Influence of large signal modulation on photonic UWB generation based on electro-optic modulator

Similar documents
UWB-Over-Fiber Communications: Modulation and Transmission Shilong Pan, Member, IEEE, OSA, and Jianping Yao, Senior Member, IEEE, Fellow, OSA

Provision of IR-UWB wireless and baseband wired services over a WDM-PON

Background-free millimeter-wave ultrawideband. Mach-Zehnder modulator

Performance analysis and Power Loss Management of reconfigurable UWB pulse generation through Dual-Drive Mach-Zehnder Modulator

A WDM-PON-Compatible System for Simultaneous Distribution of Gigabit Baseband and Wireless Ultrawideband Services with Flexible Bandwidth Allocation

4 Gbps Impulse Radio (IR) Ultra-Wideband (UWB) Transmission over 100 Meters Multi Mode Fiber with 4 Meters Wireless Transmission

Effect of Polarization Controllers Rotation Angles on the Performance of Optically Generated UWB-Based Communication Systems

3626 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 11, NOVEMBER 2007

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 15, AUGUST 1, /$ IEEE

Fiber-connected UWB sensor network for highresolution localization using optical time-division multiplexing

A WDM passive optical network enabling multicasting with color-free ONUs

Tunable 360 Photonic Radio-Frequency Phase Shifter Based on Polarization Modulation and All-Optical Differentiation

WAVELENGTH REUSE IN UWB-OVER-FIBER NETWORKS

Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift

Optical frequency up-conversion of UWB monocycle pulse based on pulsed-pump fiber optical parametric amplifier

MICROWAVE photonic filters (MPFs) with advantages

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

Opto-VLSI-based reconfigurable photonic RF filter

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser

Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers

MICROWAVE photonics is an interdisciplinary area

Photonics-based real-time ultrahigh-range-resolution. broadband signal generation and processing OPEN. Fangzheng Zhang, Qingshui Guo & Shilong Pan

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 35, NO. 10, MAY 15,

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters

Full-duty triangular pulse generation based on a polarization-multiplexing dual-drive MachZehnder modulator

All-Optical Signal Processing and Optical Regeneration

Optical millimeter wave generated by octupling the frequency of the local oscillator

Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

A Full-duplex OSSB Modulated ROF System with Centralized Light Source by Optical Sideband Reuse

Pulse Shapes That Outperform Traditional UWB Antenna/Waveform Combinations

Photonics-Based RF Phase Shifter for Ultra-Broadband Communications

Photonic Signal Processing(PSP) of Microwave Signals

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

OPTICAL generation and distribution of millimeter-wave

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER

Novel OBI noise reduction technique by using similar-obi estimation in optical multiple access uplink

Fiber-wireless links supporting high-capacity W-band channels

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals

THE USE OF SOA-BASED MACH-ZEHNDER INTERFEROMETER IN DESIGNING/IMPLEMENTING ALL OPTICAL INTEGRATED FULL ADDER-SUBTRACTOR AND DEMULTIPLEXER

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Tunable single frequency fiber laser based on FP-LD injection locking

Council for Innovative Research

THE frequency downconverter is one of the most important

Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format

Optical Fiber Technology

Ultrahigh precision synchronization of optical and microwave frequency sources

Compression of ultra-long microwave pulses using programmable microwave photonic phase filtering with > 100 complex-coefficient taps

Generation of linearized optical single sideband signal for broadband radio over fiber systems

MASTER THESIS WORK. Tamas Gyerak

A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 15, AUGUST 1,

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection

Photonics-Based Wideband Microwave Phase Shifter

Photonic Microwave Filter Employing an Opto- VLSI-Based Adaptive Optical Combiner

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS

Wavelength-controlled hologram-waveguide modules for continuous beam-scanning in a phased-array antenna system

2996 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 17, SEPTEMBER 1, 2014

C th NATIONAL RADIO SCIENCE CONFERENCE (NRSC 2011) April 26 28, 2011, National Telecommunication Institute, Egypt

