PHYSICS (PRINCIPAL) 9792/02 Paper 2 Written Paper For Examination from 2016 SPECIMEN INSERT

Similar documents
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Level 3 Pre-U Certificate Principal Subject

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certifi cate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Dietrich Bonmann, ABB Monselice Transformer Days, May 5, 2010 Optimized AC transmission solutions with phase-shifting transformers and shunt reactors

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certifi cate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certifi cate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certifi cate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certifi cate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

DESIGN AND TECHNOLOGY 9705/01

1400 MW New Zealand HVDC Upgrade: Introducing Power Modulation Controls and Round Power Mode

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge Checkpoint

ART HISTORY (PRINCIPAL) 9799/02 Paper 2 Historical Topics For Examination from 2016

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Introduction to HVDC Transmission. High Voltage Direct Current (HVDC) Transmission

Surname. Number OXFORD CAMBRIDGE AND RSA EXAMINATIONS ADVANCED SUBSIDIARY GCE G482 PHYSICS A. Electrons, Waves and Photons

HVDC Transmission. Michael Muhr. Institute of High Voltage Engineering and System Performance Graz University of Technology Austria P A S S I O N

High Voltage DC Transmission Prof. Dr. S. N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur

Cambridge International Examinations Cambridge International General Certifi cate of Secondary Education

Level 3 Physics, 2018

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Ordinary Level

A cost effective hybrid HVDC transmission system with high performance in DC line fault handling

AORC Technical meeting 2014

ELEMENTS OF FACTS CONTROLLERS

USE OF HVDC MULTI TERMINAL OPTIONS FOR FUTURE UPGRADE OF THE NATIONAL GRID

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Introduction to HVDC in GB. Ian Cowan Simulation Engineer 12 March 2018

Electrical Power Systems


High Voltage DC Transmission 2

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certifi cate of Secondary Education

Fundamental Concepts of Dynamic Reactive Compensation. Outline

Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9 1)

Testing Firing Pulse Controls for a VSC Based HVDC Scheme with a Real Time Timestep < 3 µs

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge Ordinary Level

EE 340 Transmission Lines. Spring 2012

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Case Study 1. Power System Planning and Design: Power Plant, Transmission Lines, and Substations

Busbars and lines are important elements

New Converter Topologies for High-Voltage Dc Converters. Prof. Ani Gole University of Manitoba, Canada

CONTENTS. 1. Introduction Generating Stations 9 40

Should we transform our lines to HVDC?

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Paper 2 October minutes

ART HISTORY 9799/03 Paper 3 Thematic Topics May/June 2014

Grid West Project HVDC Technology Review

Cambridge International Examinations Cambridge International General Certifi cate of Secondary Education DESIGN AND TECHNOLOGY 0445/02

Cambridge International Examinations Cambridge Ordinary Level

Digital Object Identifier: /PESMG URL:

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PHYSICS 0625/02

Overview of Actuation Thrust

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level


Coil Products Beginnings 1960 State of the Art. Customer partnership around the globe. Continuous innovation since 1900

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

HVDC CAPACITOR COMMUTATED CONVERTERS IN WEAK NETWORKS GUNNAR PERSSON, VICTOR F LESCALE, ALF PERSSON ABB AB, HVDC SWEDEN

Dynamic Series Compensation for the Reinforcement of Network Connections with High Wind Penetration

PRELIMINARIES. Generators and loads are connected together through transmission lines transporting electric power from one place to another.

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

* * Cambridge International Examinations Cambridge Secondary 1 Checkpoint MATHEMATICS 1112/01. Paper 1 October 2015.

Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9 1)

Impact of Distributed Generation on Network Voltage Levels

Monday 27 June 2016 Afternoon

Friday 18 January 2013 Morning

Electrical Materials may be referred to a metal, dielectrics,electrical insulators or conductors,paramagnetic materials and many other.

