Regulatory Guidance and Safety Standards

Similar documents
IEEE ICES Exposure Limits Above 6 GHz

NEW IEEE C RF SAFETY STANDARD

HAZARDS OF NON-IONIZING RADIOFREQUENCY (RF) RADIATION

Human Exposure Requirements for R&TTE and FCC Approval

Area Network Applications] Notice: This document has been prepared to assist the IEEE P It is

Health Issues. Introduction. Ionizing vs. Non-Ionizing Radiation. Health Issues 18.1

Radiofrequency (RF) Safety Overview Massachusetts Environmental Health Association

THE RUSSIAN STANDARDS AND THE OPINION ABOUT INTERNATIONAL HARMONIZATION OF ELECTROMAGNETIC STANDARDS

WHITEPAPER WHITEPAPER

2200 Noll Drive Lancaster, PA Latitude: N 40º (NAD 83) Longitude: W 76º (NAD 83) 362 AMSL

Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields

RADIOFREQUENCY ELECTROMAGNETIC FIELDS

Report On. RF Exposure Assessment of the Sepura plc SRG3900 with AQHB Antenna. FCC ID: XX6SRG3900UW Industry Canada ID: 8739A-SRG3900UW

COMMON REGULATORY OBJECTIVES FOR WIRELESS LOCAL AREA NETWORK (WLAN) EQUIPMENT PART 2 SPECIFIC ASPECTS OF WLAN EQUIPMENT

Proceedings, International Conference on Cell Tower Siting Linking Science & Public Health, Salzburg, Austria, June 7-8, 2000, p 47-51

Product Compliance Assessments of Low Power Radio Base Stations with Respect to Whole-Body Radiofrequency Exposure Limits

IOSH Webinar. Control of Electromagnetic Fields at work regulations 2016 Part 2 EMF exposure assessment 4 th May 2017 Julia Clark FSRP CMIOSH

Safety Code 6 (SC6) Measurement Procedures (Uncontrolled Environment)

Harmful Effects of Mobile Phone Tower Radiations on Muscle and Bone Tissues of Human Body at Frequencies 800, 900, 1800 and 2450 MHz

PO01275C Tabor East Neighborhood Meeting. Monday, April 20, :30 PM 8:30 PM

IEEE Electromagnetic Compatibility Standards (Active & Archive) Collection: VuSpec

ITU-T Study Group 5. EMF Environmental Characterization

Department of Defense INSTRUCTION. SUBJECT: Protection of DoD Personnel from Exposure to Radiofrequency Radiation and Military Exempt Lasers

GEISLAVARNIR RÍKISINS ICELANDIC RADIATION SAFETY AUTHORITY

CHARACTERISTICS, DOSIMETRY & MEASUREMENT OF EMF

Wireless Facility Radio Frequency Exposure Compliance Review

The Rationale for Negligible Risk Exemptions in the Telecommunications Act of 1996: Cellular Phone and Personal Communication System Transmitters

MAGTFTC, MCAGCC SOP FOR RADIO FREQUENCY (RF) PERSONNEL PROTECTION PROGRAM

Technical Committee106 Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure

Regulatory Authority of Bermuda report on

Verizon Wireless Proposed Base Station (Site No South Goleta ) 4500 Hollister Avenue Santa Barbara, California

NJDOT Research Showcase WORKER SAFETY ISSUES OF WIRELESS DEVICES

SAR REPORT. TEST STANDARDS: FCC Part 15 Subpart C Intentional Radiator. ARRIS Model Spectrum 110A Set Top Box With Bluetooth (DSS) and RF4CE (DTS)

Royal Street Communications, LLC Proposed Base Station (Site No. LA0366A) 315 4th Avenue Venice, California

RF AND MICROWAVE SAFETY PROGRAM

RF Exposure Assessment Report (FCC ID: 2AD8UAZRBRH1)

Eight Myths about Mobile Phones and Base Stations

Cell Phone and RF Safety Awareness

AT&T Mobility Proposed Base Station (Site No. CN4779A) 1101 Keaveny Court Walnut Creek, California

Verizon Wireless Proposed Base Station (Site No Lake Cachuma ) 2680 Highway 154 Santa Barbara County, California