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

All-Optical Signal Processing. Technologies for Network. Applications. Prof. Paul Prucnal. Department of Electrical Engineering PRINCETON UNIVERSITY

OPTICAL generation of microwave and millimeter-wave

COHERENT DETECTION OPTICAL OFDM SYSTEM

Wavelength spacing tenable capability of optical comb filter using Polarization Maintaining Fiber

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 20, OCTOBER Weilin Liu, Student Member, IEEE, and Jianping Yao, Fellow, IEEE, Fellow, OSA

Time-stretched sampling of a fast microwave waveform based on the repetitive use of a linearly chirped fiber Bragg grating in a dispersive loop

Broadband Photonic Microwave Signal Processor With Frequency Up/Down Conversion and Phase Shifting Capability

Photonics-based MIMO radar with highresolution and fast detection capability

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications

A Novel Sine Wave Based UWB Pulse Generator Design for Single/Multi-User Systems

DFB laser contribution to phase noise in an optoelectronic microwave oscillator

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 33, NO. 1, JANUARY 1,

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback

Document downloaded from: This paper must be cited as:

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Performance Analysis of Chromatic Dispersion Compensation of a Chirped Fiber Grating on a Differential Phase-shift-keyed Transmission

Optical performance monitoring technique using software-based synchronous amplitude histograms

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Performance of MM-Waves Signals Transportation Technique for Radio over Fiber over System on Fiber Dispersive Links

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

MICROWAVE phase-coded signal generation has been

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

All optical wavelength converter based on fiber cross-phase modulation and fiber Bragg grating

Bit error rate and cross talk performance in optical cross connect with wavelength converter

MICROWAVE frequency measurement can find many

Table of Contents. Abbrevation Glossary... xvii

Transcription:

Influence of large signal modulation on photonic UWB generation based on electro-optic modulator Rong Gu, 1, Shilong Pan, 1,* Xiangfei Chen, Minghai Pan 1 and De Ben 1 1 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 10016, China Nanjing National Laboratory of Microstructures and School of Engineering and Applied Sciences, Nanjing University, Nanjing 100, China *pans@nuaa.edu.cn Abstract: Various schemes based on electro-optic modulators have been reported to generate ultra-wideband (UWB) signals in the optical domain, but the availability of these methods always relies on small signal modulation. In this paper, the influence of large signal modulation on two typical schemes, representing two major categories of external-modulatorbased photonic UWB generation schemes, is analytically and numerically studied. While the quasi single-sideband UWB (QSSB-UWB) pulse can maintain its shape, the Gaussian UWB () generation scheme suffers serious modulation distortion when the phase modulation index is greater than π/6. The modulation distortion would have negative impact on the receiver sensitivity when the signal is sent to a correlation receiver. 011 Optical Society of America OCIS codes: (060.4510) Optical communications; (50.4010) Microwaves; (.) ultrawideband. References and links 1. G. R. Aiello and G. D. Rogerson, Ultra-wideband wireless system, IEEE Microw. Mag. 4(), 6 47 (00).. J. P. Yao, F. Zeng, and Q. Wang, Photonic generation of ultrawideband signals, J. Lightwave Technol. 5(11), 1 5 (007).. C. M. Tan, L. C. Ong, M. L. Yee, B. Luo, and P. K. Tang, Direct transmission of ultra wide band signals using single mode radio-over-fiber system, Proc. 005 Asia-Pacific Microw. Conf. (APMC 005) 1 5, 115 117 (005). 4. S. L. Pan and J. P. Yao, UWB-over-fiber communications: modulation and transmission, J. Lightwave Technol. 8(16), 445 455 (010). 5. M. Ran, B. I. Lembrikov, and Y. Ben Ezra, Ultra-wideband radio-over-optical fiber concepts, technologies and applications, IEEE Photon. J. (1), 6 48 (010). 6. Y. Le Guennec, A. Pizzinat, S. Meyer, B. Charboonnier, P. Lombard, M. Lourdiane, B. Cabon, C. Algani, A.-L. Billabert, M. Terre, C. Rurnelhard, J.-L. Polleux, H. Jacquinot, S. Bories, and C. Sillans, Low-cost transparent radio-over-fiber system for in-building distribution of UWB signals, J. Lightwave Technol. 7(14), 64 657 (00). 7. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, Ultra-wideband radio signals distribution in FTTH networks, IEEE Photon. Technol. Lett. 0(11), 45 47 (008). 8. S. L. Pan and J. P. Yao, Performance evaluation of UWB signal transmission over optical fiber, IEEE J. Sel. Areas Comm. 8(6), 88 00 (010).. M. Abtahi, M. Mirshafiei, S. LaRochelle, and L. A. Rusch, All-optical 500-Mb/s UWB transceiver: an experimental demonstration, J. Lightwave Technol. 6(15), 75 80 (008). 10. X. B. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser, Opt. Express 17(1), 680 687 (00). 11. S. L. Pan and J. P. Yao, An optical UWB pulse generator for flexible modulation format, IEEE Photon. Technol. Lett. 1(1), 181 18 (00). 1. J. J. Dong, X. L. Zhang, J. Xu, D. X. Huang, S. N. Fu, and P. Shum, Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier, Opt. Lett. (10), 1 15 (007). 1. S. L. Pan and J. P. Yao, Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer, Opt. Lett. 4(), 160 16 (00). 14. S. G. Wang, H. W. Chen, M. Xin, M. H. Chen, and S. Z. Xie, Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture, Opt. Lett. 4(0), 0 04 (00). (C) 011 OSA 4 July 011 / Vol. 1, No. 14 / OPTICS EXPRESS 1686

15. X. H. Feng, Z. H. Li, B. O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator, Opt. Express 18(4), 64 648 (010). 16. Q. Wang and J. P. Yao, Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter, Opt. Express 15(), 14667 1467 (007). 17. H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, UWB monocycle pulse generation by optical polarization time delay method, Electron. Lett. 4(), 54 54 (007). 18. J. Li, B. P. P. Kuo, and K. K. Y. Wong, Ultra-wideband pulse generation based on cross-gain modulation in fiber optical parametric amplifier, IEEE Photon. Technol. Lett. 1(4), 1 14 (00). 1. M. Bolea, J. Mora, B. Ortega, and J. Capmany, Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats, Opt. Express 17(7), 50 50 (00). 1. Introduction Ultra-wideband (UWB) is a promising technology to provide high data-rate, low cost and low power consumption connectivity for wireless personal area network [1,]. Due to the low power spectral density specified by the U.S. Federal Communications Commission (FCC), the typical transmission distance of a UWB system is only a few meters to tens of meters. UWB over fiber system is then proposed to increase the coverage area of the UWB system and to integrate the UWB system to other existing wireless and wired networks [ 8]. For UWB over fiber systems, the primary task is to generate optical UWB signals. Until now, a lot of methods have been reported [,, 8 1]. Among them, the methods based on electro-optic modulation are promising for practical UWB over fiber system since electrooptic modulators are simple, reliable and cost effective, which have been widely deployed in the commercial optical communication networks. According to the optical spectral properties of the generated UWB pulses, there are generally three types of UWB generation schemes based on electro-optic modulators [8]: 1) double-side band UWB (DSB-UWB) generation schemes, e.g. converting an electrical UWB pulse to the optical domain based on intensity modulation []; ) quasi single-sideband UWB (QSSB-UWB) generation schemes, e.g. sending an electrical Gaussian pulse to a dual-drive Mach-Zehnder modulator (MZM) with the two paths delayed by tens of picoseconds [11], or phase modulation (PM) by an electrical pulse followed by a detuned optical bandpass filter [1 15]; ) Gaussian UWB () generation schemes, e.g. shaping an electrical pulse by a photonic microwave filter with one negative tap [16 1], or phase modulation (PM) by an electrical pulse followed by a dispersive element []. In the three categories, the UWB generation schemes in the second and third categories generates UWB pulses in the time domain, which lead to the advantages such as small size, light weight, and immunity to electromagnetic interference. Although the generation of QSSB-UWB and signal has been extensively reported in the literature, most of them applied small signal modulation assumption. The small signal modulation can eliminate the nonlinear distortion introduced by electro-optic modulation, but it results in large optical to electrical conversion loss and low signal-to-noise ratio (SNR). In this paper, we theoretically study the influence of large signal modulation on two typical external-modulator-based schemes for photonic generation of QSSB-UWB and signals, respectively. The study is aimed to provide the theoretical basis to construct an optical UWB transmitter with small optical to electrical conversion loss and small noise figure for UWB over fiber applications. Since a Gaussian monocycle is the simplest pulse shape among the many suggested UWB waveforms [], our study is performed based on Gaussian monocycle pulses. The results can be extended to other UWB waveforms, such as Gaussian doublet, Gaussian triplet, and other more complicated waveforms.. Analytical analysis Figure 1 shows the typical schemes to generate the optical QSSB-UWB and monocycles, respectively. Both of the two schemes are based on an electro-optic modulator. To evaluate the modulation distortion in the electro-optic modulators and their influence on the generated UWB monocycles, the generated optical UWB pulses are introduced to a (C) 011 OSA 4 July 011 / Vol. 1, No. 14 / OPTICS EXPRESS 1687