Cambridge IGCSE MATHEMATICS 0580/03 * * Paper 3 (Core) For examination from hours SPECIMEN PAPER

HVDC Solutions for Integration of the Renewable Energy Resources

EH2741 Communication and Control in Electric Power Systems Lecture 2

High Voltage Direct Current Transmission

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Zambezi (previously Caprivi) Link HVDC Interconnector: Review of Operational Performance in the First Five Years

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Transient Recovery Voltage (TRV) and Rate of Rise of Recovery Voltage (RRRV) of Line Circuit Breakers in Over Compensated Transmission Lines

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge Checkpoint MATHEMATICS

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education


Excitation Systems THYRIPART. Compound-Excitation System for Synchronous Generators. Power Generation

Application Of Artificial Neural Network In Fault Detection Of Hvdc Converter

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS (MEI) 4752 Concepts for Advanced Mathematics (C2)

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Level 3 Pre-U Certificate Principal Subject

Mathematics Paper 2. Stage minutes. Page Mark. Name.. Additional materials: Ruler Calculator Protractor READ THESE INSTRUCTIONS FIRST

HVDC High Voltage Direct Current

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

TERM PAPER OF ELECTROMAGNETIC

Voltage Source Converter Modelling

Highgate Converter Overview. Prepared by Joshua Burroughs & Jeff Carrara IEEE PES

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education DESIGN AND TECHNOLOGY 0445/04

Recent trends in High Voltage Direct Current (HVDC)Transmission Systems Abstract

Transcription:

Cambridge International Examinations Cambridge Pre-U Certifi cate www.xtremepapers.com PHYSICS (PRINCIPAL) 9792/02 Paper 2 Written Paper For Examination from 2016 SPECIMEN INSERT *0123456789* The question in Section 2 of this paper will relate to the subject matter in this Insert. You will have received a copy of this booklet in advance of the examination. The extracts on the following pages are taken from a variety of sources. Cambridge International Examinations does not necessarily endorse the reasoning expressed by the original authors, some of whom may use unconventional Physics terminology and non-si units. You should draw on all your knowledge of Physics when answering the questions. The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certifi cate. This document consists of 7 printed pages and 1 blank page. [Turn over

2 Extract 1: The heating effect of an alternating current 1. An alternating current (a.c.) can be represented by the equation: where f is the frequency of the supply. I = I o sin ( 2πft) The heating effect depends on I 2 R, and so an average of I 2 is needed, not an average of I. To find the average value, you need the average value of sin 2 as time runs on. The graph of sin ( 2πft) and the graph of cos ( 2πft) look the same, except for a shift of origin. Because they are the same pattern, sin 2 ( 2πft) and cos 2 ( 2πft) have the same average as time goes on. But sin 2 ( 2πft) + cos 2 ( 2πft) = 1 Therefore the average values of each of them must be 1 2. Therefore the average value of the power in an a.c. transmission system must be half of the peak power. 2. The power wasted as heat in a transmission line of resistance R is Fig. E1.1 is a sketch graph of sin 2 x against x. I o 2 R sin 2 ( 2πft) sin 2 x 0 0 x Fig. E1.1 Adapted from: http://www.practicalphysics.org/go/guidance_107.html

3 Extract 2: Classic HVDC transmission Using high voltage direct current (HVDC) to interconnect two points in a power grid, is in many cases the best economic solution. High voltages are used in transmission systems because a higher voltage implies a lower current for a given power of transmission. With a lower current, less heat is generated in the transmission lines and so less energy is wasted. Furthermore, it has excellent environmental benefi ts. HVDC technology is used to transmit electricity over long distances by overhead transmission lines and over short distances when undersea cables are involved. It is also used to interconnect separate power systems, where traditional (a.c.) connections cannot be used. The Swedish company ABB pioneered HVDC technology and is the undisputed world leader in the HVDC fi eld. Fig. E2.1 shows the Herrenwyk station of the Baltic Cable HVDC Link. Fig. E2.1 In an HVDC system, electric power is taken from one point in a three-phase a.c. network, converted to d.c. in a converter station, transmitted to the receiving point by an overhead line or cable and then converted back to a.c. in another converter station. It is then injected into the receiving a.c. network. Wherever possible, any voltage transformation is carried out when the current is an a.c. because transformers, which are highly effi cient and cheap both to construct and operate, will not function with d.c. Typically, an HVDC transmission system has a rated power of more than 100 MW and many are in the 1000 3000 MW range. HVDC transmissions are used for the transmission of power over long or very long distances because it then becomes economically attractive when compared with more conventional a.c. lines. With an HVDC system, the power fl ow can be controlled rapidly and accurately as to both the power level and the direction. This possibility is often used in order to improve the performance and effi ciency of the connected a.c. networks. Adapted from: http://www.abb.com/industries/us/9aac30300393.aspx [Turn over

4 Extract 3: Advantages of HVDC transmission An advantage of HVDC transmission is the ability to transmit large amounts of power over long distances with lower capital costs and with lower losses than a.c. Depending on voltage level and construction details, losses are quoted as about 3% per 1000 km. HVDC transmission allows effi cient use of energy sources remote from load centres. In a number of applications HVDC is more effective than a.c. transmission. Examples include: undersea cables, where there are additional a.c. losses. (e.g. 250 km Baltic Cable between Sweden and Germany and the 600 km NorNed cable between Norway and the Netherlands) endpoint-to-endpoint long-haul bulk power transmission without intermediate taps, for example, in remote areas increasing the capacity of an existing power grid in situations where additional wires are difficult or expensive to install power transmission and stabilisation between unsynchronised a.c. distribution systems connecting a remote generating plant to the distribution grid, for example Nelson River Bipole stabilising a predominantly a.c. power-grid, without increasing prospective short circuit current reducing line cost of long distance transmission; HVDC needs fewer conductors as there is no need to support multiple phases thinner conductors can be used because HVDC does not suffer from the skin effect facilitate power transmission between different countries that use a.c. at differing voltages and/or frequencies synchronise a.c. produced by renewable energy sources. HVDC can carry more power per conductor because, for a given power rating, the constant voltage in a d.c. line is lower than the peak voltage in an a.c. line. The peak voltage of a.c. determines the actual insulation thickness and conductor spacing. Because d.c. operates at a constant maximum voltage, this allows existing transmission line corridors with equally sized conductors and insulation to carry 100% more power into an area of high power consumption than a.c. and this can lower costs. Because HVDC allows power transmission between unsynchronised a.c. distribution systems, it can help increase system stability, by preventing cascading failures from propagating from one part of a wider power transmission grid to another. Changes in load that would cause portions of an a.c. network to become unsynchronised and separate would not similarly affect a d.c. link, and the power fl ow through the d.c. link would tend to stabilise the a.c. network. The magnitude and direction of power fl ow through a d.c. link can be directly commanded, and changed as needed to support the a.c. networks at either end of the d.c. link. This has caused many power system operators to contemplate wider use of HVDC technology for its stability benefi ts alone. Adapted from: http://www.dciinsulator.com/shownews.asp?id=155

5 Extract 4: The skin effect The skin effect was first described in a paper by Horace Lamb in 1883 for the case of spherical conductors, and was generalised to conductors of any shape by Oliver Heaviside in 1885. When an electromagnetic wave interacts with a conductive material, mobile charges within the material are made to oscillate back and forth with the same frequency as the impinging fields. The movement of these charges, usually electrons, constitutes an alternating electric current, the magnitude of which is greatest at the conductor s surface. The decline in current density versus depth is known as the skin effect and the skin effect depth is the depth at which the current density reaches 1 of its original value. e It is often best to assume, however, that when there is an a.c. in the cylindrical copper wire, the current flows only in the region between the surface of the wire and a depth equal to the skin effect depth and that there is no current at the centre of the cylindrical wire. The skin effect has practical consequences in the design of radio-frequency and microwave circuits and in long distance a.c. electrical power transmission and distribution systems. It is also important in designing discharge tube circuits. The skin effect depth (in metres) for copper can be calculated using the formula: skin effect depth = 0.0760 frequency Adapted from: http://www.calculatoredge.com/electronics/skin%20effect.htm [Turn over