RF EMISSIONS FROM SMART GRID ELECTRIC METERS, HAN DEVICES, AND THEIR RELATIONSHIP TO THE FCC MAXIMUM PERMISSIBLE EXPOSURE LIMIT (MPE)

This is a preview - click here to buy the full publication. Exposure assessment methods for wireless power transfer systems

Verizon Wireless Proposed Base Station (Site No Berkeley Bekins ) 2721 Shattuck Avenue Berkeley, California

American National Standard for Methods of Measurement. Frequency allocations and radio treaty matters; general rules and regulations

CHARACTERISTICS, DOSIMETRY & MEASUREMENT OF EMF

Soundview Cell Tower 1

SAFETYTRAINING INFORMATION Your TYT ELECTRONICS CO.,LTD radio generates RF electromagnetic energy during transmit mode. This radio is designed for and

ELECTROMAGNETIC ENERGY (EME) EXPOSURE REPORT

Product Safety and RF Energy Exposure Booklet for Portable Two-Way Radios

RF EMISSIONS COMPLIANCE REPORT. Verizon Wireless. Report Status: Verizon Wireless is Compliant

Modeling Electromagnetic Radiation on Lookout Mountain, Colorado

RF Radiation Safety Training

ELECTROMAGNETIC FIELDS RADIATED BY SMART POWER METERS IN RELATION TO US SAFETY GUIDELINES

Company report to support the development of the Ecma MM-EMF technical report (attached pdf-document)

EMF ASSESSMENT REPORT

Analysis of SAR in Human Blood, Bones and Muscles due to Mobile Waves at 900MHz,1800MHz and 2400MHz

MAXIMUM PERMISSIBLE EXPOSURE STUDY

Essentia Electromagnetic Monitor Model: EM2

3G Mini-Card Gobi2000

CoServ Electric s RF Mesh Advanced Metering Infrastructure. RF/EMF Investigation

After having perused the Decree Law No. (31) of 2002 on Protection from Radiation,

A.R.E.S. Antenna and RF Safety By: Jeffrey Lamb Firefighter/EMT Sacramento County A.R.E.S. AEC

Radio Frequency Emissions Analysis Report Sprint Wireless Water Tank Facility

R ICHARD T ELL A SSOCIATES, INC.

Product Safety and RF Energy Exposure Booklet for Unication Two-Way Portable Radios

Model: M /800 MHz Mobile Radio

Wireless System Collocation Presents New Issues For Worker Protection

RADIO FREQUENCY NIER REPORT

Experimental Compliance Testing of Telephony Base Stations, Broadcast Stations, and General Mobile Transmitters

Radio Frequency Electromagnetic Energy (RF-EME) Compliance Report

Health Test Report. Report No.: AGC EH01 EN 62311:2008 EN 50566:2013. Attestation of Global Compliance (Shenzhen) Co., Ltd.

This is a preview - click here to buy the full publication

Australian/New Zealand Standard

Before the Federal Communications Commission Washington, D.C

Safety Code 6 Analysis Freedom Mobile 3G & LTE Network. Radio frequency exposure for uncontrolled and controlled environment.

Ref. Ares(2015) /03/2015 MiWaveS Deliverable D1.3

INTRODUCTION well below

Radio Frequency Electromagnetic Energy (RF-EME) Compliance Report

Safety in electromagnetic fields. EMF Directive 2013/35/EU

ENGLISH TRANSLATION GUIDELINES FOR THE USE OF WIRELESS POWER TRANSMISSION/TRANSFER TECHNOLOGIES TECHNICAL REPORT. BWF TR-01 Edition 2.

Abbey Court Irish Life Centre Lower Abbey Street Dublin 1 Tel Fax Web

Hand. Volume II. Part 20: Ionizing Radiation/Nonionizing Radiation

Technical Note 2. Standards-compliant test of non-ionizing electromagnetic radiation on radar equipment

Abbey Court Irish Life Centre Lower Abbey Street Dublin 1 Tel Fax Web

Abbey Court Irish Life Centre Lower Abbey Street Dublin 1 Tel Fax Web

Abbey Court Irish Life Centre Lower Abbey Street Dublin 1 Tel Fax Web

Challenges in standardization related to EMF compliance above 6 GHz

Abbey Court Irish Life Centre Lower Abbey Street Dublin 1 Tel Fax Web

MICROWAVE & RF RADIATION: (RFR Information - Technology Newsletter, Full Version)

MAXIMUM PERMISSIBLE EXPOSURE ADDENDUM REPORT TO (Measurement)

EMF risk for operators mounting, adjusting and maintaining base stations

Electrical Severity Measurement Tool Revision 4

ITU-D activities on EMF

ARPANSA. WHO Collaborating Centre for Radiation Protection Report for IAC Meeting, Geneva June Dr Colin Roy Director NIR Branch

Guide to FCC/Canada Regulations for. Low Power Modular Wireless Transmitters For North America

COMPLIANCE BOUNDARIES FOR TRAIN PROTECTION SYSTEMS

General Safety/EMC and Electrical Information for i-limb ultra and i-limb digits

November 3, Saw Sun Hock, Giorgi Bit-Babik, Ph.D., and Antonio Faraone, Ph.D. Motorola Solutions EME Research Lab, Plantation, Florida

Verizon Wireless Proposed Base Station (Site No Palos Verdes ) 1506 Camino Verde Walnut Creek, California

PAR FORM SCC-34/SC-2/WG-1

Transcription:

Regulatory Guidance and Safety Standards Andrew H. Thatcher, MSHP, CHP Thatcher.drew@comcast.net March 19, 2018 University of Washington

Overview 60 Hz power frequency exposure standards Static Fields RF (current fields to 3 GHz) Upcoming applications for mm Wave and exposure limits

Frequencies below ~100 khz The limiting hazard is electrostimulation of tissue, either from electric fields induced within the body or by exposure to external fields, or from contact currents that occur when a person touches a charged conductive object.

60 Hz Power Frequency Field Exposure Limits No state or federal standards exist with regards to power frequency fields. Three relevant guidelines are used for exposure limits: International Commission on Non-Ionizing Radiation Protection (ICNIRP), 2010 IEEE C95.6-2002 Standards for Safety Levels with Respect to Human Exposure to Electromagnetic Fields, 0-3 khz American Conference of Governmental Industrial Hygienists (ACGIH), 2009

Power Frequency Fields Continued From ACGIH: Arms and legs 50,000 mg Hands and feet - 100,000 mg Electric field limit of 25 kv/m

ACGIH Induced and Contact Current Limits (ma) Frequency Through Both Feet Through Either Foot Grasping Averaging Time 30 khz 100 khz 2000 f 1000 f 1000 f 0.2 s 100 khz 100 MHz 200 100 100 6 min Note that the current limits above may not adequately protect against startle reactions and burns caused by transient discharges when contacting an energized object. Maximum touch current is limited to 50% of the maximum grasping current. The ceiling value for induced and contact current is 500 ma. From IEEE C95.1-2005

Static Magnetic Fields: MRI FDA: Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices (2014), which identifies the operating conditions for MRI systems that FDA considers significant risk. An MRI system that exceeds any of these operating conditions would be considered significant risk and require FDA oversight via an IDE: Main static magnetic field over 8 tesla (80,000 Gauss) for adults, children, and infants >1 month of age; main static magnetic field over 4T for infants less than 1 month of age, or Specific absorption rate (SAR) greater than 4 W/kg whole body for 15 minutes, >3.2 W/kg averaged over the head for 10 minutes, or db/dt sufficient to produce severe discomfort or painful stimulation, or

RF Safety Standards: Philosophy Contemporary exposure limits are biologically based and reflect a consensus interpretation of relevant studies from the bioelectromagnetics literature by qualified scientists, physicians and engineers Classifications of findings are made without pre-judgment of mechanisms of effects The intent is to protect exposed human beings from harm by any mechanism, including those arising from excessive elevations of body temperature The bases (basic restrictions) of contemporary RF safety standards are essentially the same; differences in exposure limits are engineering related - not philosophical and are being resolved through standards harmonization programs

Adverse Health Effects An adverse health effect is a biological effect characterized by a harmful change in health that is supported by consistent findings of that effect in studies published in the peer-reviewed scientific literature, with evidence of the effect being demonstrated by independent laboratories, and where there is consensus in the scientific community that the effect occurs for the specified exposure conditions. [IEEE Standard C95.1-2005]

Standards and Guidelines ICNIRP (1998): this publication is to establish guidelines for limiting EMF exposure that will provide protection against known adverse health effects. *ICNIRP reconfirmed its guidelines in 2009. IEEE ICES C95.1-2005: The purpose of this standard is to provide exposure limits to protect against established adverse effects to human health induced by exposure to RF electric, magnetic and electromagnetic fields over the frequency range of 3 khz to 300 GHz.

Established Adverse Health Effects Expert panels that review the literature agree that the only adverse effects that have been established are the following: Aversive or painful electrostimulation due to excessive RF internal electric fields (< 5 MHz) RF shocks or burns due to contact with excessively high RF voltages (< 110 MHz) Heating pain or tissue burns due to excessive localized RF exposure (> 100 khz) Behavioral disruption, heat exhaustion or heat stroke due to excessive whole body RF exposures (> 100 khz)

Literature Evaluation Recommendations in contemporary RF safety standards and guidelines (Basic Restrictions and Exposure Limits) are based on the following: the results of comprehensive reviews and evaluations of the scientific literature (more than 1300 relevant citations in C95.1-2005) More than 6200 articles currently found on www.emf-portal.org findings of studies published mainly after 1950 studies that involve low level exposures (especially important) conclusions supported by a lack of credible scientific and medical reports showing adverse health effects for RF exposures at or below similar exposure limits in past standards

Results of Literature Evaluations The most sensitive measure of potentially harmful biological effects is disruption of food-motivated behavior in laboratory animals The threshold was found to reliably occur over a narrow SAR range between ~ 3 and 9 W/kg in several animal species under widely varying exposure parameters and was accompanied by an elevation in core temperature The C95.1 standard, and all modern RF safety standards and guidelines, are based on a threshold SAR of 4 W/kg

Basic Restrictions basic restrictions (BR): Exposure restrictions that are based on established adverse health effects that incorporate appropriate safety factors. BRs are expressed in terms of the in situ electric field (< 100 khz), specific absorption rate (100 khz to 3 GHz), or incident power density (3 GHz to 300 GHz). Because of the difficulty in determining the BRs under typical exposure conditions, exposure limits (ELs) derived from the BRs are used for assessing compliance.

Basic Restrictions (SAR) Specific absorption rate (SAR) is the basic dosimetric quantity for comparing and extrapolating laboratory results (bioeffects studies) for frequencies above ~ 100 khz All modern RF safety standards are based the threshold SAR for the most sensitive, reproducible biological effects that can be related to human health Despite slight differences in field limits, all modern RF safety standards (less than 6 GHz) are based on limiting the wholebody-averaged SAR to 0.4 and 0.08 W/kg, for exposures in controlled and uncontrolled environments, respectively Greater than 6 GHz the safety standards are based on limiting the power density as the absorption is limited to the skin layer

Comparison of Power Density and SAR Thresholds for Behavioral Disruption Species and Conditions CW 225 MHz Pulsed 1.3 GHz CW 2.45 GHz Pulsed 5.8 GHz Norwegian Rat Power Density: SAR: ----- ----- 10 mw/cm 2 2.5 W/kg 28 mw/cm 2 5.0 W/kg 20 mw/cm 2 4.9 W/kg Squirrel Monkey Power Density: SAR: ----- ----- ----- ----- 45 mw/cm 2 4.5 W/kg 40 mw/cm 2 7.2 W/kg Rhesus Monkey Power Density: SAR: 8 mw/cm 2 3.2 W/kg 57 mw/cm 2 4.5 W/kg 67 mw/cm 2 4.7 W/kg 140 mw/cm 2 8.4 W/kg

Safety Factors Whole body exposure: Behavioral effects in several animal species over many frequencies; threshold between ~ 3 and 9 W/kg 10X - 0.4 W/kg for upper tier 50X - 0.08 W/kg for lower tier Localized exposure (averaged over any 10 g) Lens opacities (cataract) observed in rabbits, threshold 100 W/kg 10X 10 W/kg for upper tier 50X 2 W/kg for lower tier

Basic restrictions for frequency range 100 khz to 6 GHZ 47 CFR 1.1310 Radiofrequency Radiation Exposure Limits General Public / Uncontrolled Exposure (W/kg) Occupational/ Controlled Exposure (W/kg) Whole Body exposure Whole Body Average 0.08 0.4 Localized exposure Localized exposure a Averaged over any 1 gram of tissue b Averaged of any 10 grams of tissue Localized (peak spatial average) 1.6 a 8 a Extremities and pinnae 4 b 20 b

Relevant Scientific Literature Several thousand relevant RF bioeffect studies in the extant literature cover a wide range of frequencies and modulations The literature database in of uneven quality Absence of support for the non-thermal hypothesis Biophysical analyses and reviews do not provide convincing evidence that non-thermal interactions are plausible at RF frequencies Examination of biological effects literature does not provide a consistent body of data supporting theoretical postulates on non-thermal mechanisms

Source: FCC OET Bulletin 65. 1997

Exposure (µw/cm²) Typical Radiofrequency Exposures in our Lives 100 90 80 The Public exposure limit is: 200 µw/cm² for FM 425 µw/cm² for TV (UHF) 570 µw/cm² for cellular 1,000 µw/cm² for PCS 70 60 50 40 30 30 30 20 10 0 Cordless phone Bluetooth 2 Baby Monitor @ 7 feet 0.1 0.8 0.2 1.6 0.2 0.04 FM & TV Wireless Laptop WiFi maximum outdoor exposure Typical outdoor exposure Max indoor exposure nearby home Copyright 2011 Andrew H. Thatcher,

FCC OET 65

What About Exposures to Multiple RF Frequencies? n i 1 power density MPE ( TLV) i 1

Exclusions The electric field, magnetic field and power density MPEs can be exceeded if it can be shown by appropriate techniques that: the whole-body-averaged (WBA) SAR does not exceed the appropriate WBA SAR limits, and the spatial peak SARs do not exceed the corresponding spatial peak SAR limits (except in the hands, wrists, feet and ankles), and the spatial peak SAR in the hands, wrists, feet and ankles do not exceed 20 W/kg and 4 W/kg in any 10 g of tissue in the shape of a cube for the controlled and uncontrolled environments, respectively, and the induced currents in the body do not exceed the appropriate induced current MPEs

What is 5G? What Frequencies are Involved? FCC makes changes to allow for millimeter wave (mmw) technology Changes in rules to promote 3.5 GHz as a core frequency for 5G Expand use in Mid-Band spectrum between 3.7 GHz and 24 GHz (3.7 4.2 GHz, 5.925-6.425 GHz, 6.425-7.125 GHz) Additional 1700 MHz in 24 GHz and 47 GHz bands Allocations in 28 GHz, 37 GHz, and 39 GHz bands

What about 5G frequencies? Exposures > 6 GHz have very shallow penetration limited to the skin. Limits are related to incident power density as opposed to a SAR due to the limited penetration distance. A number of articles are reviewing the models and results of mmw absorption: Foster, KR. Ziskin, MC. and Balzano, Q. Thermal Response of Human Skin to Microwave Energy: A Critical Review, Health Physics, 111(6): 528-541. 2016 Foster, KR. Ziskin MC. and Balzano, Q. Thermal Modeling for the Next Generation of Radiofrequency Exposure Limits: Commentary. Health Physics, 113(1); 41-53, 2017. Ziskin, MC, Alekseev, SI, Foster KR, and Balzano, Q. Tissue Models for RF Exposure Evaluation at Frequecies above 6 GHz. Bioelectromagnetics, In Review. And others in review Aside: Expectations is that the current 8.4 Billion connected devices will grow by 10X in the next few years

What About Low-level RF Biological Effects? Despite more than 60 years of RF research, there is no convincing evidence that supports low-level biological effects, i.e., effects that occur at exposure levels below the limits found in contemporary standards and guidelines No theoretical mechanism has been established that supports the existence of any effect characterized by trivial heating other than microwave hearing The relevance of reported low-level biological effects remains speculative and such effects are not useful for developing exposure limits

Final Thoughts The study of the biological effects of RF energy is a mature scientific discipline with more than a 60 year history The RF bioeffect literature database is extensive but of uneven quality Scientists have been developing RF safety criteria based on critical evaluations and interpretations of the scientific literature for almost 60 years Despite many thousands of studies that have been reported on all aspects of the subject since the first safety criteria were proposed, the exposure limits have not changed significantly Changes in the exposure limits over the years have mainly resulted from a better understanding of the dosimetry Both IEEE C95.1-2005 and ICNIRP guidelines are undergoing major revisions estimated completion ~late 2018.