Research Article Optical Coupling Structures of Fiber-Optic Mach-Zehnder Interferometers Using CO 2 Laser Irradiation

Similar documents
Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article A Polymer Film Dye Laser with Spatially Modulated Emission Controlled by Transversely Distributed Pumping

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers

Temporal coherence characteristics of a superluminescent diode system with an optical feedback mechanism

Ultra-Compact Photonic Crystal Based Water Temperature Sensor

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article Research on Fused Tapered Photonic Crystal Fiber Sensor Based on the Method of Intermittent Cooling

Graduate University of Chinese Academy of Sciences (GUCAS), Beijing , China 3

A novel tunable diode laser using volume holographic gratings

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Quadrature Oscillators Using Operational Amplifiers

Analysis of the Tunable Asymmetric Fiber F-P Cavity for Fiber Strain Sensor Edge-Filter Demodulation

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Achievement of Arbitrary Bandwidth of a Narrow Bandpass Filter

Supplementary Figures

Electronically switchable Bragg gratings provide versatility

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Fang-Wen Sheu *, Yi-Syuan Lu Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan ABSTRACT

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

Research Article Preparation and Properties of Segmented Quasi-Dynamic Display Device

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

NUTC R203. Miniaturized Fiber Inline Fabry-Pérot Interferometer for Chemical Sensing. Tao Wei and Hai Xiao

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor

Research Article Measurement of Microvibration by Using Dual-Cavity Fiber Fabry-Perot Interferometer for Structural Health Monitoring

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Electronically tunable fabry-perot interferometers with double liquid crystal layers

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Opto-VLSI-based reconfigurable photonic RF filter

SPP waveguide sensors

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article CPW-Fed Slot Antenna for Wideband Applications

Bragg and fiber gratings. Mikko Saarinen

Research Article An Investigation of Structural Damage Location Based on Ultrasonic Excitation-Fiber Bragg Grating Detection

Principles of Optics for Engineers

Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing

Hiroshi Murata and Yasuyuki Okamura. 1. Introduction. 2. Waveguide Fabrication

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Fiberoptic and Waveguide Sensors

Bent-fiber intermodal interference based dualchannel fiber optic refractometer

Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement

Stabilized Interrogation and Multiplexing. Techniques for Fiber Bragg Grating Vibration Sensors

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Research Article A New Capacitor-Less Buck DC-DC Converter for LED Applications

Optical Fibre-based Environmental Sensors Utilizing Wireless Smart Grid Platform

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

Microfiber-Based Inline Mach Zehnder Interferometer for Dual-Parameter Measurement

- no emitters/amplifiers available. - complex process - no CMOS-compatible

Swept Wavelength Testing:

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Design, Simulation & Optimization of 2D Photonic Crystal Power Splitter

Polymer Integrated Waveguide Optical Biosensor by Using Spectral Splitting Effect

A GENERAL RULE FOR DESIGNING MULTIBRANCH HIGH-ORDER MODE CONVERTER. of Applied Sciences, Kaohsiung 807, Taiwan, R.O.C.

Electrical and Electronic Engineering Department, Public University of Navarra, Pamplona, Spain

Development of Etalon-Type Gain-Flattening Filter

A NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR DWDM OPTICAL NETWORKS

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

UNIT - 7 WDM CONCEPTS AND COMPONENTS

Fibre Optic Sensors: basic principles and most common applications

Silica polygonal micropillar resonators: Fano line shapes tuning by using a Mach-Zehnder interferometer

Optical Polarization Filters and Splitters Based on Multimode Interference Structures using Silicon Waveguides

Wavelength spacing tenable capability of optical comb filter using Polarization Maintaining Fiber

Electro-optic Electric Field Sensor Utilizing Ti:LiNbO 3 Symmetric Mach-Zehnder Interferometers

Design of Vibration Sensor Based on Fiber Bragg Grating

NEW APPROACH TO DESIGN DIGITALLY TUNABLE OPTICAL FILTER SYSTEM FOR WAVELENGTH SELEC- TIVE SWITCHING BASED OPTICAL NETWORKS

Research Article Output Signal Power Analysis in Erbium-Doped Fiber Amplifier with Pump Power and Length Variation Using Various Pumping Techniques

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm

Photonics and Optical Communication

Chapter 10 WDM concepts and components

1272. Phase-controlled vibrational laser percussion drilling

Design and Simulation of Optical Power Splitter By using SOI Material

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

High sensitivity SMS fiber structure based refractometer analysis and experiment

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP

E LECTROOPTICAL(EO)modulatorsarekeydevicesinoptical

DWDM FILTERS; DESIGN AND IMPLEMENTATION

Research Article Calculation of Effective Earth Radius and Point Refractivity Gradient in UAE

Transcription:

Antennas and Propagation, Article ID 938693, 9 pages http://dx.doi.org/10.1155/2014/938693 Research Article Optical Coupling Structures of Fiber-Optic Mach-Zehnder Interferometers Using CO 2 Laser Irradiation Chien-Hsing Chen, 1,2 Chih-Yu Hsu, 3 Pei-Hsing Huang, 4 Jian-Neng Wang, 5 and Wei-Te Wu 3 1 Department of Physics, National Chung Cheng University, Chiayi 62102, Taiwan 2 Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 62102, Taiwan 3 Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan 4 Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan 5 Department of Construction Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan Correspondence should be addressed to Wei-Te Wu; weite@mail.npust.edu.tw Received 3 January 2014; Accepted 3 March 2014; Published 15 June 2014 Academic Editor: Chung-Liang Chang Copyright 2014 Chien-Hsing Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Mach-Zehnder interferometer (MZI) can be used to test changes in the refractive index of sucrose solutions at different concentrations. However, the popularity of this measurement tool is limited by its substantial size and portability. Therefore, the MZI was integrated with a small fiber-optic waveguide component to develop an interferometer with fiber-optic characteristics, specifically a fiber-optic Mach-Zehnder interferometer (FO-MZI). Optical fiber must be processed to fabricate two optical coupling structures. The two optical coupling structures are a duplicate of the beam splitter, an optical component of the interferometer. Therefore, when the sensor length and the two optical coupling structures vary, the time or path for optical transmission in the sensor changes, thereby influencing the back-end interference signals. The researchers successfully developed an asymmetrical FO-MZI with sensing abilities. The spacing value between the troughs of the sensor length and interference signal exhibited an inverse relationship. In addition, image analysis was employed to examine the size-matching relationship between various sensor lengths and the coupling and decoupling structure. Furthermore, the spectral wavelength shift results measured using a refractive index sensor indicate that FO-MZIs with a sensor length of 38 mm exhibited excellent sensitivity, measuring 59.7 nm/riu. 1. Introduction Recently, several types of optical waveguide sensors or optical fiber-based refractometer have been proposed, including long period fiber gratings, Fabry-Perot interferometers, and Mach-Zehnder interferometers (MZI). The operation principle of the MZI by the first coupling point induces coupling of a fraction of the incident light propagating in thecoremodetothecladdingmode,andthesecondone performs the opposite function, generating the interference of light propagating in different optical paths. The fiber-optic Mach-Zehnder interferometer (FO-MZI) is a miniaturized and economical sensor component with label-free, real-time detection abilities. The FO-MZI does not require surface modification to induce surface plasmon resonance (SPR) [1] or particle plasmon resonance (PPR) [2]. The FO-MZI has been successfully employed for measuring refractive indices and temperatures and exhibits considerable future market potential [3]. The advantage of this type of sensor is relatively simple in construction, compact, low cost, ease of use, immunity to electromagnetic interference, and high sensitivity to the external refractive index (RI). This study proposes a coupling and decoupling structure (which is a duplicate of the beam splitter in traditional interferometers) for the FO-MZI; thus, the structural characteristics are identical to those of a beam splitter, inducing coupling and decoupling during fiber-optic transmissions [4], as shown in Figure 1. Previous studies have examined the FO-MZI; however, few have investigated the influence that sensor length (L) variations have on interference signals. The optical coupling and decoupling structure does not need to be linked to an optical source or spectrometer. Interference

2 Antennas and Propagation Mirror W L W Core Cladding (a) The fiber-optic Mach-Zehnder interferometer D Light source Beam splitter Mirror (b) The traditional Mach-Zehnder interferometer Interference fringe Figure 1: Optical transmission path. Cladding (φ: 125 μm) Coting (φ: 250μm) Core (φ: 8.2 μm) Figure 2: Single-mode optical fiber. signals are obtained by satisfying the size-matching criterion for the specific structure. 2. Experimental 2.1. Fabrication of FO-MZI Using a CO 2 Laser. This study adopted a CO 2 laser-processing method, which is simple, rapid, and flexible for correcting basic parameters. We employed a single-mode communication optical fiber as the material for producing the FO-MZI because intermodal dispersion does not exist in single modes; therefore, single modes can be applied to long-distance transmissions. Furthermore, the small size of the single-mode communication optical fiber is ideal (see Figure 2)[5]. The production process equipment for the CO 2 laser is shown in Figure 3. Theresearchersusedacrimpingtoolto remove the fiber cladding layer covering the area required to develop the coupling and decoupling structure. The optical fiber was subsequently placed on a CO 2 laser-processing platform, and an amplified spontaneous emission CL waveband optical source was steered onto the left end of the optical fiber [3]. An optical spectrum analyzer was connected to the right end of the optical fiber. Suitable processing parameters for the CO 2 laserwereadjustedusingacomputer,anda heat removal method was employed, using the CO 2 laser to remove the specific target area. Thus, the coupling and decoupling structure was established, satisfying the criterion for forming interference. 2.2. Principle of FO-MZI. A schematic of FO-MZI is shown in Figure 1(a), in which sensing length L denotes the distance between the two coupling points. The beam splitters of the MZI were made by forming two coupling regions at two positions separated by a distance L in the fiber. An incident light propagating as a core mode is split into the core mode and the cladding modes after passing through the first coupling region. The light of the cladding modes is recombined with thecoremodeafterthesecondcouplingregion,resultingin an interference pattern if the phase matching condition is properly fulfilled. This section of single-mode fiber with a pair of coupling regions functions as a MZI interferometer. The interference fringe pattern can be finely tuned by adjusting the loss strength of the two coupling regions and their separation. 2.3. Sensor Length Control. This study covered the following Ls for the FO-MZI: 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm. Each length of FO-MZI samples comprised 10 sensors. Optical sources and spectrometers were used for realtime monitoring to observe the variations in interference signals for FO-MZIs with different lengths. 2.4. Measurements for the Coupling and Decoupling Structures. In this study, the FO-MZI produced using a CO 2 laser was asymmetrical (see Figure 1). In other words, the coupling and decoupling structure was only on one side of the optical fiber. The removed area was small, the structure was simple, and the

Antennas and Propagation 3 Optical spectrum analyzer PC CO 2 laser Light source Figure 3: Schematic of FO-MZI production process with CO 2 laser. Table 1: The relationship between L and interference signals. The number of samples = 10 L (mm) 10 20 30 40 50 Average spacing (nm) = (Δλ 1 +Δλ 2 + +Δλ n )/n 45.9 26.6 16.8 13.8 9.9 Standard deviation (nm) 2.29 2.29 0.38 0.10 0.15 duration was short. Therefore, the occurrence of production errors was reduced. Because of its excellent mechanical strength, the optical fiber was not prone to breaking. In addition, the radially symmetric exterior of the optical fiber was not welded [7]oretched[8]. The heat accumulation and thermal diffusion effects of the material used for CO 2 laser-processing affect a portion of the material. Therefore, this section presents the use of a noncontact image-measuring instrument for measuring the size-matching relationship between FO-MZIs with different Ls to establish a database as a reference for future production processes. However, general detection platforms cannot be used to fixate the FO-MZI accurately, leading to measurement and determination errors, thereby reducing the reliability of the acquired size. To eliminate measurement errors, the fixture shown in Figure 4 was designed. At the center of this fixture, an auxiliary line was hypothesized. The center line divides two equal parts (see Figure 5). The optical coupling and decoupling structure was adjusted to satisfy the criterion of the center line, establish a side view of the structure, and achieve a vertical charged-coupled device lens for correction. 2.5. Refractive Index Detection. As shown in the experiment framework presented in Figure 6, weplacedthefo-mzion a detection platform and connected each end of the sensor to an optical source and spectrometer to detect variations in theinterferencesignals.thetestsolutionwasthenintroduced into a butterfly needle catheter using a syringe. Deionized (DI) water with a refractive index of 1.333 RIU was injected, and sucrose solutions between 1.343 RIU and 1.373 RIU were separately injected into the microfluidic channel of the chip. The injected solutions interacted with the FO-MZI in the microfluidic channel, as shown in Figure 7. Ashift in the interference signal was observed, and the FO-MZI having the optimal L, which exhibited excellent sensitivity, was subsequently identified. 3. Results and Discussion 3.1. The Relationship between Various Lengths and Interference Signal. The analysis results of the spacing value between troughs of various Ls are shown in Table 1. The results in Table 1 indicated that an inverse relationship existed between L and the average spacing value between troughs of various Ls. This inverse relationship results from variations in the interference signal caused by the direct influence that a specific L has on the time for transmitting split beams to the coupling structure [4, 9]. Consider Δλ L = λ2 0 Δn eff, (1) where λ represents the center wavelength and Δn eff = Δn core eff Δn cladding eff indicates the effective refractive index of various modes. Both values are fixed; therefore, when the L is increased, the spacing value Δλ between the troughs of the interference signal decreases. This finding verified the inverse relationship between the L and the spacing value between the troughs of the FO-MZI developed in this study, thereby validating the theoretical relationship. The fitting results were approximate to an inverse curve, which indicated that the basicrequirementsforthefo-mziwerefulfilled,asshownin Figure 8. The relationship between various Lsandthespacing values between troughs are shown in Figure 9. Theaverage spacing is given by (Δλ 1 +Δλ 2 + +Δλ n ), (2) n

4 Antennas and Propagation (a) (b) (c) (d) Figure 4: Fixture for the image-measuring instrument: (a) spring struts, (b) silicone gasket, (c) detection platform, and (d) scale turntable. CCD CCD CCD Rotation 90 Depth p w f Figure 5: Image measurement technique. Optical spectrum analyzer Light source Output Input Microfluid chip and FO-MZI sensor Figure 6: Schematic of refractive index detection using FO-MZI sensors.

Antennas and Propagation 5 Table 2: The size matching of various Ls with the coupling and decoupling structure. L (mm) Width of removal (W)(μm) Depth of removal (D)(μm) Mean Standard deviation Mean Standard deviation 10 163.90 2.83 32.80 1.57 20 168.05 4.74 40.85 1.77 30 165.50 2.69 49.70 3.53 40 162.30 4.95 44.35 4.88 50 163.65 5.30 37.75 3.89 Samples (sensors) 10 Core Cladding ldd Sensor area Figure 7: Structures of the FO-MZI sensor for refractive index detection. Average spacing (nm) 50 45 40 35 30 25 20 15 10 5 Equation Adj. R 2 Average spacing (nm) Average spacing (nm) y=a x b 0.97023 a b Value Standard error 491.20304 138.19309 0.98793 0.08157 10 20 30 40 50 Length (mm) Figure 8: The relationship between various lengths and the spacing value between the troughs. where Δλ n is the spacing value between the troughs of the interference signal and n is the number of spacing. 3.2. Optical Coupling and Decoupling Structures. The image measurement results of FO-MZIs with various Ls (see Table 2) show that the size matching of the structural width and depth varied according to the L, asshowninfigure 10. When the CO 2 laser was used to produce a coupling and decoupling structure, an FO-MZI with interference signals can be established after satisfying the matching relationship criterion of the specific database. However, repeated processing resulted in greater removal of the material for the coupling and decoupling structure, directly affecting the depth of the structure. 3.3. Refractive Index Measurement Results for Various Lengths. The experiments were repeated three times to measure the refractive index of various Ls according to spectral signal variations, as shown in Table 3. This study showed that the fluidic channel of general sensor chips is linear, whereas the FO-MZI is asymmetrical, as shown in Figure 11. Therefore, ensuring that the chip is placed precisely on the coupling and decoupling structure can be difficult during packaging. Other factors, such as the phase angle and test solution residue, can also influence the signal detection stability.

6 Antennas and Propagation Transmission (db) 5 10 15 20 25 30 Transmission (db) 5 10 15 20 25 30 Δλ 1 Δλ 2 35 Δλ 1 40 1520 1540 1560 1580 1600 Wavelength (nm) 35 40 1520 1540 1560 1580 1600 Wavelength (nm) Transmission (db) 5 10 15 20 25 30 35 Length 10 mm (a) Transmission (db) 5 10 15 20 25 30 35 Length 20 mm (b) 40 1520 1540 1560 1580 1600 Wavelength (nm) Length 30 mm (c) 5 40 1520 1540 1560 1580 1600 Wavelength (nm) Length 40 mm (d) Transmission (db) 10 15 20 25 30 35 Δλ n 40 1520 1540 1560 1580 1600 Wavelength (nm) Length 50 mm (e) Figure 9: The relationship between various lengths and interference signals.

Antennas and Propagation 7 Sensing length 10 mm 125 μm Sensing length 20 mm 125 μm Sensing length 30 mm 125 μm Sensing length 40 mm 125 μm Sensing length 50 mm 125 μm Figure 10: The image measurement results of various lengths. Chip upper cover Sensor solution Chip upper cover Chip back cover (a) Sensor side up Chip back cover (b) Sensor down? Figure 11: Influence of the linear fluidic channel chip. Linear fluidic channel chip Groove fluidic channel chip Figure 12: Linear and groove fluidic channel chips.

8 Antennas and Propagation 0.0 0.5 Wavelength shift (nm) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.33 1.34 1.35 1.36 1.37 1.38 Refractive index Sensing length = 8 mm Sensing length = 13 mm Sensing length = 38 mm Sensing length = 43 mm Figure 13: Refractive index measurement results for the reduced L range. Table 3: Refractive index measurement for various lengths (groove type). Length (mm) Number 01 Number 02 Number 03 Average Standard deviation 10 17.3 16.3 17.0 16.87 0.51 20 12.2 9.6 10.4 10.73 1.33 30 19.5 19.5 15.6 18.20 2.25 40 54.4 54.4 54.4 54.40 0.00 50 38.4 38.2 38.4 38.33 0.11 Table 4: Influence of the fluidic channel shape. Groove fluidic Linear fluidic Length channel chip channel chip (mm) Slope R-square Slope R-square 10 17.3 0.98856 30.4 0.96057 20 12.2 0.99964 7.5 0.95356 30 19.5 0.97627 20.8 0.97674 40 54.4 0.97812 45.0 0.92771 50 38.4 0.97728 20.8 0.97674 In response to this concern, this study proposed an improved groove chip,as shown in Figure 12. Refractive index measurements of the linear and groove fluidic channel chips were obtained. The measurement results are shown in Table 4. Compared with the linear fluidic channel, the groove fluidic channel exhibited a higher linear regression value, indicating greater reliability. Furthermore, the sensing sensitivity of the groove fluidic channel chip rose from 45 nm/riu to 54.4 nm/riu. Therefore, the microfluidic channel of a sensor chips is another key factor that influences the sensing results. Subsequently, the L range decreased, as shown in Table 5, Table 5: Refractive index measurement results for the reduced L range. Length (mm) Slope R-square 8 12.6 0.95677 13 34.1 0.89198 38 59.7 0.93973 43 38.6 0.91275 Table 6: The sensitivity of various optical fiber interferometers. Optical fiber interferometer type Refractive index (RIU) Optimal sensitivity value Symmetrical [6] 1.333 1.361 26.27 Fabry-Perot [7] 1.315 1.362 29.00 Mismatch welding [7] 1.315 1.362 33.30 Asymmetrical 1.333 1.373 59.70 and an optimal sensitivity of 59.7 nm/riu was detected at an L of 38 mm, as shown in Figure 13. Basedontheresults, groove or linear fluidic channel chip (shape), sensing length, and depth of removal are important fabrication parameters of the FO-MZI sensor. The sensor sensitivity of FO-MZI can be enhanced by these parameters which is based on the evanescent wave extends [10, 11]. 4. Conclusion This study employed a CO 2 laser and successfully developed an asymmetric FO-MZI with a sensing function. The sensor length L between the two removals on the fiber surface and the spacing value between the troughs of the interference signal exhibited an inverse relationship. An image analysis method was proposed to examine the relationship between

Antennas and Propagation 9 various Ls and the size matching of the coupling and decoupling structures. For future production of the FO- MZI using CO 2 lasers, coupling and decoupling structures with interference can be established by referencing the database proposed in this study. Finally, the results of the refractive index measurements for the spectral wavelength shiftsofthefo-mziswithvariouslsindicatethatasuperior sensitivity (59.7 nm/riu) was exhibited at an L of 38 mm. The asymmetrical FO-MZI proposed in this study had significant advantages, including a simple structure and an easy production process. Among all interferometer types (with a coupling or decoupling structure), the refractive index measurement results of the FO-MZI exhibited higher sensitivity, as shown in Table 6. Proper selections of groove or linear fluidic channel chip (shape), sensing length, and depth of removal could yield even higher sensitivity. The unique sensing features are particularly suited for a wide variety of applications in smart structures, gain equalizer, telecommunications, and optical-sensor systems. interferometers, in Proceedings of the 16th Opto-Electronics and Communications Conference (OECC 11), pp. 649 650, July 2011. [9] H.Y.Choi,M.J.Kim,andB.H.Lee, All-fiberMach-Zehnder type interferometers formed in photonic crystal fiber, Optics Express,vol.15,no.9,pp.5711 5720,2007. [10] D. Toomre and D. J. Manstein, Lighting up the cell surface with evanescent wave microscopy, Trends in Cell Biology, vol. 11, no. 7, pp. 298 303, 2001. [11] M. Oheim, D. Loerke, R. H. Chow, and W. Stühmer, Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.354,no.1381,pp. 307 318, 1999. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments The support for this study provided by the National Science Council (Taiwan) through Grant nos. NSC-101-2120-M-194-001-CC2, NSC-101-2221-E-020-010-MY3, NSC-102-2221-E- 224-065-MY2, NSC-102-2221-E-020-020, and NSC 103-2811- M-194-001 is acknowledged. Chien Hsing Chen acknowledges the support of postdoctoral research fellowship from National Science Council, Taiwan. References [1] J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B: Chemical, vol.54,no.1,pp.3 15,1999. [2] L.-K. Chau, Y.-F. Lin, S.-F. Cheng, and T.-J. Lin, Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance, Sensors and Actuators B: Chemical,vol. 113, no. 1, pp. 100 105, 2006. [3] P. Lu, L. Men, K. Sooley, and Q. Chen, Tapered fiber Mach- Zehnder interferometer for simultaneous measurement of refractive index and temperature, Applied Physics Letters, vol. 94, no. 13, Article ID 131110, 2009. [4] J. Hecht, Understanding Fiber Optics, Pearson, 5th edition, 2006. [5] C. N. Chen, Fiber Optical Communications and Applications, New Wcdp, 2004. [6] B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and T. Hai-Lung, Ultra-abrupt tapered fiber mach-zehnder interferometer sensors, Sensors, vol. 11, no. 6, pp. 5729 5739, 2011. [7] Z. Tian and S. S.-H. Yam, In-line single-mode optical fiber interferometric refractive index sensors, Journal of Lightwave Technology,vol.27,no.13,pp.2296 2306,2009. [8] W.-C. Kuo, Z.-Z. Feng, and N.-K. Chen, Modal characteristics of excited cladding modes in abrupt-tapered Mach-Zehnder

Rotating Machinery Engineering Journal of The Scientific World Journal Distributed Sensor Networks Journal of Sensors Journal of Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Journal of Journal of Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration