Introduction to Surface Acoustic Wave (SAW) Devices

Similar documents
Application Note No. 158

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

Application Note No. 149

50 MHz to 4.0 GHz RF/IF Gain Block ADL5602

SmartSpice RF Harmonic Balance Based RF Simulator. Advanced RF Circuit Simulation

Low voltage LNA, mixer and VCO 1GHz

Application Note No. 124

SmartSpice RF Harmonic Balance Based and Shooting Method Based RF Simulation

RFIC DESIGN ELEN 351 Session4

1 of 7 12/20/ :04 PM

1GHz low voltage LNA, mixer and VCO

IF Digitally Controlled Variable-Gain Amplifier

ADI 2006 RF Seminar. Chapter II RF/IF Components and Specifications for Receivers

Introduction to CMOS RF Integrated Circuits Design

915 MHz Power Amplifier. EE172 Final Project. Michael Bella

30 MHz to 6 GHz RF/IF Gain Block ADL5544

RF2334. Typical Applications. Final PA for Low Power Applications Broadband Test Equipment

Application Note 5057

SGA-6489 SGA-6489Z Pb

RF, Microwave & Wireless. All rights reserved

SGA7489Z DC to 3000MHz SILICON GERMANIUM HBT CASCADABLE GAIN BLOCK

Application Note 5303

Low-Voltage IF Transceiver with Limiter/RSSI and Quadrature Modulator

TLCE - A3 08/09/ /09/ TLCE - A DDC. IF channel Zc. - Low noise, wide dynamic Ie Vo 08/09/ TLCE - A DDC

30 MHz to 6 GHz RF/IF Gain Block ADL5611

Application Note No. 027

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371

30 MHz to 6 GHz RF/IF Gain Block ADL5610

RF3376 General Purpose Amplifier

MD3880DB1: Ultrasound Low Noise Amplifier Demoboard

1 MHz to 2.7 GHz RF Gain Block AD8354

1 MHz to 2.7 GHz RF Gain Block AD8354

GPS/GNSS Front-End Amplifier

Low noise amplifier, principles

T he noise figure of a

400 MHz to 4000 MHz ½ Watt RF Driver Amplifier ADL5324

TOP VIEW IF LNAIN IF IF LO LO

SA620 Low voltage LNA, mixer and VCO 1GHz

Application Note 5295

MGA-632P8 1.9 GHz low noise amplifier Application Note 5295

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 678A 40MHZ TO 900MHZ DIRECT CONVERSION QUADRATURE DEMODULATOR

Application Note 5460

Designing an LNA for a CDMA front end

RF2317. Laser Diode Driver Return Channel Amplifier Base Stations. CATV Distribution Amplifiers Cable Modems Broadband Gain Blocks

Gain and Return Loss vs Frequency. s22. Frequency (GHz)

Application Note 1285

RADIO RECEIVERS ECE 3103 WIRELESS COMMUNICATION SYSTEMS

NOT FOR NEW DESIGNS SGA5386Z. Absolute Maximum Ratings MHz. Parameter Rating Unit. Typical Performance at Key Operating Frequencies

Application Note 1373

A Low Noise Amplifier with HF Selectivity

Code: 9A Answer any FIVE questions All questions carry equal marks *****

W-CDMA Upconverter and PA Driver with Power Control

Driver Amplifier for 7 Tesla MRI Smart Power Amplifier

RF3375 GENERAL PURPOSE AMPLIFIER

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

RF V LOW NOISE AMPLIFIER/ 3V DRIVER AMPLIFIER

A GSM Band Low-Power LNA 1. LNA Schematic

A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio

Title: New High Efficiency Intermodulation Cancellation Technique for Single Stage Amplifiers.

ATF High Intercept Low Noise Amplifier for the MHz PCS Band using the Enhancement Mode PHEMT

ELEN 701 RF & Microwave Systems Engineering. Lecture 8 November 8, 2006 Dr. Michael Thorburn Santa Clara University

RF/IF Terminology and Specs

The Design of A 125W L-Band GaN Power Amplifier

Evaluating and Optimizing Tradeoffs in CMOS RFIC Upconversion Mixer Design. by Dr. Stephen Long University of California, Santa Barbara

SGA2386ZDC to 5000MHz, Cascadable. SiGe HBT. MMIC Amplifier. Frequency (GHz) 2800 MHz >10dB 97 C/W

Triple/Dual-Mode CDMA LNA/Mixers

Measuring 3rd order Intercept Point (IP3 / TOI) of an amplifier

Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology

High Gain Low Noise Amplifier Design Using Active Feedback

DISCRETE SEMICONDUCTORS DATA SHEET. book, halfpage MBD128. BGA2709 MMIC wideband amplifier. Preliminary specification 2002 Jan 31

14 MHz Single Side Band Receiver

LF to 4 GHz High Linearity Y-Mixer ADL5350

Case Study: Amp5. Design of a WiMAX Power Amplifier. WiMAX power amplifier. Amplifier topology. Power. Amplifier

High Intercept Low Noise Amplifier for 1.9 GHz PCS and 2.1 GHz W-CDMA Applications using the ATF Enhancement Mode PHEMT

MCP to 2.5 GHz RF Front End IC. Description

ATF-531P8 900 MHz High Linearity Amplifier. Application Note 1372

GHz LOW NOISE AMPLIFIER WHM AE 1

RF9986. Micro-Cell PCS Base Stations Portable Battery Powered Equipment

An All CMOS, 2.4 GHz, Fully Adaptive, Scalable, Frequency Hopped Transceiver

SC5307A/SC5308A 100 khz to 6 GHz RF Downconverter. Datasheet SignalCore, Inc.

BIPOLAR ANALOG INTEGRATED CIRCUITS PC2709TB

ESD Sensitive Component!!

6.976 High Speed Communication Circuits and Systems Lecture 8 Noise Figure, Impact of Amplifier Nonlinearities

MAX2387/MAX2388/MAX2389

SGA4586Z DC to 4000MHz, CASCADABLE SiGe HBT MMIC AMPLIFIER

Data Sheet SC5317 & SC5318A. 6 GHz to 26.5 GHz RF Downconverter SignalCore, Inc. All Rights Reserved

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package. Simplified Schematic

MAINTENANCE MANUAL TRANSMITTER/RECEIVER BOARD CMN-234A/B FOR MLSU141 & MLSU241 UHF MOBILE RADIO TABLE OF CONTENTS

Surface Mount SOT-363 (SC-70) Package. Pin Connections and Package Marking 4 V CC. Note: Package marking provides orientation and identification.

CMY210. Demonstration Board Documentation / Applications Note (V1.0) Ultra linear General purpose up/down mixer 1. DESCRIPTION

AT General Purpose, Low Current NPN Silicon Bipolar Transistor. Data Sheet

1 Introduction RF receivers Transmission observation receiver Thesis Objectives Outline... 3

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

AN increasing number of video and communication applications

30 MHz to 6 GHz RF/IF Gain Block ADL5611

KH103 Fast Settling, High Current Wideband Op Amp

Efficiency (%) Characteristic Symbol Min Typ Max Units

Application Note 1360

Application Note 1299

DISCONTINUED PC3232TB BIPOLAR ANALOG INTEGRATED CIRCUIT 5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER DESCRIPTION FEATURES APPLICATIONS

Transcription:

May 31, 2018 Introduction to Surface Acoustic Wave (SAW) Devices Part 7: Basics of RF Circuits Ken-ya Hashimoto Chiba University k.hashimoto@ieee.org http://www.te.chiba-u.jp/~ken

Contents Noise Figure and Non-Linearities RF Amplifiers Low Noise Amplifier Design Example

Contents Noise Figure and Non-Linearities RF Amplifiers Low Noise Amplifier Design Example

Signal to Noise Ratio (SNR) Spectrum Spectrum frequency frequency (a) Signal +Noise (b) After Front End Filtering Spectrum frequency (c) After Front End Amplifying

Noise Figure, NF F S i, N i S S i i 1 o / N / N N o N N A Cascade Connection i [Power Ratio] S o, N o NF 10log F N i : Input Noise Power N o : Output Noise Power N: Thermal Noise A: Power Gain S i, N i A 1 A 2 A 3 S o, N o N 1 N 2 N 3 P output F 1 A N N ( A2 ( A1 ( Si Ni N1) N2) N3) 3 1 N2 N3 F2 1 F3 1 F1 i Ni A1 Ni A1 A2 A1 A1 A2 Most Significant!

3rd order Intercept Point (IP3) Output Power Level (dbm) Generation of Jammer signals by Intermodulation Intercept Point Input Power Level (dbm) Linear Output (f 1 ) 1dB Compression Point (P 1dB ) IMD3 Output (2f 1 -f 2 ) Noise Level IIP3P 1dB +9.6 [db]

3rd order Intercept Point (IP3) P 2f1-f2 [dbm] = 2P f1 [dbm] + P f2 [dbm] 2 IP3 [dbm] P 2f2-f1 [dbm] = 2P f2 [dbm] + P f1 [dbm] 2 IP3 [dbm] Output Power Level (dbm) P 2f1-f2 2f 1 -f 2 P f1 P f2 f 1 f 2 P 2f2-f1 2f 2 -f 1 Frequency [Hz]

Spectrum Regrowth in PA and DPX = Self Mixing of Tx Signals 2f 1 -f 2 f 1 f 2 2f2 -f 1 Frequency Jammer Signal Emission to Adjacent Channels

2nd order Intercept Point (IP2) P f2f1 [dbm] = P f2 [dbm] + P f1 [dbm] IP2 [dbm] Output Power Level (dbm) P f2-f1 f 2 -f 1 P f1 P f2 f 1 f 2 P f2+f1 f 2 +f 1 Frequency [Hz]

Blocking Test Example (W-CDMA Band II) -15 dbm -30 dbm -44 dbm 25M 45M 15M 60M 15M Thermal Noise Level -100 dbm /3.84 MHz -110 dbm /3.84 MHz

Inter Modulation Distortion in Nonlinear Circuit for WCDMA System Signal intensity Jammer Tx filter f b -f a 2f a -f b (2 nd order) (3 rd order) f a Rx filter f b Rx signal + Nonlinear distortion product Jammer f b +f a 2f a +f b (2 nd order) (3 rd order) Band1 190 MHz Tx: 1920-1980 MHz 1730-1790 MHz 4030-4150 MHz Rx: 2110-2170 MHz 5950-6010 MHz Band2 Tx: 1850-1910 MHz Rx: 1930-1990 MHz Jammer Frequency 80 MHz 1770-1830 MHz 3780-3900 MHz 5630-5810 MHz Jammer Frequency

IP2 Suppression by Balanced Topology LNA Mixer Filter Oscillator LNA + - + - Mixer + - + - + - + - Filter + - Oscillator Output Output Input Input Unbalanced Topology Balanced Topology

Contents Noise Figures and Non-Linearities RF Amplifier Low Noise Amplifier Design Example

Capacitor Coupled LF Amplifier e in R B1 C c1 R C V cc C c2 e out DC Cut Bias Setting R B2 R E Output 50 Adequate for Impedance Matching? 50 Power Dissipation Noise Generation 0 V B Vias Voltage Input

RF Amplifier Configuration e in Transmitting specific frequencies V DD L D Matching Matching + Filter + Filter R L e out Transmitting specific frequencies RF Choke (DC Through) V GS RF Choke (DC Through) Measurement of Transistor S Parameters Signal Source Bias-T Bias-T Load Small Signal Measurement for Given Bias Condition (For R 0 =50 ) V GS V DS

Common Source Amplifier V DD L D e out L G, L S Impedance Matching e in L G M 1 L D RF Choke C GS L S Large Voltage Gain Z in il LS g C GS G m 50 1 ic GS i( L G g ils 1 ic 1 LS ) ic GS m GS 0

C Noise Generation B i b r b i b Thermal Noise (Resistance Origin) + Shot Noise (Junction Origin) B E - v + n + i n - E Small Signal Model (Linearize) C S 11 S 12 S 21 S 22 E Input Referred Noise i i i n c u i c : correlated with v n (Y c v n ) i u : not-correlated with v n v 2 n i 2 u 4kTBR n 4kTBG u B: Frequency Bandwidth

Rollet Stability (K) Factor Unconditionally Stable When K>1 K 1 S 11 2 2 S22 S 2 S S 21 12 S 11 22 S 12 S 21 2

Matching Circuit Design Using Smith Chart Stability Circle S12S21 S 1 S 22 S 11 1 0.2 0.5 1.0 Constant G Plot 2 Element (2) Element (1) 5 10 (2) Design Point 0.0 0.2 0.5 1.0 Constant NF Circle -0.2 S 11 S 22 2 5 10-5 -10 (1) -0.5 Finding Target Point -1.0 Designing Input Matching Circuit Designing Output Matching Circuit Verification (Often S 11 and S 22 are NOT acceptable -2 Gain and NF are Dependent on Bias Current (Voltage)

Power Efficiency of Class A Amplifier V cc V L e in V L V cc V cc /2 1 R L 1 R 1 T L T 0 1 T V cc T 0 0 2 V sin(2t / T ) dt 2 o V 2 cc V o sin(2t / T ) dt Maximum 25% (at V o =V cc /2) V V o cc t

Power Efficiency of Class B Amplifier +V cc V L +V cc V L e in 0 1 R 1 R L L 2 T 2 T T 0 T / 2 0 / 2 V V cc o o -V cc t -V cc Output sin(2t / T ) V 2 dt sin(2t / T ) dt Maximum 78.5% (at V o =V cc ) V 4 V o cc 0 Class B Class A Input

V DS V DD t Efficiency Distortion Class A max =50% for RF I D t Class B max =78.5% I D t Class C max =100% (At P=0) I D t Good Bad

Power Amplifier DC Cut Capacitor RF Choke Rejecting RF Leakage V DD L 2 e in L 1 C 1 M 1 C 2 C 1 R eout L Harmonics Suppression V b Z Matching + Z Conversion e in V DD L D M 1 M 2 V DD L D R L Driver + Main Amplifier V b

Linear High Efficiency PA Pre-distortion Feedback Compensation Waveform Generation Power Amp. Detector Memory Effect (Hysteresis) Problem Feed-Forward PA Power Amp. Delay ATT Delay + - Amplifier Error Detection and Compensation + -

Linear Amplifier with Non-linear Components (LINC) E( t) A( t)sin( t ( t)) A 2 max where (t)=cos -1 (A(t)/A max ) c [cos( t ( t) ( t)) cos( t ( t) ( t))] c Constant Amplitude c Non-Linear PA Applicable Waveform Generation PA-1 PA-2 + -

Contents Noise Figures and Non-Linearities RF Amplifiers Low Noise Amplifier Design Example

Use of High Speed Transistor BFP620 Design Low Noise Amplifier at 2.488 GHz. V cc =1.5 V and I c =5 ma. Low NF and Return Suppression Mandatory. How High Gain Achievable?

Step 1 Bias Circuit Design

Step 2 S Parameter Simulation Caution!

S Simulation Result S 21 NF S 11 NF min S 22 NF min : Achievable minimum NF at the given frequency

Impact of Emitter Degeneration Inductor

Simulation Results L=0 nh L=1 nh L=2 nh L=3 nh

Simulation Results L=0 nh L=1 nh L=2 nh L=3 nh

Step 3 Design Matching Circuits

Procedure

After Adding Designed Matching Circuit

Simulated Results S 11 and S 22 Suppression Astable?

Step 4 Stabilization Z Increase Z Increase Q Reduction

Simulation Results Stabilized

Step 5 Transient Analysis

Simulation Results Pin=-10 dbm Pin=-5 dbm

Step 6 Two Tone Analysis

Two Tone Test Result P 2ab [dbm]=2 P a [dbm] + P b [dbm] - 2 OIP3 [dbm] -40.1=2 (-4.39) + (-4.5) - 2 OIP3 OIP3 =13.4 [dbm]