Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Similar documents
Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

DESIGN AND ENHANCEMENT BANDWIDTH RECTANGULAR PATCH ANTENNA USING SINGLE TRAPEZOIDAL SLOT TECHNIQUE

On the Design of Slot Cut Circularly Polarized Circular Microstrip Antennas

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

COMPACT DUAL-BAND CIRCULARLY-POLARIZED AN- TENNA WITH C-SLOTS FOR CNSS APPLICATION. Education, Shenzhen University, Shenzhen, Guangdong , China

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Proximity fed gap-coupled half E-shaped microstrip antenna array

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Microstrip Antennas Loaded with Shorting Post

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Research Article Compact Multiantenna

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

Series Micro Strip Patch Antenna Array For Wireless Communication

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Analysis of Broadband L-probe Fed Microstrip Antennas

Radiation Performance of an Elliptical Patch Antenna with Three Orthogonal Sector Slots

Planar Leaky-Wave Antennas Based on Microstrip Line and Substrate Integrated Waveguide (SIW)

E-SHAPED STACKED BROADBAND PATCH ANTENNA

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

An overview of Broadband and Miniaturization Techniques of Microstrip Patch Antenna

Highly Directive Rectangular Patch Antenna Arrays

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Research Article A Dual Band Patch Antenna with a Pinwheel-Shaped Slots EBG Substrate

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

High gain W-shaped microstrip patch antenna

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Research Article UWB Directive Triangular Patch Antenna

Design a U-sloted Microstrip Antenna for Indoor and Outdoor Wireless LAN

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

Research Article A Dual-Band Printed End-Fire Antenna with DSPSL Feeding

APPLICATION OF A SIMPLIFIED PROBE FEED IMPEDANCE FORMULA TO THE DESIGN OF A DUAL FREQUENCY PATCH ANTENNA

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

Effects of Two Dimensional Electromagnetic Bandgap (EBG) Structures on the Performance of Microstrip Patch Antenna Arrays

Design of Frequency and Polarization Tunable Microstrip Antenna

A Broadband Omnidirectional Antenna Array for Base Station

A. A. Kishk and A. W. Glisson Department of Electrical Engineering The University of Mississippi, University, MS 38677, USA

An Annular-Ring Microstrip Patch Antenna for Multiband Applications

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed

Dual-slot feeding technique for broadband Fabry- Perot cavity antennas Konstantinidis, Konstantinos; Feresidis, Alexandros; Hall, Peter

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

New Broadband Optimal Directional Gain Microstrip Antenna for Pervasive Wireless Communication by Hybrid Modeling

Compact Gap-coupled Microstrip Antennas for Broadband and Dual Frequency Operations

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Chapter 7 Design of the UWB Fractal Antenna

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

Wideband Unidirectional Bowtie Antenna with Pattern Improvement

Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

DESIGN AND SIMULATION OF CIRCULAR DISK ANTENNA WITH DEFECTED GROUND STRUCTURE

A Compact Circularly Polarized Microstrip Antenna with Bandwidth Enhancement

Multi-Band Cylindrical Dielectric Resonator Antenna Using Permittivity Variation in Azimuth Direction

Optimized Circularly Polarized Bandwidth for Microstrip Antenna

Research Article A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Transcription:

Antennas and Propagation, Article ID 9812, 6 pages http://dx.doi.org/1.1155/214/9812 Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers Yuanyuan Zhang, 1,2 Juhua Liu, 1,2 Zhixi Liang, 1,2 and Yunliang Long 1,2 1 Department of Electronics and Communication Engineering, Sun Yat-Sen University, Guangzhou 516, China 2 SYSU-CMU Shunde International Joint Research Institute, Shunde 5283, China Correspondence should be addressed to Juhua Liu; liujh33@mail.sysu.edu.cn Received 1 April 214; Revised 15 June 214; Accepted 17 June 214; Published 29 June 214 Academic Editor: Tat Soon Yeo Copyright 214 Yuanyuan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A new center-fed circular patch antenna with two coupled annular rings is presented. When the two annular rings are coupled properly, a wide band from 5.45 GHz to 7.16 GHz is achieved with a monopole-like radiation pattern. Measured results show that the antenna with a low profile of.27 wavelengths (at 5.45 GHz) has a bandwidth of 27.1% and a measured maximum gain of 6 dbi. The radiation pattern is omnidirectional and remains relatively stable within the operating band. 1. Introduction Monopole antennas are widely used since they have an omnidirectional pattern and a vertical polarization in the horizontal plane [1].However,the profile of a conventional monopole antenna that has a quarter wavelengths is too high for some devices or applications that desire a low-profile radiator. Circular patch antennas (CPAs) are popular due to their advantages of low profile, low cost, and easy fabrication [2]. To realize a monopole-like radiation pattern for a CPA, various approaches have been proposed. In [3], a monopolelike radiation pattern is achieved using a CPA with a very low profile of.153 wavelengths. However, the impedance bandwidthoftheantennaisonly1.5%.inordertoimprovethe bandwidth, various techniques have been brought forward by researchers. In [4], the coaxial probe for the path antenna is located away from the center to improve the matching and it radiates in the broadside direction. The maximum bandwidth obtained was 3.7% with a center frequency of 5 GHz with a relative substrate dielectric constant of 1.4 and a thickness of 1.95 mm. By shorting a patch antenna with two wires, a patch antenna in [5] with a monopole-like radiation pattern has its size greatly minimized, but its bandwidth is only 3% for a profile of.6 wavelengths. The narrow bandwidths of the antennas [3 5] limit the applications in modern wireless communication systems. In recent years, to improve the bandwidth, more effective methods have been put forward. A circular patch-ring antenna [6] fabricatedonpcbcan generate two resonating frequencies of the same mode and provides a wide bandwidth of 12.8% with a low profile of.3 wavelengths. Since the patch and ring are coupled properly, its bandwidth is greatly improved. The antenna that utilizes two modes (TM 1 and TM 2 modes) in [7] isbasedona circular patch antenna that is shorted concentrically with a set of conductive vias. The proposed antenna has a simple structure with a low profile of.24 wavelengths and yields a wide impedance bandwidth of 18%. However, via holes must be used for the shorting points, which are not convenient for fabrication. In this paper, we propose a center-fed circular microstrip patch antenna loaded with two annular rings to achieve a monopole-like radiation pattern and a wide bandwidth by generating three resonating frequencies. With a very low profile of 1.5 mm (.27 wavelengths at 5.45 GHz), the antenna has an input impedance bandwidth of 27.1% (from 5.45 GHz to 7.16 GHz), a measured maximum gain of 6 dbi, and an omnidirectional radiation pattern in the horizontal plane. The antenna has a simple structure and can be easily fabricated on a thin single-layer substrate.

2 Antennas and Propagation R 2 W 1 R p W 2 R g R 1 y y x z h Figure 1: Geometry of the proposed patch antenna with dual-ring couplers. 1 2 3 Table 1: The physical parameters and impedance bandwidth, for the circular patch antennas in Figure 2. Symbol No ring Single-ring coupled dual-ring coupled h 1.5 mm 1.5 mm 1.5 mm ε r 2.55 2.55 2.55 R g 6 mm 6 mm 6 mm R p 18 mm 18 mm 18 mm R 1 12 mm 12.25 mm W 1 1 mm.3 mm R 2 11.25 mm W 2 1mm BW 13% 27% No ring Single-ring coupled Dual-rings coupled Figure 2: Simulated S 11 for a circular patch antenna without coupled rings, a circular patch antenna with a single-ring coupled and a circular patch antenna with a dual-ring coupled. The proposed antenna is analyzed with a cavity model to find out the resonant mechanism. Parametric study is carried out using simulation software ANSYS HFSS [8]. 2. Antenna Design The geometry of the circular patch antenna loaded with two annular rings is shown in Figure 1. The antenna is fabricated on a substrate with a relative permittivity of ε r =2.55and athicknessofh = 1.5 mm. The antenna is centrally fed by a coaxial connector from the back of the substrate. On the top of the substrate, a circular patch with a radius of R p is placed at the center. Besides the circular patch, two rings with widths of R 1 and R 2 are concentrically loaded. The width of the slot between the circular patch and the inner ring is W 1 and the width of the slot between the inner ring and outer ring is W 2.ThegroundplaneradiusR g is 6 mm. The design procedure of the antenna is similar to that of a conventional patch antenna with two or three parasitic patches. Firstly, the circular patch is designed for the center frequency of 5.8 GHz (without the annular rings coupled). Using the cavity model [9], the radius of the circular patch R p canbecalculatedandsetas18mm.secondly,thesizeof inner ring can be roughly predicted for a resonant frequency slightly higher than 5.8 GHz, from the equation for annular ring microstrip antenna [1]. Thirdly, the radius width R 2 oftheouterringcanbecalculatedinthesamewaywith aresonantfrequencyclosetothatoftheinnerring.so, the values of R 1 and R 2 are set as 12 mm and 11 mm, approximately. Finally, the widths of slots (W 1 and W 2 )and the widths of the rings (R 1 and R 2 )areoptimizedtoobtain a wide bandwidth, using HFSS simulation. The values of the optimized parameters are given in Table 1. The proposed antenna achieves a wider bandwidth compared to conventional circular microstrip patch or circular microstrip patch with a single ring. The impedance bandwidth and physical parameters of the three antennas are

Antennas and Propagation 3 1 2 3 1 2 3 R p =17mm R p =18mm R p = 18.5 mm W 1 =.2 mm W 1 =.3 mm W 1 =.4 mm (a) (b) 1 1 2 2 3 3 W 2 =.8 mm W 2 =1mm W 2 =1.2 mm R 1 =12mm R 1 = 12.25 mm R 1 = 12.5 mm (c) 1 2 3 (d) R 2 =12mm R 2 = 12.25 mm R 2 = 12.5 mm (e) Figure 3: Simulated S 11 for the proposed antennas with different parameters. (a) Simulated S 11 for different R p (W 1 =.3 mm, W 2 = 1 mm, R 1 = 12.25 mm, R 2 = 11.25 mm). (b) Simulated S 11 for different W 1 (R p =18mm, W 2 = 1 mm, R 1 = 12.25 mm, R 2 = 11.25 mm). (c) Simulated S 11 for different W 2 (R p =18mm, W 1 =.3 mm, R 1 = 12.25 mm, R 2 = 11.25 mm). (d) Simulated S 11 for different R 1 (R p =18mm, W 1 =.3 mm, W 2 =1mm, R 2 = 11.25 mm). (e) Simulated S 11 for different R 2 (R p =18mm, W 1 =.3 mm, W 2 =1mm, R 1 = 12.25 mm).

4 Antennas and Propagation 1 2 Simulated Measured Figure 4: Simulated and measured S 11 for the proposed antenna. presented in Table 1. As shown in solid line in Figure 2, the simulated reflection coefficient for the proposed antenna is less than 1 db in the band from 5.45 GHz to 7.16 GHz, with a fractional bandwidth of 27.1%. The 1 db returnloss band of the single-ring circular patch antenna is from 5.76 to 6.59 GHz, with a fractional bandwidth of 13%. The antenna with a single-ring coupled and the proposed antenna produce a similar monopole-like radiation pattern with a gain of about 5.7 dbi and 6 dbi, respectively. The bandwidth of the presented antenna is over 51% wider than that of the circular patch antenna with a single annular ring coupled. The bandwidth could be further improved with more coupled rings but with a higher complexity in the design. And we will study in the further study. 3. Parametric Study From the previous section, it is noticed that several parameters have influences on the resonant frequencies and the matching of the antenna. In this section, we will demonstrate the effect of each of these parameters. As shown in Figures 3(a), 3(d),and3(e), f 1 increases with thedecreaseofr p, f 2 increases with the decrease of R 1,and f 3 increases with the decrease of R 2.Then,itisobservedthat these simulation results above agree with the cavity theory. In Figures 3(b) and 3(c), the gap between the centre patch and the first annular ring must be very small to have a wide bandwidth, because the coupling must be strong enough to make the coupled rings work [11]. In the design of the antenna, the gap between the first and the second annular rings also needs to be tuned to control the coupling strength between them. 4. Experiment Result With the help of simulation, the dimensions of the proposed antenna are optimized to be R p =18mm, R 1 = 12.25 mm, R 2 = 11.25 mm, W 1 =.3 mm, and W 2 =1mm. A prototype is fabricated and measured. Good agreement between the measured and simulated results is observed in Figure 4. With the definition of 1 db reflection coefficients, the measured input impedance bandwidth is 1.61 GHz (from 5.45 to 7.16 GHz), which is about 27.1% input impedance bandwidth. The radiation patterns for the proposed antenna are simulated and measured at the three resonant frequencies within the bandwidth. The measured radiation patterns agree well with the HFSS simulations, and a monopole-like pattern is obtained. Figures 5(a), 5(c), and 5(e) show the simulated and measured E-plane radiation patterns at 5.64, 6.4, and 7.4 GHz, respectively. The cross polarization is about 2 db below the copolarization level. The H-plane patterns are shown in Figures 5(b), 5(d), and 5(f). The pattern is omnidirectionalandthecrosspolarizationlevelismorethan15db below that of the copolarization level. The maximum gain and the gain in omnidirection for the proposed antenna are shown in Figures 6(a) and 6(b),respectively.Measuredresult shows that the proposed antenna obtains a maximum gain of about 6 dbi, which agrees well with the HFSS simulations. 5. Conclusion A new center-fed circular patch antenna with dual-ring couplers is presented. Triple-resonance behavior is observed in the antenna, which contributes a wide bandwidth for the antenna with a very low profile of only.27 wavelengths (at 5.45 GHz). Measured result shows that the antenna has a bandwidth of 27.1% and produces a monopole-like radiation pattern with a gain of about 6 dbi. The bandwidth of the proposed antenna is over 51% wider than the bandwidth of the antenna with single-ring coupled. This antenna has a good potential for wireless communications.

