JLJlJ. I N i L. ~ SELECTOR RF OUT. r ,! RING OSCILLATOR V 10. US Bl

Similar documents
V IN. GmVJN. Cpi VOUT. Cpo. US Bl. * cited by examiner

~150 ~170. US Bl. * cited by examiner. (10) Patent No.: US 6,433,949 Bl

(12) United States Patent

(12) United States Patent

(12) United States Patent

Feature (Claims) Preamble. Clause 1. Clause 2. Clause 3. Clause 4. Preamble. Clause 1. Clause 2. Clause 3. Clause 4

United States Patent [19]

/ 7. 2 LOWER CASE. (12) United States Patent US 6,856,819 B2. Feb. 15, (45) Date of Patent: (10) Patent No.: 5 PARASITIC ELEMENT

High Efficiency Parallel Post Regulator for Wide Range Input DC/DC Converter.

(12) United States Patent

communication signal to the receiver. If the amplifier is disabled, the amplifier passes the communication signal to the receiver without amplifying

(12) United States Patent (10) Patent No.: US 7,199,695 B1 Zhou et a]. (45) Date of Patent: Apr. 3, 2007

Altering vibration frequencies of workpieces, such as gas turbine engine blades. Abstract

(12) United States Patent (10) Patent No.: US 7.458,305 B1

Kiuchi et al. (45) Date of Patent: Mar. 8, 2011

(12) United States Patent (10) Patent No.: US 6,275,104 B1

US A United States Patent (19) 11 Patent Number: 5,477,226 Hager et al. 45) Date of Patent: Dec. 19, 1995

(12) United States Patent

(12) United States Patent (10) Patent No.: US 7,009,450 B2

-400. (12) Patent Application Publication (10) Pub. No.: US 2005/ A1. (19) United States. (43) Pub. Date: Jun. 23, 2005.

(12) United States Patent

\ Y 4-7. (12) Patent Application Publication (10) Pub. No.: US 2006/ A1. (19) United States. de La Chapelle et al. (43) Pub. Date: Nov.

(12) United States Patent (10) Patent No.: US 7,859,376 B2. Johnson, Jr. (45) Date of Patent: Dec. 28, 2010

United States Patent [I91 [ill Patent Number: 6,037,886

KIf G _ V I 55 ~~CBOOT. r-----(~ US Bl. * cited by examiner. -L 4>solf 4>. " V DD qson

(12) United States Patent (10) Patent No.: US 8,013,715 B2

III. United States Patent (19) Ashe. 5,495,245 Feb. 27, OTHER PUBLICATIONS Grebene, Bipolar and MOS Analog Integrated Circuit

United States Patent [19]

Ring geometry diode lasers arrays and methods so that they are coherent with each other.

US 7,667,511 B2 Feb. 23,2010

(12) United States Patent (10) Patent No.: US B2. Chokkalingam et al. (45) Date of Patent: Dec. 1, 2009

(12) United States Patent (10) Patent No.: US 6,512,361 B1

Chapter 7. Multiple Division Techniques

USOO A. United States Patent (19) 11 Patent Number: 5,272,450 Wisherd (45) Date of Patent: Dec. 21, 1993

(12) United States Patent (10) Patent No.: US 6,337,722 B1

OptiSystem applications: Digital modulation analysis (PSK)

United States Patent [19]

Head-Mounted Display With Eye Tracking Capability

us Al (10) Pub. No.: US 2005/ Al (43) Pub. Date: Oct. 20, 2005

(12) United States Patent (10) Patent No.: US 6,436,044 B1

Hsu (45) Date of Patent: Jul. 27, PICTURE FRAME Primary Examiner-Kenneth J. Dorner. Assistant Examiner-Brian K. Green

United States Patent (19)

(12) United States Patent

(12) United States Patent (10) Patent No.: US 6,957,665 B2

(10) Pub. No.: US 2004/ Al (43) Pub. Date: Aug. 5, 2004 (57)

(12) United States Patent (10) Patent No.: US 6,386,952 B1

(12) United States Patent (10) Patent No.: US 6,920,822 B2

58 Field of Search /341,484, structed from polarization splitters in series with half-wave

USOO A United States Patent (19) 11 Patent Number: 5,889,643 Elms (45) Date of Patent: Mar. 30, 1999

(12) United States Patent (10) Patent No.: US 6,729,834 B1

(12) United States Patent (10) Patent No.: US 6,433,976 B1. Phillips (45) Date of Patent: Aug. 13, 2002

US 6,959,049 B2 Oct. 25, 2005

, ,

(12) United States Patent (10) Patent No.: US 7,221,967 B2

part data signal (12) United States Patent control 33 er m - sm is US 7,119,773 B2

United States Patent (19)

WA wrippe Z/// (12) United States Patent US 8,091,830 B2. Jan. 10, (45) Date of Patent: (10) Patent No.: Childs

202 19' 19 19' (12) United States Patent 202' US 7,050,043 B2. Huang et al. May 23, (45) Date of Patent: (10) Patent No.

United States Patent [19] Adelson

UNIVERSITY OF BAHRAIN COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

United States Patent (19) Rannou et al.

United States Patent (19) Vitale

(12) United States Patent (10) Patent No.: US 7,639,203 B2

(12) (10) Patent No.: US 7,226,021 B1. Anderson et al. (45) Date of Patent: Jun. 5, 2007

(12) United States Patent (10) Patent No.: US 7,557,649 B2

in-s-he Gua (12) United States Patent (10) Patent No.: US 6,388,499 B1 (45) Date of Patent: May 14, 2002 Vddint : SFF LSOUT Tien et al.

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) United States Patent

(12) United States Patent (10) Patent No.: US 6, 177,908 B1

(12) United States Patent

(12) Patent Application Publication (10) Pub. No.: US 2002/ A1. Jin (43) Pub. Date: Sep. 26, 2002

US A United States Patent (19) 11 Patent Number: 6,027,027 Smithgall (45) Date of Patent: Feb. 22, 2000

(12) United States Patent (10) Patent No.: US 7.704,201 B2

United States Patent (19) PeSola et al.

(12) United States Patent

United States Patent [19]

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(*) Notice: Subject to any disclaimer, the term of this E. E. E. " "...O.E.

United States Patent (19)

United States Patent Patent Number: 5,683,539 Qian et al. 45 Date of Patent: Nov. 4, 1997

II I III. United States Patent (19) Johnson, Jr. 73 Assignee: Exide Electronics Corporation,

United States Patent (19) Ohta

US 9,506,848 B2 Nov. 29, 2016

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

United States Patent (19)

Digital to Digital Encoding

Triaxial fabric pattern

(12) (10) Patent No.: US 7, B2. Drottar (45) Date of Patent: Jun. 5, 2007

Warp length compensator for a triaxial weaving machine

United States Patent (19) Morita et al.

United States Patent (19) 11 Patent Number: 5,299,109. Grondal. (45. Date of Patent: Mar. 29, a. Assistant Examiner-Alan B.

Revision of Previous Six Lectures

(12) United States Patent

(12) United States Patent (10) Patent No.: US 6,879,224 B2. Frank (45) Date of Patent: Apr. 12, 2005

(12) United States Patent (10) Patent No.: US 6,750,955 B1

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

setref WL (-2V +A) S. (VLREF - VI) BL (Hito SET) Vs. GREF (12) United States Patent (10) Patent No.: US B2 (45) Date of Patent: Sep.

(12) United States Patent

United States Patent 19 Clifton

6,591,614 B2 * Smith et al ,714,299 B2 * Peterson et al A1 * Zheng et al...

Transcription:

111111111111111111111111111111111111111111111111111111111111111111111111111 US006560296Bl (12) United States Patent (10) Patent No.: US 6,560,296 B Glas et al. (45) Date of Patent: May 6, 2003 (54) METHOD AND APPARATUS FOR MODULATNG DGTAL DATA (75) nventors: Jack Glas, Basking Ridge, NJ (US); Vladimir Prodanov, New Providence, NJ (US); Maurice Tarsia, Colonia, NJ (US) (73) Assignee: Lucent Technologies nc., Murray Hill, NJ (US) ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.c. 154(b) by 0 days. (21) Appl. No.: 09/304,639 (22) Filed: May 4, 1999 (51) nt. C? H04L 27/20 (52) U.S. C. 375/308; 375/261; 375/279; 375/298 (58) Field of Search 375/261, 273, 375/279, 280, 281, 282, 283, 297, 298, 308; 332/103, 104, 144; 359/183; 370/206, 215; 455/23, 42, 60, 110 (56) References Cited U.S. PATENT DOCUMENTS 4,571,549 A 2/1986 Lads et al. 332/103 4,862,116 A 8/1989 Olver 332/145 5,420,546 A 5/1995 Watanabe et al. 331/57 5,502,745 A * 3/1996 Williams et al. 375/282 5,815,531 A * 9/1998 Dent 375/298 5,939,951 A * 8/1999 Bateman et al. 332/103 OTHER PUBLCATONS Matsuoka H. et a., "A 5-GHZ Frequency-Doubling Quadrature Modulator With a Ring-type Local Oscillator", Melecon Conferences, May 18, 1998, EEE BCTM 6.3, pp. 113-116. Morais D. H. et a., "NLA-QAM: A Method for Generating High-Power QAM Signals Through Nonlinear Amplifica tion," EEE Transactions on Communications, vol. 30, No. 3, Mar. 1, 1982, pp. 517-522. * cited by examiner Primary Examiner---8tephen Chin Assistant Examiner-Chieh M. Fan (74) Attorney, Agent, or Firm-Harness, Dickey & Pierce, P.L.c. (57) ABSTRACT The modulator includes an oscillator generating signals, each having a different phase, and a selector receiving digital data. When the digital data received by the selector changes logic state, the selector supplies a first and second plurality of signals generated by the oscillator to first and second non-linear amplifiers, respectively. An adder then adds the output of each amplifier to generate a radio frequency output. 17 Claims, 4 Drawing Sheets JLJlJ r------------------------------------,! RNG OSCLLATOR V 10!! 12-1 12-2 12-N i!! L. SELECTOR RF OUT 20 14

u.s. Patent May 6, 2003 Sheet 1 of 4 US 6,560,296 B REFERENCE FG. 1. ostate o BPSK CONSTELLATON DAGRAM 1 STATE ------<...---+----1 0=0 deg : 0=180 deg t FG. 2 Q 010 000 ----+---------1 o 10 Jl.11J FG. 3 r---------------------------------------,! RNG OSCLLATOR V 10 i 12-1 12-2 12-N i L SELECTOR RF OUT 20 14

u.s. Patent May 6, 2003 Sheet 2 of 4 US 6,560,296 B DATA N FG. 4A,,,,, FG. 48 t -T bit o t FG. 5 1M... 16 DSCRETE CE1"""..- r.phases... THE RNG AROUND RF OUT:/.+.,..+..\...:....32...,', '5".:..., '.' :'. '\ "Re, " = 1T, (-1) f (,;1 "O, (.11,,. TRAJECTORY OF "...... _--. <#.-.'.' R. OUT PHASOR AMPLTUDE -; 2A... o...--- PROJECTON OF t RF OUT PHASOR t=o OVER TME t=t bit

u.s. Patent May 6, 2003 Sheet 3 of 4 US 6,560,296 B FG. 6 ajlm 14 SELECTOR,- ----- ---------1 1----+---+--+--..., v 12-N i 10 JlM j L. SELECTOR -RF OUT 20 14

FG. 7 N-PHASE QUADRATURE-PHASE... 1M 1M 16 DSCRETE.... =o. (+ 11.. 1.... PHASES AROUND... =.'.' '. """.THE RNG... w...,..'... 1...... ) "+......."';,.' f f,", N + 0= TT. 1-1l ( Re Re '-< 0=0, (+ 11.. '.... " * (," ' :'. '-...:"...,..' " C,, '...1... TRAJECTORY OF -.2> /,/ i 8 TRAJECTORY OF Q-RF OUT "..: :...,,'... -RF OUT...,... :.....,.........:,.,.. ' 'JJ. 1M i AMPLTUDE "'" -f'. (-1) : =... i ;, 2A 0 0. ' =TT.O.... '1. 0. '!'=O,O 2A-- 0.. : \ o PROJECTON OF PHASOR OVER TME 'te....k..... A\ ' Jl?o t..., -RF OUT t T ' f. f"" t 0 PROJECTON OF itt = bit /.:... : = Q-RF OUT PHASOR : = bi t i t,: Re _ OVER TME ----:'- : :' lao 0. ' =TT.".... ALL POSSBLE TRAJECTORES OF RF OUT FROM e \Jl..CJ\./ 0, 'f=ov ().. ' CJ\ Q ADDER 50 10-" d 'JJ. N \0 CJ\

1 METHOD AND APPARATUS FOR MODULATNG DGTAL DATA BACKGROUND OF THE NVENTON 1. Field of the nvention The present invention relates to an efficient digital trans mission technique, and more particularly, a method and apparatus for modulating digital data. 2. Description of Related Art Digital communication relies on numerous different, albeit related, forms of digital modulation such as phase shift keying (PSK), bi-phase shift keying (BPSK), quadrature phase shift keying (QPSK or 4-PSK), and quadrature amplitude modulation (QAM). BPSK will be described with reference to FG. 1. As shown, the magnitude of a reference carrier is constant, and to transmit either a 0 or a 1, the phase thereof is "keyed" or switched between 0 and 180. A receiver then decides whether a 0 or a 1 was transmitted based on the phase of the received carrier, and generates the original data stream. With this simple scheme, one bit of information is transmitted with each state or symbol, so that the carrier phase is keyed at the data rate. FG. 1 also illustrates the constellation for BPSK. As shown, the BPSK constellation diagram includes two points in the -Q plane where stands for in-phase (i.e., phase reference) and Q stands for quadrature (i.e., 90 out-of-phase). The two points in the BPSK constellation diagram represent the position of the signal at the "timing instance". The timing instance is when the receiver interprets the signal. The signal can only be at one position at a time, but the constellation can be thought of as having persistence so that all of proper the states appear. Constellation diagrams such as in FG. 1 typically do not show the transition between states and it should be noted that this transition does take a finite time. But for clarity, the transitions are not shown otherwise traces connecting the two states would clutter the diagram. FG. 2 illustrates the constellation diagram for QPSK. As shown, four different states exist in the QPSK diagram at phase values of 45,135,225, and 315. As further shown, each state corresponds to a symbol representing two bits. Because the data is taken two bits at a time to form a symbol, the symbol rate is half the bit rate. As a result, QPSK requires half the band width of BPSK for the same bit rate. Transmission of the modulated signal usually requires generating an amplified modulated signal. Unfortunately, amplification can introduce distortion, which alters the bandwidth of the signal. Many multiple access communication techniques, such as time division multiple access (TDMA), require maintaining transmitted signals within a narrow frequency band to increase capacity. For this reason, linear amplifiers have generally been used to amplify modulated signals when such multiple access communication techniques are employed. Linear amplifiers, while amplifying the modulated signal, also preserve the frequency of the signal, and give a better narrow band accuracy. By narrow band, it is meant that the frequency band of the carrier signal is larger than the frequency band of the signal. Linear amplifiers, however, consume significant power. Power becomes an issue, particularly, in wireless communication systems where the individual mobile stations are powered by a limited power source. Accordingly, techniques that advantageously lengthen the life of such power sources are highly desirable. US 6,560,296 Bl 5 10 15 20 25 30 35 40 45 50 55 60 65 2 SUMMARY OF RE NVENTON The method and apparatus for modulating digital data according to the present invention uses non-linear amplifiers. Non-linear amplifiers, occasionally called switching or high frequency amplifiers and commonly known (but not limited to) as classes D, E, F, G and H, faithfully reproduce the phase of a signal, but not the envelope (in contrast to linear amplifiers). Non-linear amplifiers consume significantly less power than linear amplifiers, but because of the distortion they introduce, typically do not meet narrow frequency band requirements. However, the method and apparatus for modulating digital data according to the present invention, while using non-linear amplifiers, also meets narrow frequency band requirements. The modulator includes an oscillator generating signals, each having a different phase. A selector, in the modulator, sends a first plurality of these signals to a first non-linear amplifier when the digital data received by the selector changes logic state (e.g., goes from 0 to 1 or from -1 to 1), and also sends a second plurality of the signals to a second non-linear amplifier when the digital data changes logic state. The outputs of the first and second non-linear amplifiers are summed to generate a radio frequency output that does not suffer from distortion typically introduced by non-linear amplifiers. BREF DESCRPTON OF THE DRAWNGS The present invention will become more fully understood from the detailed description given below and the accompanying drawings which are given by way of illustration only, wherein like reference numerals designate corresponding parts in the various drawings, and wherein: FG. 1 illustrates the reference carrier, keyed reference carrier and constellation diagram for bi-phase shift keying; FG. 2 illustrates the constellation diagram for quadrature phase shift keying; FG. 3 illustrates a modulator according to the present invention for performing BPSK modulation; FGS. 4A-4B illustrate the digital data received and the RF output of the modulator illustrated in FG. 3; FG. 5 illustrates the differently phased signals generated by the oscillator in the modulator of FG. 3 and the RF output phasor trajectory; FG. 6 illustrates a modulator according to the present invention for performing QPSK modulation; and FG. 7 illustrates the differently phased signals generated by the oscillator in the modulator of FG. 6 and the phasor trajectories of the output from the in-phase modulator circuit, the output from the quadrature-phase modulator circuit, and the RF output. DETALED DESCRPTON OF THE PREFERRED EMBODMENTS FG. 3 illustrates a modulator according to the present invention for performing BPSK modulation. As shown, a ring oscillator 10 includes first-nth inverters 12-1 to 12-N connected in series, and the output of the Nth inverter 12-N is connected to the input of the first inverter 12-1. The first-nth inverters 12-1 to 12-N resonate so that the output of each first-nth inverter 12-1 to 12-N is a differently phased signal. A selector 14 receives the digital data for modulation and the output from the ring oscillator 10. Based on the digital data, the selector 14 selectively applies the output from the

US 6,560,296 Bl 3 4 ring oscillator 10 to a first non-linear power amplifier 16 and a second non-linear power amplifier 18. An adder 20 sums the output of the first and second non-linear power amplifiers 16 and 18 to generate the modulated signal at radio frequency RF for transmission. 5 The operation of the modulator illustrated in FG. 1 will now be described in detail with reference to FGS. 4A-5. The ring oscillator 10 generates multiple differently phased signals. One embodiment of these differently phased signals is illustrated in FG. 5. FG. 5 illustrates a coordinate plane 10 with the horizontal axis as the real axis and the vertical axis as the imaginary axis. As represented by inner circle 30, each of the differently phased signals have the same magnitude AO. As represented by the crosses 32 on the inner circle 30, the oscillator 10 generates 16 differently phased signals (i.e., 15 N=16) wherein the difference in phase between adjacent differently phased signals along the inner circle 30 is the same. Namely, the differently phased signals include signals having the phases 0, /8, /4,..., 15/8. However, the differently phased signals are treated as a 20 first and second plurality of differently phased signals by the selector 14. The differently phased signals having phases 0, /8,..., serve as the first plurality of differently phased signals, and the differently phased signals having phases 0, 15/8, 7/4,..., serve as the second plurality of 25 differently phased signals. Assume initially, as shown in FG. 4A that the selector 14 receives digital data representing -1. At this point, the selector 14 selects the differently phased signal having phase 30 as both a first output signal CE1 and a second output signals CE2, and sends the first and second output signals CE1 and CE2 to the first and second non-linear amplifiers 16 and 18, respectively. The adder 20 adds the output of the first and second non-linear amplifiers 16 and 18 to produce the 35 RF output signal illustrated in FG. 4B. When the digital data entering the selector 14 changes sign, the selector 14 is triggered to begin stepping around the ring oscillator 10, in opposing fashion, to generate the first and second output signals CE1 and CE2. Namely, the 40 selector 14 supplies, in a stepwise manner, the first plurality of differently phased signals as the first output signal CE1 and second plurality of differently phased signals as the second output signal CE2. Accordingly, the first non-linear amplifier 16 receives the differently phased signals having 45 phases 7/8, 3/4,..., 0, and the second non-linear amplifier 18 receives the differently phased signals having phases 9/8, 5/4,... O. FG. 5 illustrates the phasors of the first and second output signals CE1 and CE2 when the differently phased signals 50 having phases 3/4 and 5/4 are selected as the first and second output signals CE1 and CE2, respectively. gnoring the amplification provided by the first and second non-linear amplifiers 16 and 18, the resulting phasor of the RF output is also illustrated in FG. 5. As this example demonstrates, 55 the trajectory of the phasor representing the RF output stays on the real axis. FG. 5 further illustrates the projection of the phasor representing the RF output over time. As shown, the step transition of the digital data is smoothed over time. Furthermore, by adding the output of the first and second 60 non-linear amplifiers 16 and 18, the distortion introduced by each respective amplifier is cancelled out (i.e., filtered out). When the digital data changes state again, the selector 14 supplies the first and second plurality of differently phased signals to the first and second non-linear amplifiers 16 and 65 18. But, this time, the differently phased signals progress from the signal with a phase of 0 to the signal with a phase of. FG. 4B illustrates the RF output of the modulator over time with respect to the digital data illustrated in FG. 4A. While the ring oscillator 10 of the modulator illustrated in FG. 1 was described as providing 16 differently phased signals, it should be understood that less than or greater than 16 differently phased signals could be supplied. Furthermore, instead of supplying differently phased signals, where adj acent differently phased signals differ in phase by the same phase amount, an intermediate processing circuit (not shown), such as interpolators, is disposed between the oscillator 10 and the selector 14 such that the selector 14 receives differently phased signals where adjacent differently phased signals differ in phase by different amounts. This allows the designer of the modulator to implement any desired method of filtering the digital data prior to transmission. As discussed above, the modulator of FG. 1 applies to BPSK. However, based on the forgoing and following disclosure, it will be understood how to use the circuit of FG. 1 as a basic building block to provide circuits for other modulation techniques, such as QPSK. FG. 6 illustrates an example of a modulator for QPSK according to the present invention. As shown, the in-phase digital data signal and quadrature-phase digital data signal are each supplied to the same circuit of FG. 1, albiet with the oscillator 10 being shared. The only operational differences are (1) the selector 14 for the quadature-phase digital data supplies the differently phased signals between /2 and 3/2 as the first and second plurality of differently phased signals, and (2) the output of the adders 20 are added by another adder 50 to produce the output of the QPSK modulator. FG. 7 illustrates the phase diagrams and possible phasor trajectories of the -RF output from the adder 20 for the in-phase digital data, the Q-RF output from the adder 20 for the quadrature-phase digital data, and the RF output of the adder 50. As with the modulator of FG. 1, the number of differently phased signals generated by the oscillator 10 is not limited to 16, and the differently phased signals are not limited to having adjacent differently phased signals differ by a same amount. n the later case, another oscillator for the quadrature-phase digital data circuit might be needed, depending on the filter technique employed, and processing circuits are disposed between the selectors 14 and the oscillators 10. As demonstrated above, modulators according to the present invention provide the low power consumption benefits of using non-linear amplifiers and satisfy the narrow frequency band requirements typically demanding the use of linear amplifiers. What is claimed is: 1. A method of modulating digital data, comprising: a) providing first and second plurality of differently phased signals, said first and second plurality of differently phased signals both include first and second reference phase signals, said first plurality of differently phased signals differ from said first reference phase signal to said second reference phase signal by a respective first plurality of differing amounts, said second plurality of differently phased signals differ from said first reference phase signal to said second reference phase signal by a respective second plurality of differing amounts, and said first plurality of differing amounts are respectively equal in magnitude and opposite in sign from said second plurality of differing amounts;

US 6,560,296 Bl 5 6 b) receiving digital data; c) applying said first and second plurality of differently phased signals to first and second non-linear amplifiers, respectively, when said received digital data changes state; and 5 d) summing output from said first and second non-linear amplifiers.. 2. he method of claim 1, wherein said first plurality of diffenng amounts are incrementally different from said first reerence phase signal by a same negative increment, and 10 sad second plurality of differing amounts are incrementally different from said first reference phase signal by positive increment equal in magnitude to said negative increment. 3. The method of claim 2, wherein said first reference phase signal and said second reference phase signal differ in 15 phase by 180 degrees. 4. The method of claim 3, wherein said step c) applies said first and second plurality of differently phased signals from said first reference phase signal to said second reference phase signal when said received digital data transitions from 20 a first state to a second state, and applies said first and second plurality of differently phased signals from said second reference phase signal to said first reference phase signal when said received digital data transitions from said second 25 state to said first state. 5. The method of claim 2, wherein said step c) applies said first and second plurality of differently phased signals from said first reference phase signal to said second reference phase signal when said received digital data transitions from a first state to a second state, and applies said first and second 30 plurality of differently phased signals from said second reference phase signal to said first reference phase signal when said received digital data transitions from said second state to said first state. 6. The method of claim 1, wherein said first reference 35 phase signal and said second reference phase signal differ in phase by 180 degrees. 7. The method of claim 6, wherein said step c) applies said first and second plurality of differently phased signals from said first reference phase signal to said second reference 40 phase signal when said received digital data transitions from a first state to a second state, and applies said first and second plurality of differently phased signals from said second reference phase signal to said first reference phase signal when said received digital data transitions from said second 45 state to said first state. 8. The method of claim 1, wherein said step c) applies said first and second plurality of differently phased signals from said first reference phase signal to said second reference phase signal when said received digital data transitions from 50 a first state to a second state, and applies said first and second plurality of differently phased signals from said second reference phase signal to said first reference phase signal when said received digital data transitions from said second 55 state to said first state. 9. An apparatus for modulating digital data, comprising: a first non-linear amplifier; a second non-linear amplifier; circuit generating first and second plurality 60 of dfferently phased signals, wherein said first and second plurality of differently phased signals both include first and second reference phase signals, said first plurality of differently phased signals differ from said first reference phase signal to said second refer- 65 ence phase signal by a respective first plurality of differing amounts, said second plurality of differently an oscilating phased signals differ from said first reference phase signal to said second reference phase signal by a respective second plurality of differing amounts, and said first plurality of differing amounts are respectively equal in magnitude and opposite in sign from said second plurality of differing amounts; a selecting circuit receiving digital data, and applying said first and second plurality of differently phased signals to said first and second non-linear amplifiers, respectively, when said received digital data changes state; and an adder adding output from said first and second nonlinear amplifiers. 1. Te apparatus of claim 9, wherein said first plurality of diffenng amounts are incrementally different from said first reference phase signal by a same negative increment, and said second plurality of differing amounts are incrementally different from said first reference phase signal by positive increment equal in magnitude to said negative increment. 11. The apparatus of claim 10, wherein said first reference phase signal and said second reference phase signal differ in phase by 180 degrees. 12. The apparatus of claim 11, wherein said selecting circuit applies said first and second plurality of differently phased signals from said first reference phase signal to said second reference phase signal when said received digital data transitions from a first state to a second state and applies said first and second plurality of differently phased signals from said second reference phase signal to said first reference phase signal when said received digital data transitions from said second state to said first state. 13. The apparatus of claim 10, wherein said selecting circuit applies said first and second plurality of differently phased signals from said first reference phase signal to said second reference phase signal when said received digital data transitions from a first state to a second state and applies said first and second plurality of differently phased signals from said second reference phase signal to said first reference phase signal when said received digital data transitions from said second state to said first state. 14. The apparatus of claim 9, wherein said first reference phase signal and said second reference phase signal differ in phase by 180 degrees. 15. The apparatus of claim 14, wherein said selecting circuit applies said first and second plurality of differently phased signals from said first reference phase signal to said second reference phase signal when said received digital data transitions from a first state to a second state and applies said first and second plurality of differently phased signals from said second reference phase signal to said first reference phase signal when said received digital data transitions from said second state to said first state. 16. The apparatus of claim 9, wherein said selecting circuit applies said first and second plurality of differently phased signals from said first reference phase signal to said second reference phase signal when said received digital data transitions from a first state to a second state and applies said first and second plurality of differently phased signals from said second reference phase signal to said first reference phase signal when said received digital data transitions from said second state to said first state. 17. The apparatus of claim 9, wherein said oscillating circuit is a ring oscillator. * * * * *