Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate

Similar documents
Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers

Frequency Tuning Characteristics of a THz-wave Parametric Oscillator

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

Waveguide-based single-pixel up-conversion infrared spectrometer

Generation of Terahertz Radiation via Nonlinear Optical Methods

Combless broadband terahertz generation with conventional laser diodes

Yellow nanosecond sum-frequency generating optical. parametric oscillator using periodically poled LiNbO 3

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Defense Technical Information Center Compilation Part Notice

R. J. Jones Optical Sciences OPTI 511L Fall 2017

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape

Peridocally Poled Nonlinear Materials ( PP-MgO:LN, PP-MgO:SLT, PP-MgO:SLN, PPLN )

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

G. Norris* & G. McConnell

UNMATCHED OUTPUT POWER AND TUNING RANGE

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling

MgO:PPLN. Covesion Ltd catalogue 2.0/2011. Periodically Poled Lithium Niobate (PPLN) contract & custom manufacturing. temperature tuning ovens

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

A CW seeded femtosecond optical parametric amplifier

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Trace-gas detection based on the temperature-tuning periodically poled MgO: LiNbO 3 optical parametric oscillator

Multi-Wavelength, µm Tunable, Tandem OPO

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

High-power semiconductor lasers for applications requiring GHz linewidth source

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

High energy khz Mid-IR tunable PPSLT OPO pumped at 1064 nm

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals

A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection

Pound-Drever-Hall Locking of a Chip External Cavity Laser to a High-Finesse Cavity Using Vescent Photonics Lasers & Locking Electronics

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

A new picosecond Laser pulse generation method.

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

A novel tunable diode laser using volume holographic gratings

Wavelength Control and Locking with Sub-MHz Precision

March 31, 2003 Single-photon Detection at 1.55 µm with InGaAs APDs and via Frequency Upconversion Marius A. Albota and Franco N.C.

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters.

Cavity length resonances in a nanosecond singly resonant optical parametric oscillator

Single pass scheme - simple

Lithium Triborate (LiB 3 O 5, LBO) Introductions

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Efficient second-harmonic generation of CW radiation in an external optical cavity using non-linear crystal BIBO

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

High-Power Femtosecond Lasers

High Power and Energy Femtosecond Lasers

Lithium Triborate (LiB 3 O 5, LBO)

Singly resonant cw OPO with simple wavelength tuning

Single-crystal sum-frequency-generating optical parametric oscillator

Controlling spatial modes in waveguided spontaneous parametric down conversion

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Widely tunable Yb:KYW laser with a volume Bragg grating

A continuous-wave Raman silicon laser

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

CO 2 Remote Detection Using a 2-µm DIAL Instrument

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Efficient narrowband terahertz generation in cryogenically cooled periodically poled lithium niobate

High-efficiency continuously tunable single-frequency doubly resonant optical parametric oscillator

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Mira OPO-X. Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers. Superior Reliability & Performance. Mira OPO-X Features:

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER

Improving the output beam quality of multimode laser resonators

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

External-Cavity Tapered Semiconductor Ring Lasers

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers

LOPUT Laser: A novel concept to realize single longitudinal mode laser

Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator

High energy optical parametric sources for multi-wavelength DIAL: a generic approach

Vertical External Cavity Surface Emitting Laser

Wavelength switching using multicavity semiconductor laser diodes

taccor Optional features Overview Turn-key GHz femtosecond laser

Spectral phase shaping for high resolution CARS spectroscopy around 3000 cm 1

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

6.1 Thired-order Effects and Stimulated Raman Scattering

Extremely simple device for measuring 1.5-µm ultrashort laser pulses

Self-organizing laser diode cavities with photorefractive nonlinear crystals

Single-photon excitation of morphology dependent resonance

Graduate University of Chinese Academy of Sciences (GUCAS), Beijing , China 3

Femtosecond optical parametric oscillator frequency combs for high-resolution spectroscopy in the mid-infrared

Increasing the output of a Littman-type laser by use of an intracavity Faraday rotator

Fiber Lasers for EUV Lithography

Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO

Narrow-band b-bab 2 O 4 optical parametric oscillator in a grazing-incidence configuration

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

The All New HarmoniXX Series. Wavelength Conversion for Ultrafast Lasers

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

pulsecheck The Modular Autocorrelator

High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT

Instruction manual and data sheet ipca h

SUPPLEMENTARY INFORMATION

Wavelength stabilized multi-kw diode laser systems

CONTINUOUS-WAVE OPTICAL PARAMETRIC OSCILLATORS

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

DESIGN OF COMPACT PULSED 4 MIRROR LASER WIRE SYSTEM FOR QUICK MEASUREMENT OF ELECTRON BEAM PROFILE

Fiber-laser-pumped Ti:sapphire laser

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

Data sheet for TDS 10XX system THz Time Domain Spectrometer TDS 10XX

Transcription:

Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate D. Molter, M. Theuer, and R. Beigang Fraunhofer Institute for Physical Measurement Techniques IPM, Department of Terahertz Measurement and Systems, Erwin-Schroedinger-Str., Building 56, 67663 Kaiserslautern, Germany daniel.molter@ipm.fraunhofer.de Abstract: We present an optical parametric oscillator pumped by a single mode Q-switched nanosecond Nd:YVO 4 laser for terahertz generation in periodically poled lithium niobate with a new phase matching scheme. This new method leads to an emission of terahertz radiation close to the Cherenkov angle and to a parallel propagation of the pump and signal wave. The emission frequency of this novel source is chosen by the poling period to 1.5 THz. For spectral narrowing the signal wave of the OPO is injection seeded. In the optical spectrum also cascaded processes are observed demonstrating a powerful generation of terahertz waves. 2009 Optical Society of America OCIS codes: (190.4970) Parametric oscillators and amplifiers; (230.6080) Sources. References and links 1. K. Kawase, J.-i. Shikata, and H. Ito, Terahertz wave parametric source, J. Phys. D: Appl. Phys. 35, R1 R14 (2002). 2. T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, and M. H. Dunn, Compact source of continuously and widelytunable terahertz radiation, Opt. Express 14, 1582 1589 (2006). 3. J. A. L huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate Part 2: Experiments, Appl. Phys. B 86, 197 208 (2006). 4. C. Weiss, G. Torosyan, J.-P. Meyn, R. Wallenstein, R. Beigang, and Y. Avetisyan, Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate, Opt. Express 8, 497 502 (2001). 5. Y. Sasaki, Y. Avetisyan, K. Kawase, H. Ito, Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO 3 crystal, Appl. Phys. Lett. 81, 3323 (2002). 6. M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, and K. Kawase, Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler, Appl. Phys. Lett. 88, 071122 (2006). 7. T. W. Hänsch, and B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Opt. Commun. 35, 441 444 (1980). 8. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Laser Phase and Frequency Stabilization Using an Optical Resonator, Appl. Phys. B 31, 97 105 (1983). 9. L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, Temperature dependence of the absorption and refraction of MgO:doped congruent and stoichiometric LiNbO 3 in the THz range, J. Appl. Phys. 97, 123505 (2005). 10. K. L. Vodopyanov, Optical THz-wave generation with periodically-inverted GaAs, Laser & Photon. Rev. 2, 11 25 (2008). (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6623

1. Introduction The generation of terahertz (THz) radiation by optical parametric oscillation (OPO) has been proven and well developed in the past decade [1, 2]. So far, the nonlinear medium for nanosecond pumped devices was mostly bulk lithium niobate (LiNbO 3 ) and not periodically poled for THz generation. This implies a phase matching scheme often related to the Cherenkovradiation, which is a totally non-collinear phase matching method. Totally means that no pair of the three mixing waves (pump, signal and idler) are parallel, and the interaction of them is lowered due to the reduced spatial overlap. Our approach to make at least the pump and (optical) signal waves parallel is a new phase matching scheme in the lithium niobate crystal. This scheme has not been proposed so far. 2. Phase matching schemes Phase matching in nonlinear optics is neccessary to avoid destructive interference of the desired wave that is produced by the process. In this section only phase matching schemes are considered which lead to an emission of THz out of the side facet to minimize the propagation and therefore the high absorption inside the crystal (see Section 5). As the pump and THz waves have widely separated refractive indices (n THz 5.1,n IR 2.15) a phase matching using the birefringence of the crystal is not applicable in this case. One possibility that has been used by several groups in various experiments is the use of non-collinear phase matching related to Cherenkov-radiation. The principle is shown in Fig. 1(a). In this case no pair of the three mixing waves is collinear, so the interaction is limited by the caused walk-off. An alternative to achieve phase matching is to introduce a periodic poling to the crystal resulting in an alternating second order nonlinear susceptibility χ (2). Conventional periodic poling, applied for e.g. second harmonic generation (SHG), where the grating vector is parallel to the optical pump wave is only a limited option to achieve THz output to the side facet of the crystal, as there is still a need of hard focussing to achieve a perpendicular momentum component labeled Δk as shown in Fig. 1(b) (the hard focussing leads to an angular distribution of the mixing optical waves, so the phase matching is again totally non-collinear. The Δk-notation is only another description for this fact). This type of phase matching has been used in femtosecond TDS-systems [3, 4]. The perpendicular emission of THz radiation without the need of tight focussing in nanosecond (a) (b) k k (c) (d) k k Fig. 1. Phase matching schemes. (a) Non-collinear phase matching also known as Cherenkov-phase matching. (b) Conventional quasi phase matching, grating vector parallel to pump wave propagation. (c) Slant-stripe periodic poling for quasi phase matching. (d) Novel quasi phase matching scheme with grating vector perpendicular to pump wave propagation. difference frequency generation (DFG) experiments has been shown by Sasaki et al. by the use of so-called slant-stripe periodic poled material [5]. The principle of this scheme is shown in (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6624

Fig. 1(c). Here the pump and signal wave (or the mixed optical waves in DFG experiments) are collinear, resulting in a higher interaction of them, but the THz wave propagates perpendicular to the optical waves propagation direction. So the interplay of the THz wave with the optical waves is limited. Our approach of achieving a parallel propagation of the pump and the (optical) signal wave and still having an interaction of the THz and the optical waves comparable to the Cherenkov phase matching is shown in Fig. 1(d). The grating vector of this novel scheme is perpendicular to the pump and signal wave, resulting in domain walls along the propagation direction of these waves. By applying this scheme the THz wave is emitted under an angle close to the so called Cherenkov angle. In comparison to the slant-stripe periodic poling scheme this is expected to have a higher interaction between the THz and the optical waves. With respect to the direction of propagation of the pump wave the THz wave is emitted under an angle of [ ( np θ = arccos ( n S λ 1 P λ P λ 1 THz ) )( ) ] λ THz (1) where λ P, λ S, λ THz, n P, n S and n THz are the pump wavelength, the signal wavelength, the Terahertz wavelength, the refractive indices of the pump, signal and Terahertz wave, respectively. This angle is almost equivalent to the so called Cherenkov angle of ( ) nir θ Cherenkov = arccos (2) with the condition n P n S (= n IR ) [6]. Therefore outcoupling techniques for THz waves emitted in this specific direction are already well known (e.g. Cherenkov-cut or Si-prisms, see also [6]). The grating period as a function of the pump wavelength and the desired THz output frequency is given by Λ = [ ( nthz λ THz ) 2 ( np ( n S λ 1 P λ P n THz n THz λ THz 1 ) ) ] 2 1 2. (3) 3. Pump enhancement of nanosecond pulses In order to build a cavity which is pumped at 1064 nm and highly reflective at the signal wave (1070 nm for THz generation at 1.5 THz), no standard dichroic mirrors are available. Our solution to overcome this problem is the application of a pump enhancement cavity. The effect is, that a stabilization of the length of a highly reflective cavity on a multiple of the pump wavelength leads to an effective transmission of the pump field through the incoupling cavity mirror. Further, the pump intensity inside the cavity can exceed the incoming intensity. For the signal wave the cavity is still highly reflective. A requirement needed to obtain a pump enhancement of pulses is that the pulse length is larger than the roundtrip time inside the cavity (a further possibility is synchronous pumping, which is only applicable at high repetition rate systems, e.g. enhancement of Ti:Sapphire laser pulses). Then each pump pulse is enhanced by itself. Although the maximum enhancement factor achievable in this case is lowered in comparison to the maximum enhancement in the case of a continuous wave pump field, this scheme is still helpful to build a cavity which allows for a collinear overlap of the pump and signal wave. The stabilization of a cavity to a special wavelength is a well known and solved problem [7, 8]. One convenient solution is the stabilization scheme by Hänsch-Couillaud which analyzes the ellipticity of the reflected pump wave. This reflection consists of two contributions. One is the direct reflection from the input coupler, the other one is the transmission through this mirror after the wave has taken one roundtrip inside the cavity. If the cavity is detuned (length is not a multiple of the wavelength) these two waves have a phase difference. The wave that has (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6625

taken one roundtrip inside the cavity suffers a polarisation rotation caused by different nonlinear losses or conversions of the different polarization contributions. The overlap of the two waves outside the cavity results in an elliptically polarized wave, whose chirality is proportional to the length detuning of the cavity. 4. Experimental setup As pump source a Q-switched single mode Nd:YVO 4 laser (Xiton Photonics GmbH) is used. It emits pulses with a length of about 33 ns at a repetition rate of 10 khz. This high repetition rate is the most significant difference to THz-OPOs reported by other groups. So far mostly 10 Hz and once 350 Hz repetition rate systems have been reported [1, 2]. The average output power of the laser is up to 7 W, thus a pulse energy of 0.7 mj is available at the laser output. Single mode operation of the laser is achieved by injection seeding with a MISER leading to a bandwidth below 60 MHz. The OPO itself is also seeded by a grating stabilized diode laser tunable from 1064 nm to at least 1076 nm. Therefore this seed laser is in principle useful to build OPOs for THz frequencies up to 3 THz when pumped at 1064 nm. For the purpose of cavity length stabilization we apply the Hänsch-Couillaud stabilization scheme and a commercially available locking system. The OPO cavity itself is built by two curved mirrors with a radius of curvature of 200 mm each. The transmittance of the mirrors is 5 % for both optical wavelengths. The dimensions of the used 5% MgO-doped congruent LiNbO 3 crystal are 50x3x1 mm 3. The crystal is poled as shown in Fig. 1(d) with a periodicity Λ of 43.7 µm. With the refractive index of lithium niobate at the pump wavelength of 2.15 the cavity roundtrip time is 0.85 ns, which is significantly less than the pulse duration. Output coupling of the THz radiation was achieved by use of five high resistivity Si prisms. The base of each prism is 10 mm, the height is 7 mm and the angles 40 and 50 degrees. So the direction of emission of the THz radiation is perpendicular to one surface of the Si prisms. THz pump (Q-sw Nd:YVO 4 ) seed (grating stabilized diode laser) /4 B LiNbO 3 PZT A A-B P I D AMP Hänsch-Couillaud stabilization Fig. 2. Experimental setup of the OPO including the pump laser (Nd:YVO 4 ), the grating stabilized seed laser and the Hänsch-Couillaud stabilization scheme. 5. Considerable losses The extraction of the generated THz out of the nonlinear crystal is a nontrivial problem. Several restrictions and sources of loss lead to a limitation of the extractable THz power. The phase matching scheme and the fact that a linear cavity in combination with asymmetric Si prisms is used lead to a reduction of the extractable THz power by a factor of four: A factor of two is contributed by the fact, that the poling is symmetric and leads to emission of THz into the direction of both y-facets of the crystal. The linear setup of the cavity results in a further factor of two. In our setup with the used asymmetric Si prisms only one direction of emission can be accessed. (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6626

One of the major problems of THz generation inside LiNbO 3 crystals is the high absorption coefficient in the THz region [9]. At the frequency of 1.5 THz the absorption is about 45 cm 1. Assuming the generation position inside the crystal being 500 µm from the exit facet this results in an absorption of 91 %. With our outcoupling scheme two interfaces on the way from the inside of the crystal to the outside have to be overcome which lead to inevitable Fresnel losses. The interface LiNbO 3 -Si leads to a loss of about 7 %, the interface Si-air to a loss of about 30 %. The generation of THz radiation in a nonlinear crystal suffers from considerable diffraction, when the beam waist inside the crystal is small. The divergency angle of the emitted beam is enhanced by refraction at the interface LiNbO 3 -Si as well as at the interface Si-air. The limited collection angle of the following mirror leads to a decrease of the fraction of collectable THz power. 6. Results A typical optical spectrum of the OPO is shown in Fig. 3. Peak height or area is not to be taken as a measure of intensity. Besides the pump wavelength at 1064 nm and the signal wavelength of 1070 nm further generated wavelengths are observed. The additional peak at 1076 nm is caused by a cascaded process, where a photon at 1070 nm decays in a further THz photon and a 1076 nm photon. This is a very useful process to overcome the Manley-Rowe limit, because, in principle, one pump photon can decay in more than one THz photon by passing through this cascaded process (see also [10]). The highest cascaded process observed so far is of the third order. An unintended process which occurs is the sum frequency generation (SFG) of the pump and the THz wave leading to a peak at 1058 nm. This is a further indication of the high efficiency of this source, but unfortunately it is also a source of loss of THz photons. However, the power of the SFG wave observed in our experiment is negligible so far. The lowest A 1 - symmetry polariton mode of the LiNbO 3 crystal leads to a Raman peak at 7.6 THz and is therefore the reason for the Raman lasing process at 1093.5 nm. This peak is only observed when the OPO is not seeded and can be seen in the shown spectrum because of the chopped seed laser (so the spectrum is the superposition of the seeded OPO and the Raman laser). Fig. 3. Left: Typical optical spectrum including cascaded, SFG and Raman processes. Right: Threshold behavior and correlation between signal power and THz (Golay cell-) signal. The THz output was detected with a Golay cell and the lock-in technique. The power of the generated signal wave was measured after the separation from the pump wave using a grating behind the OPO. On the right side of Fig. 3 the threshold behavior and the good correlation between the signal and the THz power is obvious. The measured intracavity signal power of (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6627

about 1.5 W corresponds to a total THz power inside the crystal of about 8 mw. It is evident that only a fraction of this power can be extracted out of the crystal for reasons already discussed. Fig. 4. Left: Fabry Perot scan of the THz output. Right: Tunability of the OPO measured by the peak wavelength of the signal wave and the Golay cell signal. A FPI-scan of the THz-wave performed with a FPI consisting of two silicon wafers is shown on the left side of Fig. 4. The scan range was limited to about 15 mm, thus, only an upper bandwidth limit of about 3 GHz can be estimated, but is expected to be much less as the two input waves (pump and seed) are single mode. Further experiments to determine the THz linewidth with more sophisticated measurement equipment will be carried out in the near future. By measuring the signal output wavelength with a high resolution optical spectrometer, the tuning characteristics of the OPO were measured as can be seen on the right graph of Fig. 4. The seed laser was tuned by tilting the grating and the Golay cell signal was taken to measure the relative power of the THz output. The peak wavelength of the signal wave was used to calculate the THz frequency. The OPO tuning bandwidth was found to be about 100 GHz, limited by the finite bandwidth of the QPM-scheme. 7. Conclusion We have presented the generation of monochromatic THz radiation in an OPO by applying a novel QPM-scheme in LiNbO 3. This new scheme leads to a parallel propagation of the optical waves (pump and signal) and therefore to a better interaction of these two. The pump and signal resonant cavity was achieved by applying a pump enhancement with a Hänsch-Couillaud stabilization scheme. A tunability of about 100 GHz and an upper bandwidth limit of 3 GHz was shown. Further, cascaded processes of higher orders were observed which is an important result for future experiments to overcome the Manley-Rowe limit. Acknowledgments We acknowledge the support of the Bundesministerium für Bildung und Forschung (BMBF, FKZ 13N9297). (C) 2009 OSA 13 April 2009 / Vol. 17, No. 8 / OPTICS EXPRESS 6628