photodetector (PD). All the devices in the schemes are assumed to have flat frequency response in the frequency range of interest. A. QSSB-UWB Fig. 1. Configurations of the two typical techniques for the generation of optical UWB monocycles. (a) Generation of QSSB-UWB monocycle using a dual-drive MZM; (b) Generation of monocycle using a photonic microwave delay-line filter. LD: laser diode, MZM: Mach-Zehnder modulator, PD: photodetector, PC: polarization controller, PolM: polarization modulator, PMF: polarization maintaining fiber. Figure 1(a) shows the scheme for the generation of QSSB-UWB monocycle. In the scheme, an electrical Gaussian pulse train is split into two portions, delayed by a fixed time delay τ 0, and then modulates a light wave from a laser diode (LD) at a dual-drive MZM. The output of the MZM is introduced to a PD for square-law detection, the AC term of the photocurrent can be expressed as [8] IAC1( t) sin{ [ u( t) u( t 0)]} (1) where κ is the phase modulation index, and u(t) represents a Gaussian pulse, given by t ut ( ) exp( ) () T where T 0 is the half-width (at 1/e-intensity point) of the Gaussian pulse. Further expanding (1) based on Taylor expansion, we obtain 5 5 IAC1( t) [ u( t) u( t 0 )] [ u( t) u( t 0)] [ u( t) u( t 0)] 4 10 () 7 7 [ u( t) u( t 0 )] 560 To simplify the analysis, we assume κπ/, so the seventh and higher order terms can be ignored since they are less than 1/10 of the fifth-order term. If τ 0 is sufficiently small, u(t)-u(tτ 0 ) can be approximated as aw(t), where a<1, and w(t) is an ideal Gaussian monocycle, given by t exp(1 ) t wt exp (4) T0 T0 In order to evaluate the influence of large signal modulation on the receiver sensitivity, a correlation receiver is inserted. In the receiver, the AC term of the photocurrent from the PD is correlated with the ideal Gaussian monocycle. The correlation operation results in 0 (C) 011 OSA 4 July 011 / Vol. 1, No. 14 / OPTICS EXPRESS 1688

F I ( t) w( t ) dt 1 AC1 5 (5) 5 { [ u( t) u( t )] [ u( t) u( t )] [ u( t) u( t )] } w( t ) dt 0 0 0 4 10 As a comparison, the correlation between two ideal monocycles is also presented, ( ) ( ) Fideal w t w t dt (6) From (5) and (6), we can see that the distortion mainly comes from the third- and fifthorder term of (). B. The generation scheme shown in Fig. 1(b) consists of a LD, a polarization modulator (PolM), two polarization controllers (PCs) and a section of polarization maintaining fiber (PMF). The PolM driven by an electrical Gaussian pulse generates two complementary intensity-modulated signals along the two orthogonal polarization directions and the PMF introduces a time delay of tens of picoseconds between the two signals. With the square-law detection of a PD, the AC term of the output photocurrent can be expressed as [8] IAC ( t) {sin[ u( t)] sin[ u( t 0)]} (7) Expanding (7) based on Tayor expansion and ignoring the seventh and higher order terms if κπ/, we get 5 5 5 IAC( t) [ u( t) u( t 1 1 0)] [ u ( t) u ( t 0)] [ u ( t) u ( t 0)] (8) 6 10 When I AC (t) is correlated with the ideal monocycle w(t), we have F I ( t) w( t ) dt AC () 1 1 5 5 5 { [ u( t) u( t )] [ u ( t) u ( t )] [ u ( t) u ( t )]} w( t ) dt 0 0 0 6 10 Again, the distortion of correlation mainly comes from the third-and fifth-order of (8). When κ<<π/6, the modulation distortion is very small, but when κ is greater than π/6, the modulation distortion is significant, and should be considered in practical implementation.. With the same phase modulation index κ, the linear terms of () and (8) are the same, indicating that the modulation efficiencies for the two schemes are the same. But the third-and fifth-order terms are different, showing that the nonlinear distortions induced by electro-optic modulation are different. If we look at the third-order terms, i.e. 1/4κ [u(t)-u(t-τ 0 )] and 1/6κ [u (t)-u (t-τ 0 )], and considering that [u(t)-u(t-τ 0 )] = [u (t)-u (t-τ 0 )]-u(t)u(t-τ 0 )[u(t)-u(tτ 0 )] < [u (t)-u (t-τ 0 )], the modulation distortion in the QSSB-UWB generation scheme is much smaller than that of generation scheme. This difference can also be observed directly from (1) and (7). For the QSSB-UWB generation scheme, the differentiation operation is performed on the amplitude of the optical field. Since u(t)τ 0 u(t)-u(t-τ 0 ) and τ 0 is very small, κ/[u(t)-u(t-τ 0 )] would also be very small even when κ is as large as π. Thus, the case when κ is large can still be treated as the small signal modulation condition. However, for the generation scheme, when modulation index is larger than π/6, sin[κu(t)] and sin[κu(t-τ 0 )] cannot be seen as Gaussian pulses, so the subtraction of them is not a Gaussian monocycle pulse. Significant distortion is thus generated.. Numerical simulations To validate the results obtained from the analytical analysis, numerical simulations are performed. The key parameters T 0 = ps and τ 0 =0 ps are selected based on our recent works [11,16]. (C) 011 OSA 4 July 011 / Vol. 1, No. 14 / OPTICS EXPRESS 168

Amplitude Peak (a.u.) 10 8 QSSB-UWB 4 6 4 8 4 0 0 1 (a) FWHM (ps) 160 10 80 40 8 4 4 QSSB-UWB 0 1 (b) Fig.. The (a) amplitude peak and (b) FWHM of the correlations between the ideal UWB monocycle and the QSSB-UWB and monocycles. 8 8 Correlation (a.u.) - - 4 Correlation (a.u.) 4-400 0 400-400 0 400-400 0 400-400 0 400 time (ps) time (ps) (a) (b) - - Fig.. The curves of correlations between the ideal UWB monocycle and the (a) QSSB-UWB monocycle or (b) monocycle at four different phase modulation indices. Figure (a) shows the calculated amplitude peakof the correlations between the ideal UWB monocycle and the QSSB-UWB and monocycles, i.e. the maximal value of F 1 (τ). When the phase modulation index is smaller than π/6, i.e. small signal modulation is applied, the two curves are almost superimposed, which agrees very well with the analytical results since the linear terms of () and (8) are the same and the high-order terms are very small. When the phase modulation index is larger than π/6, i.e. large signal modulation is applied, the linearity of the curve for the QSSB-UWB monocycle is kept, indicating that the QSSB-UWB generation scheme is almost free of modulation distortion. On the other hand, the curve for the monocycle becomes saturated because the third-order term in (8) increases/decreases faster than that in (). Especially, when the phase modulation index is larger than π/, the amplitude peak decreases as the phase modulation index increasing, showing that serious modulation distortion is presented. These results are also confirmed by Fig. (b), which gives the full width at half maximum (FWHM) of the correlations between the ideal UWB monocycle and the QSSB-UWB and monocycles. When the phase modulation index is increased from 0 to π, the FWHM keeps almost the same value (about 70 ps) for the QSSB-UWB monocycle. However, for the monocycle, the FWHM changes from ~70 to ~140 ps, showing again that the modulation distortion is serious when large signal modulation is performed. Figure shows the curves of correlations between the ideal UWB monocycle and the QSSB-UWB monocycle or monocycle at four phase modulation indices (π/8, π/, π/4 and π). From Fig., we can see that the shapes of the correlation functions at different phase modulation indices are almost the same for the QSSB- UWB monocycle while double peaks are observed for the monocycle when the phase (C) 011 OSA 4 July 011 / Vol. 1, No. 14 / OPTICS EXPRESS 160

modulation index is π/4 or π. The presence of double peaks can be used to explain the drop of FWHM at the phase modulation index of.65 in Fig. (b). In a practical UWB communication system, the signals after correlation are filtered by a low pass filter (LPF) before sent to a decision gate. The receiver sensitivity, which is the minimum value of average received power required to produce a specified signal-to-noise ratio, would be highly related to the signal power obtained after low pass filtering. In general, the decision of 1-bit or 0-bit at the decision gate is made at the center of the pulses, which corresponds to the amplitude peak of the correlation signal, to minimize the possibility of bit errors. Therefore, to evaluate the influence of the large signal modulation on the receiver sensitivity, the amplitude peak of the correlation signal after a LPF is calculated. Three LPFs with different cut-off frequencies (84 MHz, 81. MHz and GHz) are considered for three different data rates (480Mb/s, 104Mb/s and.5gb/s), respectively. Figure 4 shows the calculated amplitude peak against phase modulation index. Since the correlation signal has a lot of high frequency components, larger output power is obtained when LPF with higher cutoff frequency is used. For all the three LPFs, the curves for QSSB-UWB are almost linear. The receiver sensitivity is increased linearly if a large phase modulation index is applied. However, for, the increase of the electrical power to the modulator would introduce significant modulation distortion, which has negative contribution to the receiver sensitivity, as shown in Fig. 4. Amplitude Peak (a.u.) 0.05 0.00 QSSB 0.015 0.010 0.005 0.000 0 1 Amplitude Peak (a.u.) 0.5 0.0 0.15 QSSB 0.10 0.05 0.00 0 1 (a) (b) Amplitude Peak (a.u.).5.0 1.5 1.0 0.5 QSSB 0.0 0 1 (c) 4. Conclusion Fig. 4. The calculated amplitude peak of the correlation signal with low pass filtering against phase modulation index. The cut-off frequencies of the low pass filters are (a) 84 MHz, (b) 81. MHz and (c) GHz. The influence of large signal modulation on two typical external-modulator-based photonic UWB generation schemes was analytically and numerically studied. Because the differentiation operation is performed on the amplitude of the optical field for the QSSB- UWB generation scheme, and is performed on the optical power for the generation scheme, QSSB-UWB generation scheme has superior performance over the generation scheme when large signal modulation is performed, which results in higher receiver sensitivity in a practical UWB communication system. The study suggests an important way to construct a UWB over fiber system with small optical to electrical conversion loss and small noise figure. Acknowledgements This work was supported in part by the national Natural Science Foundation of China (NSFC) under grant of 6087704 and 6100, and the Program for New Century Excellent Talents in University (NCET). (C) 011 OSA 4 July 011 / Vol. 1, No. 14 / OPTICS EXPRESS 161