At normal and healthy condition i.e. when there is no fault in the inverter circuit, the current and voltage remain unchanged for it is the flux component of the stator current. The speed and torque are also continuous with time as motor is running smoothly. These all simulation results are shown below. It changes only when faults occur. So the current distortion is used to detect the occurrence of faults. When a fault occurs, both the current and voltage change abnormally and show repetitive waveforms. They distort at faulty stages where the faulty power switches make a vital influence and return to normal at healthy stages where the faulty power switches make a negligible influence. (1-a) (1-b) (1-c) DOI: 10.9790/1676-10620715 www.iosrjournals.org 11 Page

(1-d) Fig.6. Simulation results in normal condition without fault: (1-a) Motor speed; (1-b) Output current;(1-c) Output voltage; (1-d) Load torque. 4.2 Open Loop Response At Faulty Condition: When the fault occurs in the VSI circuit, step change is introduced in switching pulse and the other parameters get disturbed wiz. Speed of the motor decreases and continues at low speed till the fault isn t isolated. In case of current and voltage the waveforms gets distorted means the waveforms shows repetitive distortions until the fault isolation. The torque also changes at the instant of fault occurrence then continues to normal. (2-a) (2-b) DOI: 10.9790/1676-10620715 www.iosrjournals.org 12 Page

(2-c) (2-d) Fig.7. Simulation results in normal condition without fault: (2-a) Motor speed; (2-b) Output current; (2-c) Output voltage; (2-d) Load torque. 4.3 Closed Loop Response With Fuzzy Logic Controller: In order to overcome above results due to fault a fuzzy logic controller is used. With the help of this controller fault is isolated and the motor runs in normal condition. This is observed in below simulational results. As the fuzzy logic controller is more improved than a conventional PI controller, it gives the accurate and results. (3-a) DOI: 10.9790/1676-10620715 www.iosrjournals.org 13 Page

(3-b) (3-c) ` (3-d) Fig.8. Simulation results in normal condition without fault: (3-a) Motor speed; (3-b) Output current; (3-c) Output voltage; (3-d) Load torque. V. Conclusion This paper has presented Fault Isolation in PWM Voltage-Source Inverters for Vector controlled Induction Motor Drives using Fuzzy logic controller. Simulation results are obtained showing a good agreement with the theoretical analysis. This method uses just as inputs the three-phase currents which are already available for the main control system, avoiding the use of extra sensors and the subsequent increase of the system complexity and costs. Comparing with previously published methods, the original method relies on the stage conversion. An open-circuit fault of power switches in the VSI changes the corresponding phase currents and introduces the periodic current distortions. When the fault occurs, the distortions are estimated. In order to overcome these estimated distortions, the fuzzy logic controller is used in the circuit. This controller shows the DOI: 10.9790/1676-10620715 www.iosrjournals.org 14 Page

more accuracy than the conventional PI controller. Moreover, this method can be embedded into the existing vector-controlled induction motor drive software as a subsystem without excessive complications. The Basic circuit and modified circuit elements are designed using relevant equations. The simulation circuits are developed using elements of simulink library. The Simulation is successfully done and open loop / closed loop simulation results are presented. The Simulation results coincide with the theoretical results. References [1] Jianghan Zhang, Jin Zhao, Dehong Zhou, and Chengguang Huang, High-Performance Fault Diagnosis in PWM Voltage-Source Inverters for Vector-Controlled Induction Motor Drives, IEEE Transactions On Power Electronics, Vol. 29, No. 11, November 2014. [2] R. L. D. Ribeiro, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lima, Fault detection of open-switch damage in voltage-fed PWM motor drive systems, IEEE Trans. Power Electron., vol. 18, no. 2, Mar- 2003, 587 593. [3] B. Lu and S. Sharma, A survey of IGBT fault diagnostic methods for three-phase power inverters, in Proc. 2008 Int. Conf. Condition Monitoring Diagnosis, 2007, 756 763. [4] B. Lu and S. K. Sharma, A literature review of IGBT fault diagnostic and protection methods for power inverters, IEEE Trans. Ind. Appl., vol. 45, no. 5, Sep./Oct. 2009, 1770 1777. [5] P. Gilreath and B. N. Singh, A new centroid based fault detection method for 3-phase inverter-fed induction motors, in Proc. 2005 IEEE 36th Power Electron. Spec. Conf., vol. 1 3, 2005, 2664 2669. [6] R. Peuget, S. Courtine, and J. P. Rognon, Fault detection and isolation on a PWM inverter by knowledgebased model, IEEE Trans. Ind. Appl., vol. 34, no. 6, Nov./Dec. 1998, 1318 1326. [7] M. Trabelsi, M. Boussak, and A. Chaari, High performance single and multiple faults diagnosis in voltage source inverter fed induction motor drives, in Proc. 2012 XXth Int. Conf. Elect. Mach., 2012, 1717 1723. [8] A. M. S. Mendes and A. J. M. Cardoso, Voltage source inverter fault diagnosis in variable speed AC drives, by the average current Park s vector approach, in Proc. Int. Conf. Elect. Machines Drives, 1999, 704 706. [9] F. Zidani, D. Diallo, M. E. H. Benbouzid, and R. Nait-Said, A fuzzybased approach for the diagnosis of fault modes in a voltage-fed PWM inverter induction motor drive, IEEE Trans. Ind. Electron., vol. 55, no. 2, Feb. 2008, 586 593. [10] N. M. A. Freire, J. O. Estima, and A. J. M. Cardoso, A voltage-based approach for open-circuit fault diagnosis in voltage-fed SVM motor drives without extra hardware, in Proc. 2012 XXth Int. Conf. Elect. Mach., 2012, 2378 2383. [11] C. Delpha, C. Hao, and D. Diallo, SVM based diagnosis of inverter fed induction machine drive: A new challenge, in Proc. 38th Annu. Conf. IEEE Ind. Electron. Soc., 2012, 3931 3936. [12] S. M. Jung, J. S. Park, H. W. Kim, K. Y. Cho, and M. J. Youn, An MRAS based diagnosis of open-circuit fault in PWM voltage source inverters for PM synchronous motor drive systems, IEEE Trans. Power Electron., vol. 28, no. 5, May 2013, 2514 2526. DOI: 10.9790/1676-10620715 www.iosrjournals.org 15 Page