6 Extract 5: Disadvantages of HVDC transmission The disadvantages of HVDC are in conversion, switching, control, availability and maintenance. The required static inverters are expensive and have limited overload capacity. At smaller transmission distances the losses in the static inverters may be bigger than in an a.c. transmission line. The cost of the inverters may not be offset by reductions in line construction cost and lower line loss. With two exceptions, all former mercury rectifi ers worldwide have been dismantled or replaced by thyristor units. Pole 1 of the HVDC scheme between the North and South Islands of New Zealand still uses mercury arc rectifiers, as does Pole 1 of the Vancouver Island link in Canada. In contrast to a.c. systems, realising multi-terminal systems is complex, as is expanding existing schemes to multi-terminal systems. Controlling power fl ow in a multi-terminal d.c. system requires good communication between all the terminals; power fl ow must be actively regulated by the inverter control system instead of the inherent properties of the transmission line. Multi-terminal lines are rare. One is in operation at the Hydro Québec New England transmission from Radisson to Sandy Pond. Another example is the Sardinia mainland Italy link which was modifi ed in 1989 to also provide power to the island of Corsica. HVDC is less reliable and has lower availability than a.c. systems, mainly due to the extra conversion equipment. Single pole systems have availability of about 98.5%, with about a third of the downtime unscheduled due to faults. Fault redundant bipole systems provide high availability for 50% of the link capacity, but availability of the full capacity is about 97% to 98%. HVDC circuit breakers are diffi cult to build because some mechanism must be included in the circuit breaker to force current to zero, otherwise arcing and contact wear would be too great to allow reliable switching. Operating an HVDC scheme requires many spare parts to be kept, often exclusively for one system as HVDC systems are less standardised than a.c. systems. Adapted from: http://www.dciinsulator.com/shownews.asp?id=155

7 Extract 6: Transmission line capacitance Long undersea high-voltage cables have a high electrical capacitance, because the conductors are surrounded by a relatively thin layer of insulation and a metal sheath. The geometry is that of a long co-axial capacitor. Where a.c. is used for cable transmission, this capacitance appears in parallel with the load. Additional current must fl ow in the cable to charge the cable capacitance, which generates additional losses in the conductors of the cable. Additionally, there is a dielectric loss component in the material of the cable insulation, which consumes power. However, when d.c. is used, the cable capacitance is only charged when the cable is fi rst energised or when the voltage is changed; there is no steady-state additional current required. For a long a.c. undersea cable, the entire current-carrying capacity of the conductor could be used to supply the charging current alone. This limits the length of a.c. cables. d.c. cables have no such limitation. Although some d.c. leakage current continues to fl ow through the dielectric, this is very small compared to the cable rating. From: http://en.wikipedia.org/wiki/high-voltage_direct_current Extract 7: Capacitive reactance The ratio V 0 I 0, where I 0 is the peak current in the circuit and V 0 is the peak voltage, is known as the capacitive reactance. Capacitive reactance plays the same role for a capacitor that resistance does for a resistor. The voltage V t of an a.c. supply at time t is given by the expression V t = V 0 sin (2πft) The current I t in a circuit containing a capacitor of capacitance C is given by the expression I t = 2πfCV 0 cos (2πft)

8 BLANK PAGE Copyright Acknowledgements: Extract 1 Extract 2 Extract 3 Extract 4 Extract 5 Extract 6 http://www.practicalphysics.org/go/guidance_107.html. http://www.abb.com/industries/us/9aac30300393.aspx. http://www.dciinsulator.com/shownews.asp?id=155 http://www.calculatoredge.com/electronics.skin%20effect.htm. http://www.dciinsulator.com/shownews.asp?id=155 http://en.wikipedia.org/wiki/high-voltage_direct_current. Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.