A compact ultra wideband antenna with WiMax band rejection for energy scavenging

Similar documents
DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

Compact Ultra-Wideband Antenna With Dual Band Notched Characteristic

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Band Notched Rectangular Patch Antenna with Polygon slot

NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

DUAL TRIDENT UWB PLANAR ANTENNA WITH BAND NOTCH FOR WLAN

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

A Compact Microstrip Antenna for Ultra Wideband Applications

Compact UWB antenna with dual band-notches for WLAN and WiMAX applications

A New Dual Band E-shaped Slot Antenna Design for Wireless Applications

Design of Integrated Triple Band Notched for Ultra-Wide Band Microstrip Antenna

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

A Planar Ultra-Wideband Antenna with Multiple Band-Notch Characteristics

International Journal of Microwaves Applications Available Online at

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

A New UWB Antenna with Band-Notched Characteristic

MULTI-STATE UWB CIRCULAR PATCH ANTENNA BASED ON WIMAX AND WLAN NOTCH FILTERS OPERATION

A New CPW-Fed C-slot Based Printed Antenna for Dual Band WLAN Applications

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

A dual-band antenna for wireless USB dongle applications

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

A PRINTED DISCONE ULTRA-WIDEBAND ANTENNA WITH DUAL-BAND NOTCHED CHARACTERISTICS

Application of protruded Γ-shaped strips at the feed-line of UWB microstrip antenna to create dual notched bands

A New Compact Printed Triple Band-Notched UWB Antenna

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

A Compact Dual-Band CPW-Fed Planar Monopole Antenna for GHz Frequency Band, WiMAX and WLAN Applications

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth

Conclusion and Future Scope

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

A Fractal Slot Antenna for Ultra Wideband Applications with WiMAX Band Rejection

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

A Compact Band-selective Filter and Antenna for UWB Application

Chapter 7 Design of the UWB Fractal Antenna

Ultra Wide Band Compact Antenna with Dual U- Shape Slots for Notch-Band Application

A NOVEL NOTCHED ULTRA WIDEBAND PATCH ANTENNA FOR MOBILE MICROCELLULAR NETWORK

A Compact Wide slot antenna with dual bandnotch characteristic for Ultra Wideband Applications

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

A fractal-based printed slot antenna for multiband wireless applications

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N

A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC

Design of Internal Dual Band Printed Monopole Antenna Based on Peano-type Fractal Geometry for WLAN USB Dongle

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Ultra-Wideband Antenna Using Inverted L Shaped Slots for WLAN Rejection Characteristics

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A CPW-fed triangular monopole antenna with staircase ground for UWB applications

Triple Band-Notched UWB Planar Monopole Antenna Using Triple-Mode Resonator

Design & Analysis Of An Inverted-T Shaped Antenna With DGS For Wireless Communication

Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips

BAND NOTCH CHARACTERSTICS OF A ULTRA WIDE BAND ANTENNA USING U SLOT

Design and Analysis of 28 GHz Millimeter Wave Antenna Array for 5G Communication Systems

CIRCULAR-SLOTTED CPW ANTENNA FOR WiMAX/C BAND APPLICATIONS

A COMPACT MODIFIED DISC MONOPOLE ANTENNA FOR SUPER-WIDEBAND APPLICATIONS WITH ENHANCED GAIN

A Compact Multiband Antenna for GSM and WiMAX Applications

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

Design of Vivaldi Microstrip Antenna for Ultra- Wideband Radar Applications

Triple-Band CPW-Fed Monopole Antenna for WLAN/WiMAX Applications

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

A CPW-FED ULTRA-WIDEBAND PLANAR INVERTED CONE ANTENNA

Engineering, L.B.Reddy Nagar, Mylavaram, Krishna Dt, AP

Dual Band Fractal Antenna Design For Wireless Application

Design and Application of Triple-Band Planar Dipole Antennas

METAMATERIAL BASED NOVEL DUAL BAND ANTENNA

S. Zhou, J. Ma, J. Deng, and Q. Liu National Key Laboratory of Antenna and Microwave Technology Xidian University Xi an, Shaanxi, P. R.

A MINIATURIZED INTERNAL WIDEBAND ANTENNA FOR WIRELESS USB DONGLE APPLICATION

DESIGN OF A PLANAR MONOPOLE ULTRA WIDE BAND PATCH ANTENNA

THE recent allocation of frequency band from 3.1 to

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

A DUAL-BAND CIRCULAR SLOT ANTENNA WITH AN OFFSET MICROSTRIP-FED LINE FOR PCS, UMTS, IMT-2000, ISM, BLUETOOTH, RFID AND WLAN APPLI- CATIONS

Design Of Multi-band Double I-shaped slot Microstrip Patch Antenna With Defected Ground Structure for Wireless Application

COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS

SIZE REDUCTION AND BANDWIDTH ENHANCEMENT OF A UWB HYBRID DIELECTRIC RESONATOR AN- TENNA FOR SHORT-RANGE WIRELESS COMMUNICA- TIONS

A New Fractal Based PIFA Antenna Design for MIMO Dual Band WLAN Applications

Ultra-Wideband Patch Antenna for K-Band Applications

SELF-COMPLEMENTARY CIRCULAR DISK ANTENNA FOR UWB APPLICATIONS

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

DESIGN OF A MODIFIED W-SHAPED PATCH ANTENNA ON AL 2 O 3 CERAMIC MATERIAL SUBSTRATE FOR KU-BAND

Design of CPW-Fed Slot Antenna with Rhombus Patch for IoT Applications

Design of Frequency Reconfigurable Antenna with Circular Patch

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

Prateek Wankhade 1, Prof. Rajesh Nema 2 Electronics & Communication, NIIST, Bhopal, Rajiv Gandhi Prodyogiki Vishvavidhyalaya

Compact CPW UWB Pattern Diversity Antenna with Dual Band-notched Characteristics

IJASCSE, Volume 2, Special Issue 1, Bandwidth Enhancement of CPW-fed G-shaped Monopole Antenna at 5.85 GHz for WiMAX

A Novel Compact Wide Band CPW fed Antenna for WLAN and RFID Applications

Design of Z-Shape Microstrip Antenna with I- Slot for Wi-Max/Satellite Application

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications

Transcription:

IOP Conference Series: Earth and Environmental Science OPEN ACCESS A compact ultra wideband antenna with WiMax band rejection for energy scavenging To cite this article: Y E Jalil et al 2013 IOP Conf. Ser.: Earth Environ. Sci. 16 012100 View the article online for updates and enhancements. This content was downloaded from IP address 148.251.232.83 on 18/10/2018 at 00:27

A compact ultra wideband antenna with WiMax band rejection for energy scavenging Y E Jalil 1, B Kasi 2 and C K Chakrabarty 1 1 Department of Electronics and Communication Engineering, Universiti Tenaga Nasional, Kajang, Selangor 43000, Malaysia 2 Department of Electrical and Electronics Engineering, Universiti Infrastruktur Kuala Lumpur, Kajang, Selangor 43000, Malaysia E-mail: yantierana@uniten.edu.my Abstract. Radio Frequency (RF) energy harvesting has been rapidly advancing as a promising alternative to existing energy scavenging system. A well designed broadband antenna such as ultra-wideband (UWB) antenna can be used as one of the major components in an RF energy scavenging system. This paper presents a compact UWB antenna showing good impedance matching over a bandwidth of 2.8 to 11 GHz, suitable for broadband RF energy scavenging. Nevertheless, the antenna usage in wireless communication has a limitation due to the problem of interference between UWB system and other narrowband systems. Thus, the proposed antenna is successfully designed with a single band-notched at the targeted WiMAX operating band of 3.3 to 3.6 GHz. 1. Introduction Radio Frequency (RF) energy harvesting aims at converting ambient RF energy extracted from propagating radio waves into storable electrical energy to power electronics [1]. A typical RF energy scavenging system consists of an antenna with impedance matching circuit, rectifier, voltage booster and a charging circuit. Therefore, broadband antennas such as UWB antennas play an important role in RF energy harvesting systems, since they are able to collect energy from various sources operating in their matching band. However, their usage in UWB wireless communication system has a limitation due to the consequences of having to share the spectrum with a number of other established narrowband applications such as WiMAX (3.3 3.6 GHz) and WLAN IEEE 802.11a (5.15 to 5.85 GHz). The interference from a strong narrowband signal, could affect the overall systems. To overcome this unwanted problem, it is desirable to design UWB antennas integrated with band rejection characteristics in the affected frequency bands. In recent times, numerous researchers have proposed diverse antenna geometries, design methods and structures in order to achieve band-notched features [2-4]. In this paper, an octagon-shaped microstrip antenna with ultra-wideband impedance matching from 2.8 to 11 GHz is proposed. A frequency band-notched from 3.3 to 3.6 GHz can be achieved by simply employing a slanted inverted U-shaped slot in the radiating patch. The outline of this paper is as follows. The geometry of the proposed UWB antenna is presented in section 2 while the characteristics of the antenna are presented in section 3. The conclusions are summarized in Section 4. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Ltd 1

2. Antenna Geometry The proposed UWB antenna configuration and its geometrical parameters are shown in Figure 1. This proposed antenna design consists of an octagon-shaped radiator fed by a microstrip line printed on a partial grounded substrate. The microstrip line feed is designed to match a 50 Ω characteristic impedance. With the aim to increase the impedance bandwidth, both the radiating plane and the ground plane have tapered shapes at both ends. Apart from that, a rectangular slit is added on top of the ground plane to further enhance the impedance bandwidth of the antenna. The proposed antenna is designed on a standard Taconic TLC-30 substrate with a dielectric substance of 3, a loss tangent of 0.003 and with thickness of 1.575 mm. The final optimized parameter values are tabulated in Table 1. 26 a b c 32 d W e e f y x g h i 11 Figure 1. Geometry of the proposed antenna (units in mm). Front view Rear View Table 1. Antenna Parameters Parameter Value (mm) Parameter Value (mm) a 20.0 f 12.0 b 18.0 g 2.0 c 8.0 h 3.65 d 12.0 i 3.40 e 3.9 The geometry and dimensions of the UWB antenna with band-notched design (will be referred to as antenna 2) is illustrated in Figure 2. A slanted inverted-u shaped slot is etched onto the radiating patch in order to create a frequency band-notch at the targeted WiMAX band. The previously optimized design parameters of the UWB antenna need no additional retuning work when the band-notched design is applied. In general, the design concept of the notch function is to adjust the total length of the U-shaped slot to be approximately half-wavelength at the desired unwanted frequency [5]. The final design parameters of the slot are tabulated in Table 1 as well. 2

k l j Figure 2. Geometry of the proposed antenna with band notched design (antenna 2) 3. Results and Discussion The simulations of the proposed antenna performance are performed using CST Microwave Studio. Figure 3 shows the calculated return loss curves of the proposed antenna with and without the notched band. It can be seen that the calculated return loss curve is less than -10 db from 2.8 GHz to beyond 11 GHz for antenna 1, giving a clear indication that the impedance bandwidth is more than 8.2 GHz covering the entire UWB frequency range. Furthermore, the required frequency notch at WiMAX band from 3.3 to 3.6 GHz is successfully achieved as displayed in the return loss curve for antenna 2. A notch band with a peak of 3.3 db is clearly demonstrated by the return loss curve for antenna 2. Figure 3. Simulated antennas performance Return loss VSWR The comparison of simulated VSWR for the proposed antenna designs with and without slot is illustrated in Figure 3. From the Figure, it is evident that the addition of the slot onto the radiating patch is indeed initiates the desired filtering property. Compared to antenna 1 design, the targeted frequency band has been successfully blocks out by the antenna 2 with VSWR > 2 and still maintains good impedance matching at other frequencies in the UWB frequency band 3

Figure 4. Simulated radiation patterns for proposed antenna 2 in E-plane H-plane Figure 4 depicted the simulated far-field radiation pattern of antenna 2 in the E-plane and the H- plane at 3.4 GHz. It can be observed that, the patterns obtained are typical of those for monopole antennas. In the H-plane the pattern is quite omni-directional while the bidirectional pattern can be seen in the E-plane. It can be stated that the proposed band notched structure do not have any significant influence on the radiation patterns of the UWB antenna. 4. Conclusions This paper proposed a compact UWB microstrip antenna design. The antenna has a total size equal to 26 x 32 mm 2 and has the capability of achieving an input impedance bandwidth from 2.8 to 11 GHz. With these features, the antenna is a promising candidate for compact and miniaturized RF energy scavenging system. Additionally, a slanted U-shaped slot is introduced on the radiating patch to create a notched band from 3.3 to 3.6 GHz to minimize the potential interferences from WiMAX system. The modified antenna is suitable for numerous UWB applications. References [1] Ding Y, Arslan T and Hamilton A 2012 Broadband Antenna for RF Energy Scavenging System Antennas and Propagation Conference (LAPC)(Loughborough, UK, 12-13 Nov 2012) 1-4 [2] William, J. and Nakkeeran, R. 2009 CPW-Fed UWB Slot Antenna With Band Notched Design Microwave Conference, 2009. APMC 2009. Asia Pacific (Singapore, 7-10 Dec. 2009) 1833-1836 [3] Y. Y. Liu and W.X. 2011 Dual Band-Notched Antenna With The Parasitic Strip for UWB Progress in Electromagnetics Research Letters (2011) (vol 25) 21 30 [4] [4] Wei Hu, Jianhua Zhang and Fengge Hu 2010 Design of An Ultra-Wideband Antenna With Dual Band-Notched Characteristic 9th International Symposium on Antennas Propagation and EM Theory (ISAPE) (Guangzho, China, 29 Nov 2 Dec 2010) 57-59 [5] Qing-Xin Chu and Ying-Ying Yang 2008 A Compact Ultrawideband Antenna With 3.4/5.5 GHz Dual Band-Notched Characteristics Antennas and Propagation, IEEE Transactions 56 3637-3644 4