Universal Acquisition and Tracking Apparatus for Global Navigation Satellite System (GNSS) Signals: Research Patent Introduction (RPI)

Similar documents
Benefits and Limitations of New GNSS Signal Designs. Dr. A. J. Van Dierendonck AJ Systems, USA November 18, 2014

BeiDou Next Generation Signal Design and Expected Performance

Monitoring Station for GNSS and SBAS

DESIGN AND IMPLEMENTATION OF INTEGRATED GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) RECEIVER. B.Tech Thesis Report

GNSS Signal Structures

GPS (Introduction) References. Terms

Dynamic Reconfiguration in a GNSS Software Defined Radio for Multi-Constellation Operation

Benefits of combining systems The Receiver s Perspective Dr Philip G Mattos

Foreword by Glen Gibbons About this book Acknowledgments List of abbreviations and acronyms List of definitions

Introduction to Global Navigation Satellite System (GNSS) Signal Structure

Future GNSS: Improved Signals and Constellations

DEFINING THE FUTURE OF SATELLITE SURVEYING WITH TRIMBLE R-TRACK TECHNOLOGY

Bring satellites into your lab: GNSS simulators from the T&M expert.

DYNAMICALLY RECONFIGURABLE SOFTWARE DEFINED RADIO FOR GNSS APPLICATIONS

GNSS Modernisation and Its Effect on Surveying

The Case for Recording IF Data for GNSS Signal Forensic Analysis Using a SDR

Bring satellites into your lab

GPS (Introduction) References. Terms

Report of the Working Group B: Enhancement of Global Navigation Satellite Systems (GNSS) Services Performance

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey

Integrity of Satellite Navigation in the Arctic

Global Navigation Satellite Systems (GNSS)Part I EE 570: Location and Navigation

Signal Structures for Satellite-Based Navigation: Past, Present, and Future*

Tracking New Signals from Space GPS Modernization and Trimble R-Track Technology

UNIT 1 - introduction to GPS

Global Navigation Satellite System (GNSS) GPS Serves Over 400 Million Users Today. GPS is used throughout our society

CNES contribution to GALILEO signals design JC2. Jean-Luc Issler

Implementation Methodologies of a Software Defined Navigator (SDN) allowing the Conception of a Real Time Robust Hybrid GPS/Galileo Receiver

GPS SVN49 L1 Anomaly Analysis based on Measurements with a High Gain Antenna

New Signal Structures for BeiDou Navigation Satellite System

EE 570: Location and Navigation

GPS/WAAS Program Update

Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003.

Unit 1 Introduction to Spread- Spectrum Systems. Department of Communication Engineering, NCTU 1

Field experience with future GNSS ranging signals (a review). A.Simsky, J.-M. Sleewaegen, W. De Wilde Septentrio, Belgium

GNSS MONITORING NETWORKS

Perspective of Eastern Global Satellite Navigation Systems

Analysis on GNSS Receiver with the Principles of Signal and Information

Signals, and Receivers

High Gain Advanced GPS Receiver

GALILEO Research and Development Activities. Second Call. Area 1B. Interference Detection Mitigation and Isolation.

Introduction to Global Navigation Satellite System (GNSS) Module: 1

Galileo signal reflections used for monitoring waves and weather at sea

MHz. Figure 1: spectrum plot of the L1 band without interference with the GPS L1C/A central frequency indicated

Adaptive Array Technology for Navigation in Challenging Signal Environments

Experiences with Fugro's Real Time GPS/GLONASS Orbit/Clock Decimeter Level Precise Positioning System

ICG GNSS Interoperability Workshop A Civil Aviation Perspective

Understanding GPS: Principles and Applications Second Edition

Specifications. Trimble BX982 Modular GNSS Heading Receiver

Future Concepts for Galileo SAR & Ground Segment. Executive summary

GALILEO JOINT UNDERTAKING

Leica GRX1200+ Series High Performance GNSS Reference Receivers

Every GNSS receiver processes

Study and Analysis on Binary Offset Carrier (BOC) Modulation in Satellite Navigation Systems

Several ground-based augmentation system (GBAS) Galileo E1 and E5a Performance

ELEVENTH AIR NAVIGATION CONFERENCE. Montreal, 22 September to 3 October 2003 TOOLS AND FUNCTIONS FOR GNSS RAIM/FDE AVAILABILITY DETERMINATION

Special Committee SC-159 Navigation Equipment Using the Global Navigation Satellite System (GNSS) (Version 11)

UHF Phased Array Ground Stations for Cubesat Applications

Recommendation ITU-R M.1905 (01/2012)

Prototype Galileo Receiver Development

Update on GPS L1C Signal Modernization. Tom Stansell Aerospace Consultant GPS Wing

As is well known, Galileo will. Airborne Applications. Issues and Perspectives

GALILEO COMMON VIEW: FORMAT, PROCESSING, AND TESTS WITH GIOVE

Probability of Secondary Code Acquisition for Multi-Component GNSS Signals

High Precision Applications with BeiDou

Understanding GPS/GNSS

Evaluating EGNOS technology in an ITS driving assistance application

Precise positioning in multi-gnss mode

European GNSS Evolution

Intro to GNSS & Teseo-LIV3F Module for IoT Positioning

Special Committee SC-159 Navigation Equipment Using the Global Navigation Satellite System (GNSS) (Version 13)

EFFECT OF SAMPLING JITTER ON SIGNAL TRACKING IN A DIRECT SAMPLING DUAL BAND GNSS RECEIVER FOR CIVIL AVIATION

DYNAMIC POSITIONING CONFERENCE October 7-8, Sensors I. Integrating Other GNSS with GPS and its Implication for DP Positioning

GNSS Signal Observations - Stanford and DLR

Software-Defined GNSS Simulator

Spread Spectrum Modulation

RECEIVER DEVELOPMENT, SIGNALS, CODES AND INTERFERENCE

Receiving the L2C Signal with Namuru GPS L1 Receiver

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic

ICG 9 PRAGUE 10 November 2014

Challenges and Solutions for GPS Receiver Test

Challenges and Methods for Integrity Assurance in Future GNSS

Benefits of amulti-gnss Receiver inaninterference Environment

On Location at Stanford University

Navigation für herausfordernde Anwendungen Robuste Satellitennavigation für sicherheitskritische Anwendungen

SBAS DFMC performance analysis with the SBAS DFMC Service Volume software Prototype (DSVP)

Canadian Coast Guard Review to Implement a Resilient Position, Navigation and Timing Solution for Canada. Mariners Workshop January 31 st, 2018

Prototype Software-based Receiver for Remote Sensing using Reflected GPS Signals. Dinesh Manandhar The University of Tokyo

TRIUMPH TECHNOLOGY. Javad Ashjaee

Satellite Navigation Principle and performance of GPS receivers

Digital signal processing for satellitebased

ORBITAL NAVIGATION SYSTEMS PRESENT AND FUTURE TENDS

Leica Spider Infrastructure HW Solutions Introducing: Leica GR30 & GR50

GPS Time Synchronization with World-Class Accuracy using a Few Selected Satellites

Development of Ultimate Seamless Positioning System for Global Cellular Phone Platform based on QZSS IMES

PORTABLE GNSS MONITORING STATION (PGMS)

Specifications. Trimble SPS555H Heading Add-on Receiver

ELECTRONIC BULLETIN For information only

Three Wishes. and an elaboration. For Reception of. Professor Bradford Parkinson Stanford University. (these are my personal views)

Assessment of GNSS Ionospheric Scintillation and TEC Monitoring Using the Multi-constellation GPStation-6 Receiver

Transcription:

Universal Acquisition and Tracking Apparatus for Global Navigation Satellite System (GNSS) Signals: Research Patent Introduction (RPI) 27/01/2014 PAR R.JR. LANDRY, M.A. FORTIN ET J.C. GUAY 0 An RPI is a blog article introducing Research Patent Application Publications and Research Papers done by researchers from École de technologie supérieure (ÉTS) de Montréal. Over the years and especially since 2000 when the Selective Availability (SA) feature of the Global Positioning System (GPS) was deactivated, satellite based positioning has become a widely used technique in a variety of application fields. However, its use remains limited in terms of availability, integrity, accuracy and resistance to interference [1]. These limitations indicate areas where current GPS receivers have exhibited a lack of robustness. The present invention relates to the construction on-the-fly of a Global Navigation Satellite System (GNSS) receiver according to di erent configurations including signal standards. http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introductio 1/10

Example of channel status and power level of the system The modernization of existing Global Navigation Satellite Systems and the arrival of new systems have diversified to a great extent the range of navigation signals available for civil use. The additional signals address the four traditional weaknesses of the GPS, namely availability, accuracy, integrity and resistance to interferences. This justifies the importance of implementing new robust acquisition and tracking architectures capable of harvesting all the new signals power in a compact design. Availability (and continuity) refers to in-view satellites continuously broadcasting signals. Integrity refers to the reliability of the system and of its compliance with specifications, or that signals are as they should be and any anomaly should be promptly identified. Accuracy refers to the resolution of the navigation solution and the precision of the computed position. This depends on both the Dilution Of Precision (DOP), which models the satellites geometry, and the User Equivalent Range Error (UERE). Interference resistance is an important characteristic since interference events, whether they are intentional (i.e. jamming) or not, could compromise the raw observation measurements (i.e. code and carrier phase measurements). Unintentional sources of interference include harmonics of other frequency bands, amplifier non-linearities, and multipath, which causes superposed reflections to be added to a direct line of sight (or direct path) signal. Jamming can take the form of narrow- or wide-band, constant or pulsed, fixed or sweeping sinusoidal waves. More sophisticated jammers, such as spoofers, could also mimic and alter the true GPS signal by broadcasting another at higher power. http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introductio 2/10

Example of Position Scatter Plot With the advent of more recent Global Navigation Satellite Systems (GNSS) including modernized GPS, GLONASS, Galileo and Beidou (a.k.a COMPASS) systems, new types of signals are now broadcast or at least should start being transmitted soon. These signals help resolve the above limitations of GPS. One contribution of the new signals is that their higher signal bandwidths will increase the resistance to interference e ects by diluting the impact of a narrow band interference over a larger bandwidth [2].The new signals should also provide better positioning accuracy and resistance to multipath since the chip period is shorter [3], thus requiring smaller correlator spacing and a higher sampling rate. Longer codes will increase cross-correlation protection of the signals and their robustness in weak signal environments. The higher number of satellites will increase availability and increase accuracy by reducing DOP impact. Integrity should also be improved through more detailed navigation messages. http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introductio 3/10

Currently, the most economical way to produce a navigation receiver is through an Application Specific Integrated Circuit (ASIC), which provides low-cost devices at high volumes. Therefore, hardware resource use of a GNSS channel is still an important consideration, despite the recent trend for pure so ware receivers or So ware Defined Radios (SDR). Indeed, in ASIC designs that are based on signal-specific channels, chances are good that high percentages of the chip will not be used most of the time. Also, populating many dedicated channels drives IC cost up. This is an important consideration going forward, as increasing blocks of functionality i.e. such as GPS, or GNSS receivers are being implemented as IP cores and are therefore expected to occupy less of the overall available ASIC real estate. Indeed, in the case of a totally So ware Defined Receiver for GNSS, implemented on a Personal Computer (PC), there may be no issue regarding which of the navigation signals should be tracked. But most commercially available resource-limited receivers are not as flexible and still rely on dedicated hardware to cope with the large loads of computation required by the multi-channel tracking process. The development of a universal design for an acquisition and tracking channel should thus apply to all currently defined or planned GNSS signals. In other words, there is a great need for an e icient architecture capable of adressing the coming processing needs. DESCRIPTION OF THE EMBODIMENTS OF THE INVENTION The overall architecture of a Global Navigation Satellite Systems (GNSS) receiver 100 is illustrated in Figure 1 showing an Antenna 102, which may capture a number of radio signals carrying navigation signals 104 on di erent frequencies from di erent satellites and deliver captured signals 106 to a Radio Frequency Front End 108. The Radio Frequency Front End 108 converts all captured signals 106 to intermediate frequency (IF) and outputs one or more digitized IF signals 110 which are processed in an Acquisition and Tracking Subsystem Apparatus 112 that delivers decoded navigation message bit streams and other data 114 to an Evaluation Subsystem 116. The Acquisition and Tracking Subsystem 112 will be also referred to as Acquisition and Tracking Apparatus 112 in this patent application. http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introductio 4/10

Fig.1. Overall architecture of a Global Navigation Satellite Systems (GNSS) receiver 100. The standard satellite radio frequencies used by the four di erent GNSSs are shown in Table 1. As it is well known, the GNSS receiver must receive and track several satellite signals on one or more di erent frequencies simultaneously. Although the navigation signals transmitted on the same frequency may be used by all satellites in the same navigation system, and the frequencies may be shared with satellite signals of other constellations, the signals are still distinguished by their modulation which includes spreading codes and optionally subcarrier. Table 1: Standard satellite radio frequencies used by the four di erent GNSSs http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introductio 5/10

Considering the large number civil GNSS RF signal components (in 2009, 614 are listed in Table 2; the number would be even greater if regional and augmentation systems were also considered) that are available worldwide, almost half should be visible to a user at any given time. The importance of reducing the total complexity and reusing as many resources as possible is very desirable, as are robustness and precision of the solution. Indeed, dedicated http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introductio 6/10

channels would remain unused if their targeted signal was unavailable, thus wasting power and ASIC space without any outcome. Table 2: Existing GNSS RF signal components in 2009. Although there is similarity between the various GNSS signals, the task to decode all these signals with a single design, i.e. the universal acquisition and tracking channel of the invention necessitates taking into account all these particularities. http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introductio 7/10

Signal analysis done by the system CONCLUSION The proposed architecture allows sequential acquisition and tracking of any chipping rate, any carrier frequency, any FDMA channel, any modulation (i.e. BPSK, sin/cos BOC (x,y), CBOC and TMBOC), any constellation and is completely configurable with respect to integration times, discriminator function, and so on. It also provides robustness against jamming or system failures. The dual component architecture allows an interesting sequential acquisition option: dual code delay estimation for twice as fast acquisition time. Moreover, its upgradable memory codes and configurability of the sub-carriers (phase and weights α and β) make it futurecompliant. This came at the cost of increasing the number of non-coherent phase tracking channel correlators from 6 to only 16 for the dual component channel, because of the reduction in sub-carrier resources achieved through their combination. For a more comprehensive discussion about Universal Acquisition and Tracking Apparatus for Global Navigation Satellite Systems, we invite you to read the research Patent Application http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introductio 8/10

Publication. To inquire on future projects of the LASSENA team, please consult the following link. René Jr Landry is a professor at the department of electrical engineering at École de technologie supérieure (ÉTS) and the Director of LASSENA Laboratory. His expertise in the embedded systems, navigation and avionic is appliqued notably in the field of transport, aeronautic and space technologies. Marc-Antoine Fortin is currently pursuing his Ph.D. in the field of Global Navigation Satellite System (GNSS) receivers robustness at ÉTS in Montréal, Canada. He previously received an Electrical Engineering Master s degree from École Polytechnique de Montréal (Canada) in 2005. Jean-Christophe Guay received a Master s degree in Electrical Engineering in 2010 at ÉTS and an Electrical Engineering Bachelor s degree at the same University in 2007. As part of his master degree project, he has mainly integrated the SBAS capabilities in a FPGA-based GNSS receiver. REFERENCES [1] Civil Aviation Authority (2004). GPS Integrity and Potential Impact on Aviation Safety. CAA Paper 2003/9, April, PDF. [2] Leveson I. (2006). Benefits of the New GPS Civil Signal The L2C study. Inside GNSS, vol. 18, pp. 42-56, PDF. [3] Meurer, M., S. Erker, S. Thölert, O. Montenbruck, A. Hauschild, and R. B. Langley (2009). GPS L5 First Light A Preliminary Analysis of SVN49 s Demonstration Signal. GPS World, pp. p.49-58, Document. PICTURES, FIGURES AND TABLE REFERENCES Header picture is from ESA http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introductio 9/10

All figures and tables are from the author. http://substance.etsmtl.ca/universal-acquisition-and-tracking-apparatus-for-global-navigation-satellite-system-gnss-signals-research-patent-introducti 10/10