Antennas and Propagation 5 33 3 33 3 3 db 6 2 db 3 2 db db 6 27 4 db 9 27 4 db 9 24 12 24 12 21 18 15 21 18 15 (a) (b) 33 3 33 3 3 2 db db 6 3 db 6 2 db 27 4 db 9 27 4 db 9 24 12 24 12 21 18 15 21 18 15 (c) (d) 33 3 33 3 3 6 3 6 27 4 db 2 db db 9 27 4 db 2 db db 9 24 12 24 12 21 18 15 21 18 15 Simulated Co-polar Simulated X-polar Measured Co-polar Measured X-polar Simulated Co-polar Simulated X-polar Measured Co-polar Measured X-polar (e) (f) Figure 5: E-plane radiation patterns for the proposed antenna at (a) 5.64 GHz; (c) 6.4 GHz; and (e) 7.4 GHz. H-plane radiation patterns for the proposed antenna at (b) 5.64 GHz; (d) 6.4 GHz; and (f) 7.4 GHz.

6 Antennas and Propagation 1 1 8 Maximum gain (db) 6 4 2 Maximum gain (db) 5 2 4 1 Simulated gain Measured gain Simulated gain Measured gain (a) (b) Figure 6: (a) Maximum gain for the proposed antenna. (b) Gain in omnidirection for the proposed antenna. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgment This work was supported in part by the Research Project of Guangdong Province (212B9115). References [8] HFSS: High Frequency Structure Simulator Based on Finite Element Method, v.1.,ansoft,25. [9] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, chapter 4, Artech House, Norwood, Mass, USA, 21. [1] J. R. James and P. S. Hall, Handbook of Microstrip Antennas,vol. 28 of IEE Electromagnetic Wave Series,Chapter5,London,UK, 1989. [11] T. Chakravarty, S. Biswas, A. Majumdar, and A. De, Computation of resonant frequency of annular-ring-loaded circular patch using cavity model analysis, Microwave and Optical Technology Letters,vol.48,no.3,pp.622 626,26. [1] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, Wiley, New York, NY, USA, 2nd edition, 1998. [2] J.R.JamesandP.S.Hall,Handbook of Microstrip Antennas,vol. 28 ofiee Electromagnetic Wave Series, chapter 1, The Institution of Engineering and Technology, London, UK, 1989. [3] L. Economou and R. J. Langley, Patch antenna equivalent to simple monopole, Electronics Letters,vol.33,no.9,pp.727 729, 1997. [4]D.M.Kokotoff,R.B.Waterhouse,C.R.Birtcher,andJ.T. Aberle, Annular ring coupled circular patch with enhanced performance, Electronics Letters,vol.33,no.24,pp.2 21, 1997. [5] C. Delaveaud, P. Leveque, and B. Jecko, New kind of microstrip antenna: the monopolar wire-patch antenna, Electronics Letters,vol.3,no.1,pp.1 2,1994. [6] A. Al-Zoubi, F. Yang, and A. Kishk, A broadband center-fed circular patch-ring antenna with a monopole like radiation pattern, IEEE Transactions on Antennas and Propagation, vol. 57, no. 3, pp. 789 792, 29. [7] J.Liu,Q.Xue,H.Wong,H.W.Lai,andY.Long, Designand analysis of a low-profile and broadband microstrip monopolar patch antenna, IEEE Transactions on Antennas and Propagation,vol.61,no.24,pp.11 18,213.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration