Blue-Green laser Communications critical technologies for antisubmarine

Similar documents
A new picosecond Laser pulse generation method.

Introduction. Laser Diodes. Chapter 12 Laser Communications

Fiber lasers and their advanced optical technologies of Fujikura

Fiber Laser Chirped Pulse Amplifier

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic

The below identified patent application is available for licensing. Requests for information should be addressed to:

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) February 2002

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit)

More specifically, I would like to talk about Gallium Nitride and related wide bandgap compound semiconductors.

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Novel laser power sensor improves process control

Airborne Wireless Optical Communication System in Low Altitude Using an Unmanned Aerial Vehicle and LEDs

Submarine Laser Communications - Archived 09/2000

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Data and Computer Communications Chapter 4 Transmission Media

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

High power UV from a thin-disk laser system

SodiumStar 20/2 High Power cw Tunable Guide Star Laser

Chapter 3 OPTICAL SOURCES AND DETECTORS

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Chapter 1 Introduction

Don M Boroson MIT Lincoln Laboratory. 28 August MIT Lincoln Laboratory

Optical Delay Line Application Note

1. INTRODUCTION 2. LASER ABSTRACT

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

Optical Fiber Communication

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat.

improved stability (compared with

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Optical Fiber. n 2. n 1. θ 2. θ 1. Critical Angle According to Snell s Law

Photonic Power. Application Overview

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

Vertical External Cavity Surface Emitting Laser

Designing an MR compatible Time of Flight PET Detector Floris Jansen, PhD, Chief Engineer GE Healthcare

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

Practical Applications of Laser Technology for Semiconductor Electronics

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

Picosecond Pulses for Test & Measurement

High peak power pulsed single-mode linearly polarized LMA fiber amplifier and Q-switch laser

FIBER LASERS Ytterbium, Thulium and Erbium short pulse and CW lasers

Optiva OTS-2 18 GHz Amplified Microwave Band Fiber Optic Links

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Designing for Femtosecond Pulses

1550 nm Programmable Picosecond Laser, PM

Wireless Power Transmission of Solar Energy from Space to Earth Using Microwaves

A Coherent White Paper May 15, 2018

UNMATCHED OUTPUT POWER AND TUNING RANGE

High Power and Energy Femtosecond Lasers

Low Vibration, Low Thermal Fluctuation System for Pulse Tube and Gifford- McMahon Cryocoolers

Hyperspectral Imager for Coastal Ocean (HICO)

Chapter 2. Physical Layer

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

Single frequency MOPA system with near diffraction limited beam

Key Issues in Modulating Retroreflector Technology

Atlantic. series. Industrial High Power Picosecond DPSS Lasers

LASER SATELLITE COMMUNICATION

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Features. Applications. Optional Features

INNOVATIVE SPECTRAL IMAGING

Optiva OTS-2 40 GHz Amplified Microwave Band Fiber Optic Links

Photonics and Optical Communication Spring 2005

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

Transmitting Light: Fiber-optic and Free-space Communications Holography

Wavelength LDH - P / D - _ / C / F / FA / TA - N - XXX - _ / B / M / L / XL. Narrow linewidth (on request) Tappered amplified

Undersea Communications

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

High-Power Femtosecond Lasers

taccor Optional features Overview Turn-key GHz femtosecond laser

FemtoFAB. Femtosecond laser micromachining system. tel fax Konstitucijos ave. 23C LT Vilnius, Lithuania

12-Pixel WSi SNSPD Arrays for the Lunar Lasercomm OCTL Terminal

Optiva OTS-2 40 GHz Amplified Microwave Band Fiber Optic Links

Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion

DATA TRANSMISSION. ermtiong. ermtiong

Active Towed Array Sonar Outstanding Over-The-Horizon Surveillance

NAVY SATELLITE COMMUNICATIONS

High Power Microwaves

High Power Supercontinuum Fiber Laser Series. Visible Power [W]

Ranging and Optical Communication R&D for Deep Space Missions

Introduction. Learning Objectives. On completion of this class you will be able to. 1. Define fiber sensor. 2. List the different types fiber sensors

Optical fibre. Principle and applications

6.1 Thired-order Effects and Stimulated Raman Scattering

<NOTICE> <PREAMB> BILLING CODE 3510-DS-P DEPARTMENT OF COMMERCE. International Trade Administration. University of Colorado Boulder, et al.

Uses of Electromagnetic Waves

Testing with 40 GHz Laser Sources

High-power semiconductor lasers for applications requiring GHz linewidth source

Wavelength switching using multicavity semiconductor laser diodes

High power VCSEL array pumped Q-switched Nd:YAG lasers

Hyperspectral Sensor

An Introduction to Laser Diodes

Single photon detectors used in free space communication

Instruction manual and data sheet ipca h

Agilent E9300 Power Sensors E-Series Technical Overview

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

WHITE PAPER LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS

High Average Power Cryogenic Lasers Will Enable New Applications

Status of Free-Space Optical Communications Program at JPL

Transcription:

Blue-Green laser Communications critical technologies for antisubmarine warfare and Network Centric Operations NetCentric warfare requires persistent, rapid, and preferably covert data communication among all platforms. Submarine to submarine, ship to submarine and satellite to submarine communication has emerged as one of the most challenging and necessary technologies in the present network centric warfare. Submarine communications have always been a challenge because radio waves can t penetrate sea water. Ultra-low frequency electromagnetic waves have been used but are a slow method of communicating. Submarines are completely reliant on satellites for communications and orders from their commanders ashore. A command and control denied environment (C2DE) is an area in which communications are jammed or degraded. There is no technology currently available that allows submarines to conduct communications in a C2DE. The only method currently available is for the submarine to navigate to unaffected waters, conduct all of its communications, and then to travel back to the C2DE, wasting valuable time and possibly compromising the submarine s mission. However, Satellite communications require submarines to briefly surface and the use of towed antennae compromise the ability of the vessel to remain stealthy. Blue-green lasers is a potential technique for high bandwidth underwater wireless communication because of its high data transfer rate, reasonably large range, small size, low power consumption, immunity to interference and jamming and

covertness of transmission. The laser works in much the same way as a fiber optic cable, with the medium for data transfer being the air instead of the cable. Blue and blue-green laser wavelengths can penetrate sea water so offer the potential of improved submarine communications. Blue and blue-green laser wavelengths can penetrate sea water so offer the potential of improved submarine communications. As long as there is a clear LOS between the transmitter and receiver, high data transfer rates are available.the technology also works under water, but the range of transmission is greatly diminished. Data transfer rates of between 7 and 10 Mbps with a 99.99% success rate were observed, but only in the 10 to 20 meter range. Fibertek has developed for the U.S. Navy s Space and Naval Warfare Systems Command (SPAWAR) a green underwater laser system capable of multirate high- bandwidth communication up to 1 Gbs in clear or littoral waters at 10 to 100 meters range. The system is currently being evaluated in simulated and representative waters, over a variety of link geometry and water conditions, according to US Navy SPAWARS. Laser communication could provide critical data link between submarines and command center The Navy is investing heavily in the use of unmanned underwater vehicles (UUVs) to help in areas including mine warfare, oceanography, salvage, and rescue operations. Used in conjunction with the blue-green laser, the UUV would be able to meet all of the submarine s communication needs without the submarine ever coming to PD. The laser-fitted UUVs relay information from anchored data nodes to a sensor in the submarine s sail. The modeled UUVs will patrol a linear area recharging at the

completion of each patrol at an undersea garage, according to Forest B. Mclaughlin of the Naval Post Graduate School who carried out the research. The garage will receive continuous updates from a sensor placed outside of the C2DE, but tethered to the garage. The garage will update the UUVs while they recharge and relay its continuous data feed to data links spaced along the patrol route of the UUVs. The UUVs will then download updates while passing by the data links to refresh their current information.when a submarine comes in contact with one of these UUVs, it will slow down and allow the UUV to approach. The submarine will then receive the UUVs broadcast via LOS blue-green laser transmission from above. DARPA s TRITON research program for Blue Green laser communications between Aircraft and Submarine DARPA had launched in June 2012,Tactical Relay Information Network (TRITON) research program to develop a blue-laser submarine communications system able to link submerged submarines with nearby aircraft for anti-submarine warfare (ASW). The TRITON project was to build on technology, DARPA developed in the 1990s under the Tactical Airborne Laser Communications (TALC), which tested blue-green laser communications to link submerged submarines with Navy P-3 maritime patrol aircraft. TALC matched a blue laser to a cesium atomic line resonance receiver at 455.6 microns; the downlink was a green diodepumped laser compatible with existing submarine receivers at 532 microns. The Navy is interested in submarine laser communications to reduce reliance on towed-buoy receivers, to enhance the

communications reliability and data throughput to ballistic missile submarines, and to enhance coordination among aircraft and fast attack submarines for ASW. TRITON sought to overcome the limitations that sunlight poses to submarine laser communications, which requires a high peak power laser and an optical filter with narrow spectral bandwidth, high transmission, and wide-field-of-view. The U.S. Defense Department had awarded QinetiQ North America a contract to develop a blue laser communications system. QinetiQ under Its Submarine-Enabling Airborne Data Exchange and Enhancement Program (SEADEEP) has already demonstrated communications through the air-water interface equivalent to data rates available with wideband Internet communications at home, according to the company. In recent years, the interest in free space optical communication has renewed from advancements in blue-green sources and detectors. Underwater BG laser Communication System Fibertek has developed a green underwater laser system capable of multi-rate high-bandwidth communication in clear or littoral waters at 10-100 meters range. The transmitter and receiver are packaged in 12 diameter UUV compatible watertight canisters for submersible operation. The flexible fiber-laser based transmitter is capable of data transmission up to 1 Gbps and can also be operated in a programmable RF-modulated pulsed mode for underwater imaging applications. With the high-bandwidth photomultiplier tube based receiver, back-to-back communication has been demonstrated at up to 250 Mbps.

Blue Laser Diode Enables Underwater Communication at 12.4 Gbps Researchers from Taiwan Wu, T.C. and others demonstrated high-speed underwater wireless optical communication (UWOC) in tap-water and seawater environments over long distances. The 450-nm blue GaN laser diode (LD) directly modulated by pre-leveled 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data was employed to implement its maximal transmission capacity of up to 10 Gbps. The 450-nm blue LD was controlled at a room temperature of 25 C for maintaining high external quantum efficiency. The divergent blue laser beam carrying 16-QAM OFDM data was collimated to a parallel laser beam through an objective lens (Newport, F-LA22) with 5.5-mm aperture and 11-mm focal length, and launched into a 1.7-m water tank filled with tap water or seawater. The proposed UWOC in tap water provided a maximal allowable communication bit rate increase from 5.2 to 12.4 Gbps with the corresponding underwater transmission distance significantly reduced from 10.2 to 1.7 m, exhibiting a bit rate/distance decaying slope of 0.847 Gbps/m. When conducting the same type of UWOC in seawater, light scattering induced by impurities attenuated the blue laser power, thereby degrading the transmission with a slightly higher decay ratio of 0.941 Gbps/m. The blue LD based UWOC enables a 16-QAM OFDM bit rate of up to 7.2 Gbps for transmission in seawater more than 6.8 m. Blue Green Lasers Lasers must operate in the blue-green wavelength region and be pulsed with nanosecond durations at rates ranging from 10 s to

1000 s of khz. The nature of the operating platforms requires the lasers be low in power consumption, small, lightweight, rugged and reliable. Group of scientists from the Institute of Laser-Physics, the Center for Free-Electron Laser Science at DESY, and the Hamburg Centre for Ultrafast Imaging (all in Hamburg, Germany) and Università di Pisa (Italy) has developed a green-emitting laser based on doping by the rare-earth metal holmium (Ho), in the form of a doped lithium lutetium fluoride (Ho3+:LiLuF4) crystal. Pumped by a blue laser diode, the room-temperature pulsed laser emitted at a 549.4 nm wavelength with an average output power of 7.7 mw, a pulse-repetition rate of 5.3 khz, and pulse duration of 1.6 μs. New Horizons for High-Power Fiber Lasers Fiber lasers have several advantages over traditional chemical, gas, and solid-state high-power lasers: unequalled beam quality, good heat dissipation, high efficiency, and robust reliability. So far, most fiber lasers operate at wavelengths longer than one micron, as dictated by the application in which they re used and developments in materials. In a Laboratory Directed Research and Development (LDRD) project, LLNL researchers are exploring the use of new materials, fabrication methods, and fiber designs with the goal of extending fiber laser technology to shorter wavelengths. Such sources would benefit a variety of applications, including spectroscopy, remote sensing (LIDAR, or light detection and ranging, with water lines), adaptive optics systems (laser guide stars) to correct for atmospheric distortions in ground-based telescopes, underwater communications, and beam delivery (machining and directed

energy). Fiber laser sources are unmatched in terms of brightness and efficiency due to the combination of waveguiding, long interaction lengths, excellent thermal management and ultrapure materials, said NIF & Photon Science physicist Paul Pax, the lead researcher on the project. New short-wavelength pump diodes in the 400- to 450-nanometer (violet light) range are becoming readily available, and their powers are increasing, he said. This opens up new avenues for shortwavelength fiber lasers that were not available before. A fiber laser typically consists of a dual-core optical fiber, with one core nested inside the other; the inner core is doped with a rare-earth element such as erbium, ytterbium, or neodymium. Light from a pump laser is fired into the end or side of the fiber and guided along the fiber by the undoped outer core. As the pump light passes through the inner core, the dopant is stimulated to emit radiation, or lase, at one of the rare-earth element s characteristic wavelengths. Pax said an early success in the program has been the development and fabrication of a neodymium-doped fiber laser with a novel filtering waveguide the structure that supports well-defined modes, or transmission paths, in the laser that enables it to operate at a wavelength of 925 nanometers (nm) instead of neodymium s otherwise-strongest characteristic wavelength of about 1060 nm. The strong 1060-nm line has to be suppressed or it depletes all the gain, he said. This waveguide allows us to do just that, which makes operation at 925 possible. This wavelength is useful for remote sensing and, with harmonic frequency conversion, for blue-green-light underwater communications. The laser is operating with very good efficiency and good beam quality, Pax said. Power is already a record for this type of laser 27 watts at 925 nanometers limited by available

pump power. And the waveguide design allows for scaling the power by increasing the core size. The researchers also will test other dopants, including samarium, which lases directly in the visible spectrum at 651 nm, and terbium, which emits at about 545 nm. The two immediate applications (directed energy and submarine communications) aren t the only reason to pursue visible fiber lasers, Pax noted. The possibilities are opening up because of the new pump diodes, and we want to be in a position to make use of them with novel active species (dopants) for fiber lasers. Blue-Green Laser for Undersea Communication Navy SBIR FY2006.1 Aculight has proposed the development of a blue/green laser system for underwater communications. The laser comprises a hybrid system in which a directly modulated 1064nm semiconductor laser is amplified in a multistage Yb-doped fiber amplifier and subsequently frequency doubled in noncritically phase match LBO crystal. The company will demonstrate key specifications : >10W output power at or around 532nm with pulse durations in the range 0.5-5.0ns and pulse repetition frequencies (PRF) in the range 100kHz-10MHz. The proposed architecture, which overcomes the PRF, size, weight and efficiency limitations of current laser technologies, is ideally suited to the requirements of the solicitation and to the targeted deployment environment, according to the company. High power lasers have many potential applications in DOD systems. With the rapid increase in UAVs and UUVs, the requirements for compact, efficient and lightweight laser sources has increased rapidly. In addition to communications,

Navy missions such as mine detection and other optical technologies that utilize blue-green lasers could also benefit from the development of the laser system. The proposed high power green laser combining high power and high brightness with low signal noise at high repetition rates has a great potential to replace existing mode-locked DPSS lasers and directly modulated LDs for medical, material processing and defense applications, such as micromachining, marking, and semiconductor processing. Superconducting nanowire single-photon detector (SNSPD) Superconducting nanowire single-photon detector (SNSPD) has emerged as the fastest single-photon detector (SPD) for photon counting. The SNSPD consists of a thin ( 5 nm) and narrow ( 100 nm) superconducting nanowire. The nanowire is cooled well below its superconducting critical temperature and biased with a DC current that is close to but less than the superconducting critical current of the nanowire. Most SNSPDs are made of niobium nitride (NbN), which offers a relatively high superconducting critical temperature ( 10 K) and a very fast cooling time (<100 picoseconds). NbN devices have demonstrated device detection efficiencies as high as 67% at 1064 nm wavelength with count rates in the hundreds of MHz. NbN devices have also demonstrated jitter the uncertainty in the photon arrival time of less than 50 picoseconds, as well as very low rates of dark counts, i.e. the occurrence of voltage pulses in the absence of a detected photon. NASA s Lunar Laser Communication Demonstration (LLCD), in collaboration with JPL s optical communication group, have developed a ground receiver based on an MDL-fabricated 12- pixel Superconducting Nanowire Single-Photon Detectors (SNSPD)

array. This receiver was fielded on the Optical Communications Telescope Laboratory (OCTL) at JPL s Table Mountain Facility, to successfully downlink error-free data from lunar orbit at 79 megabits per second. MDL s tungsten silicides SNSPDs have demonstrated recordbreaking efficiency (> 90%) in the infrared, with 150 ps timing jitter, 40 ns reset time, and subhertz intrinsic dark counts. They may be useful for a variety of future applications such as lidar, quantum communications, and hightime-resolution astrophysics. References and Resources also include: http://www.aerodefensetech.com/component/content/article /adt/tech-briefs/machinery-and-automation/24599 https://lasers.llnl.gov/news/science-technology/2016/apr il http://www.navysbir.com/06_1/1.htm Wu, T.-C. et al. Blue Laser Diode Enables Underwater Communication at 12.4 Gbps. Sci. Rep. 7, 40480; doi: 10.1038/srep40480 (2017)