Designing Offline HB LED Current Sources with Primary Side Control Using E-series Fairchild Power Switch (FPS)

Similar documents
Fairchild Reference Design

N386X APPLICATION INFORMATION

FSL306LR Green Mode Fairchild Buck Switch

FEBFSL336LRN_CS04U07A Evaluation Board. Fairchild Multi-Output Buck Converter. Featured Fairchild Product: FSL336LRN

UNISONIC TECHNOLOGIES CO., LTD UCSR3651S Preliminary CMOS IC

FSL106HR Green Mode Fairchild Power Switch (FPS )

FSDM311A Green Mode Fairchild Power Switch (FPS )

UNISONIC TECHNOLOGIES CO., LTD UC1103 Preliminary CMOS IC

NIKO-SEM N3860V N3860P REV: A CURRENT MODE PWM CONTROLLER GENERAL DESCRIPTION FEATURES DEVICE SELECTION GUIDE

EM8631S. Green mode PWM Flyback Controller. Features. General Description. Ordering Information. Applications. Typical Application Circuit

FL103 Primary-Side-Regulation PWM Controller for LED Illumination

FSGM300N Green-Mode Fairchild Power Switch (FPS )

Constant Current Switching Regulator for White LED

G1102 High Precision CC/CV Primary-Side PWM Controller

12V-65W WIDE-RANGE INPUT MAINS ADAPTER USING THE L6566B

AN TEA1836XT GreenChip SMPS control IC. Document information

DP9126IX. Non-Isolated Buck APFC Offline LED Power Switch FEATURES GENERAL DESCRIPTION APPLICATIONS TYPICAL APPLICATION CIRCUIT

FEB User s Guide 5V/1A Flyback Converter For Auxiliary Power and Charging Applications

FSQ0170RNA, FSQ0270RNA, FSQ0370RNA Green Mode Fairchild Power Switch (FPS )

FSD156MRBN Green-Mode Fairchild Power Switch (FPS )

TS19701A CC/CV Primary-Side PWM Controller

ML4818 Phase Modulation/Soft Switching Controller

FL7732 Single-Stage PFC Primary-Side-Regulation Offline LED Driver

UNISONIC TECHNOLOGIES CO., LTD UC1108 Preliminary CMOS IC

DESCRIPTION FEATURES PROTECTION FEATURES APPLICATIONS. RS2320 High Accurate Non-Isolated Buck LED Driver

AN-9719 Applying Fairchild Power Switch (FPS ) FSL1x7 to Low- Power Supplies

TFT-LCD DC/DC Converter with Integrated Backlight LED Driver

FSQ0365, FSQ0265, FSQ0165, FSQ321, FSQ311 Green Mode Fairchild Power Switch (FPS ) for Valley Switching Converter - Low EMI and High Efficiency

High Accurate non-isolated Buck LED Driver

Design Guideline and Application Notes of AP1681 System Solution

WS3254 Product Description

FSDM0565RB. Green Mode Fairchild Power Switch (FPS TM ) Features. Application. Typical Circuit. Description. OUTPUT POWER TABLE

DP2539M TYPICAL APPLICATION GENERAL DESCRIPTION FEATURES APPLICATIONS /9 REV1.0

WS3256 Product Description

FSQ510, FSQ510H, and FSQ510M Green Mode Fairchild Power Switch (FPS ) for Valley Switching Converter Low EMI and High Efficiency

AP8010. AiT Semiconductor Inc. APPLICATION

FSCM0565R. Green Mode Fairchild Power Switch (FPS TM ) Features. Application. Related Application Notes. Typical Circuit.

Application Note AN4149

UNISONIC TECHNOLOGIES CO., LTD UPSR104 Preliminary CMOS IC

Green-Mode PWM Controller with Integrated Protections

FSCQ-Series. FSCQ0565RT / FSCQ0765RT / FSCQ0965RT / FSCQ1265RT FSCQ1465RT / FSCQ1565RT / FSCQ1565RP Green Mode Fairchild Power Switch (FPS TM )

FSFA2100 Fairchild Power Switch (FPS ) for Half-Bridge PWM Converters

FAN302HL mwsaver PWM Controller for Low Standby Power Battery-Charger Applications

Application Note AN4102

FSEZ1016A Primary-Side-Regulation PWM Integrated Power MOSFET

FS7M0680, FS7M0880. Fairchild Power Switch (FPS TM ) Features. Application. Description. Typical Circuit.

Green mode PWM Flyback Controller with External Over Temperature Protection

Power Management & Supply. Design Note. Version 2.3, August 2002 DN-EVALSF2-ICE2B765P-1. CoolSET 80W 24V Design Note for Adapter using ICE2B765P

Low-Noise 4.5A Step-Up Current Mode PWM Converter

HF01B00/01/02/03/04 Off Line High Voltage Quasi Resonant Regulator

(VDD OVP), Cycle-by-cycle Current Limiting (OCP), Short Load Protection (SLP), On-Chip Thermal Shutdown, VDD Clamping, etc.

HT2801S. Description. Features. Application. Typical Application Circuitry. High Accuracy CV/ CC Primary Sensing Regulation Controller IC

Monolithic Power Switcher for Off-line SMPS. Features

UNISONIC TECHNOLOGIES CO., LTD USL3631 Preliminary LINEAR INTEGRATED CIRCUIT

U6115S&D. Features. Description. Package Information. Applications. Pin Configuration

FSDH321, FSDL321. Green Mode Fairchild Power Switch (FPS TM ) Features. Applications. Description. Typical Circuit.

DP2537X High Precision CC/CV Primary-Side PWM Power Switch

LD7536R 05/11/2010. Green-Mode PWM Controller with Frequency Swapping and Integrated Protections. General Description. Features.

LM5034 High Voltage Dual Interleaved Current Mode Controller with Active Clamp

FA5310BP(S), FA5314P(S), FA5316P(S) FA5311BP(S), FA5315P(S), FA5317P(S)

Is Now Part of To learn more about ON Semiconductor, please visit our website at

LD /15/2011. Green-Mode PWM Controller with Frequency Swapping and Integrated Protections. Features. General Description.

Quasi-Resonant Flyback PWM Controller

CR6842. Green-Power PWM Controller with Freq. Jittering. Features. Applications. General Description. Leading-edge blanking on Sense input

High Efficiency Charger Control IC - CT5503S

AN-EVALSF3-ICE3B0565J

CEP8101A Rev 1.0, Apr, 2014

FAN6862R / FAN6862L Highly Integrated Green-Mode PWM Controller

CEP8113A Rev 2.0, Apr, 2014

CoolSET F3 Latch & Jitter Mode ICE3A1065LJ. 6 th Sept., Beijing. Infineon. Tim Hu. 7Apr06 Page 1. Page 1

FSQ0765RS Green-Mode Fairchild Power Switch (FPS ) for Quasi-Resonant Operation - Low EMI and High Efficiency

Current Mode PWM Power Switch GR8935L XXXXX

FSFA2100 Fairchild Power Switch (FPS ) for Half-Bridge PWM Converters

FSDM311. Green Mode Fairchild Power Switch (FPS TM ) Features. Applications. Typical Circuit. Related Application Notes.

FSGM0465R Green-Mode Fairchild Power Switch (FPS )

CM5512 FEATURES GENERAL DESCRIPTION APPLICATIONS TYPICAL APPLICATION CIRCUIT. Rev.1.0 0

SG6741A Highly Integrated Green-Mode PWM Controller

FSQ0465RU Green-Mode Fairchild Power Switch (FPS ) for Quasi-Resonant Operation - Low EMI and High Efficiency

Satellite STB Bluetooth Speaker Large TFT screen bias Other application which needs high voltage and high current generation

LD /01/2013. Boost Controller for LED Backlight. General Description. Features. Applications. Typical Application REV: 00

FSQ0465RS/RB Green-Mode Fairchild Power Switch (FPS ) for Quasi-Resonant Operation - Low EMI and High Efficiency

up2263 Controller PWM

AN-EVALSF3-ICE3BS03LJG

Using the SG6105 to Control a Half-Bridge ATX Switching Power Supply. Vcc. 2uA. Vref. Delay 300 msec. Delay. 3 sec V2.5. 8uA. Error Amp. 1.6Mohm.

Current Mode PWM Power Switch. Code A B G H I J Year Code A B C Month Jan. Feb. Mar. Apr.

PWM Current - mode Controller for Universal off-line Supplies Featuring Standby and Short Circuit Protection. An1203

Preliminary GR8875N Series

Application Note AN-1075

WS3252 Product Description

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

FL7701 Smart LED Lamp Driver IC with PFC Function

FSDM0265RNB. Green Mode Fairchild Power Switch (FPS TM ) Features. Applications. Typical Circuit Related Application Notes.

MOSFET Integrated Smart LED Lamp Driver IC with PFC Function

High Efficiency 1MHz, Step up Regulator

LD7523 6/16/2009. Smart Green-Mode PWM Controller with Multiple Protections. General Description. Features. Applications. Typical Application REV: 00

FAN6747WALMY Highly Integrated Green-Mode PWM Controller

ACT30. Active- Semi. High Performance Off-Line Controller ActiveSwitcher TM IC Family FEATURES GENERAL DESCRIPTION APPLICATIONS.

FSEZ1317WA Primary-Side-Regulation PWM with POWER MOSFET Integrated

3A, 36V, Step-Down Converter

FL7730 Single-Stage Primary-Side-Regulation PWM Controller for PFC and LED Dimmable Driving

Transcription:

Designing Offline HB LED Current Sources with Primary Side Control Using E-series Fairchild Power Switch (FPS) Carl Walding Global Power Resource Center, Hoffman Estates, IL www.fairchildsemi.com

Overview LED s Characteristics of current sources FPS Flyback converters constant voltage output CV Flyback converters constant current output CC New PSR flyback converter circuit CC Test results of test board Protection Circuitry of PSR LED Driver 2

Something about LED s Why LED s are used more and more? -High luminosity -Less power consumption -Easy to mount What are LED s used for? -Consumer Electronics: Lightning for inside and outside -Traffic lights and street lightning -Automotive Why do LED s need constant current? -PN-diodes in forward direction -To keep brightness constant -Temperature rise would lead to an increase of current till the device will be destroyed 3

Constant current, constant power and foldback characteristic of current sources Output Voltage [normalied] 1,2 1 0,8 0,6 0,4 0,2 0 0 0,2 0,4 0,6 0,8 1 1,2 Output Current [normalised] Output Voltage [normalised] 1,2 1 0,8 0,6 0,4 0,2 0 0 0,2 0,4 0,6 0,8 1 1,2 Output Current [normalised] Constant current Constant Power Foldback Output Voltage [normalised] 1,2 1 0,8 0,6 0,4 0,2 0 0 0,2 0,4 0,6 0,8 1 1,2 Output Curent [normalised] 4

E-series FPS Fairchild Power Switch Internal SenseFET Burst mode operation Precise switching frequency Pulse-by-pulse current limiting Current mode device Adjustable current limit AOCP OVP OLP TSD Auto restart mode UVLO Low operating current (max 3mA) Built-in Soft Start 5

FPS - adjustible current limit circuit PWM comparator compares signal from V fb and peak current through SenseFET Current through SenseFET can be adjusted by Rx Rx form a parallel resistor to internal voltage divider The peak current limit can be adjusted through the equation below. I I limit default desired 2. kω = Xk Ω limit 8 where, XkΩ = R R X X 2.8kΩ + 2.8kΩ 6

Typical Use of Peak Current Limit Pin Ε = Ε = 1 2 1 2 L i 2 P P HI L i 2 P P LO In a typical voltage regulated power supply, the function of the Peak Current Limit pin is to reduce the current limit trip point. This will reduce the available energy in the event of a fault condition. 7

Secondary side regulated flyback circuit CV Optocoupler for isolation Few external components Switch integrated in the FPS FOD2741 combines optocoupler, E/A-amplifier and voltage reference Output voltage very accurate due to voltage reference 8

Primary side regulated flyback circuit CV No expensive optocoupler for Isolation Output and Vcc winding have to be coupled very well Output voltage less accurate due to tolerance of ZENER-diode in comparison to voltage reference element For constant current application output voltage doesn t need to be high accurate 9

Secondary side regulated flyback, CC, low power For low output currents due to power dissipation in R201 R201 has to drive Q201 (V BE approx 0.7V) Need an optocoupler for isolation 10

Secondary side regulated flyback, CC, high power For large output currents Need an optocoupler for isolation Need an auxiliary bias winding for op amps Expensive due to use of op amps 11

Primary side regulated flyback, CC, low and high power Isolated Inexpensive Good performance Block 1: Constant Power Block 2: Constant Current R103 prevents FPS before shutdown R106 limits current through D106 R105: Load regulation R108: Line regulation R102: Adjusts current limit of FPS 12

How Does the PSR System Work? Recall in a flyback converter operating in discontinuous mode conduction, the power delivered to the output can be expressed as: P O = 1 2 L P i 2 P f SW = V O I O = n V F I O The primary inductance, L P, is constant. The switching frequency, f SW, is constant. If the primary current, i P, can be clamped, then the output power will be constant. Since the output voltage is clamped to n x V F, then the output current will be constant! 13

How Does the PSR System Work continued i PCLAMP The primary current is clamped via the Peak Current Limit pin. Setting the resistor to a value that clamps the current to a particular amplitude also clamps the deliverable power. 14

Achieving Line Regulation V V HI negdc in N N Vcc P The Vcc winding waveform is an ac coupled replica of the drain-source waveform. The negative portion of the waveform is proportional to the bulk dc voltage which in turn is proportional to the ac line voltage. V V LO negdc in V > V N N Vcc P negdchi negdc LO The negative portion of the waveform is rectified and filtered to create a dc voltage that is proportional to the ac line voltage. This negative dc voltage will modulate the I peak limit pin voltage as the ac line voltage changes thereby achieving line regulation. 15

Primary side regulated flyback, CC, low and high power Block 1 -For low output current in constant voltage CV -Load increase leads to maximum duty cycle and maximum peak current => constant power CP Block 2 -Constant current appears at boarder between CV and CP -then an additional current flows from I PK -pin through R105 -which reduces current limit of FPS further -which results in a positive feedback signal => constant current CC -R108 compensates the output current against input line variations 16

Possible Output Characteristics 35,0 30,0 Output Voltage [V] 25,0 20,0 15,0 Foldback curve: with lower R105 value Curve with Block1 alone: constant power Constant current curve: with higher R105 value 10,0 0 100 200 300 400 500 Output Current [ma] 17

European Test board - Specification Demo Board Specification Minimum Input Voltage Maximum Input Voltage Frequency Output Voltage and Current 185 V RMS 265 V RMS 50 Hz 12 V 22 V / 700 ma constant current for driving 4 to 7 OSRAM LED s with 3V forward voltage 18

Test Board Application Circuit T1 EF20 12V / 700mA R101 100k 0.6W C103 2.2nF 1000V R109 1 2 3 5 10 9 8 7 D201 ES2D + C201 330uF 35V 2 1 CONN201 B2P-VH CONN101 B2P3-VH 1 2 2 1 185-265 Vrms D101 MB8S ~ ~ + - 3 4 C101 4.7uF 400V + LF1 2 x 47mH, 0.25A C102 4.7uF 400V + 8 Drain 7 D102 RS1K Drain 6 Drain Vcc D103 16V D105 MMBD1503A + C105 10uF 50V 100 0.6W D107 MMBD1503A C107 33nF C108 1uF 50V R107 47 0.125W 4 6 C202 2.2nF 250V 5 IC101 FSDH321L VStr GND 1 Ipk 4 Vcc VFb R102 open 2 3 R103 820K C104 68nF Q101 BC847B R104 D106 18V R106 10k 0.6W D104 FDLL4148 47K 0.6W R105 39k 0.6W R108 160K 0.6W R102 is open due to current limit of FPS 19

Test Board Selected Performance Results Regulation versus load (voltage) -Output current is normalised on 100% load -Maximum tolerance is 6% -Input voltage was at nominal 230V RMS Regulation [% of nominal] 110.0 105.0 100.0 95.0 90.0 12 14 16 18 20 22 Output Voltage [V] Efficiency -Output at 100% load -Efficiency greater than 84% -Input voltage was varied in its specified range Efficiency [%] 90.0 88.0 86.0 84.0 82.0 80.0 180 190 200 210 220 230 240 250 260 270 Input Voltage [Vrms] 20

Test Board Selected Performance Results Constant current characteristic -R102, R105 and R108 values as in test board circuit -Output current at 700mA -Input voltage was at nominal 230V RMS Output Voltage [V] 35,0 30,0 25,0 20,0 15,0 Foldback characteristic -R102 : 2k -R105 : 15k -R108 was not mounted due to constant input voltage -Output current 200mA -Input voltage was at nominal 230V RMS Output Voltage [V] 10,0 35,0 30,0 25,0 20,0 15,0 0 100 200 300 400 500 600 700 800 Output C urrent [ma] 10,0 0 50 100 150 200 250 Output Cuurent [ma] 21

Test Board Selected Performance Results Constant power characteristic -R102 : 1k5 (Block1) -R105, R108 was not mounted (Block 2) -Output power at 5W 15,0 -Input voltage was at nominal 230V 10,0 RMS Output Voltage [V] 35,0 30,0 25,0 20,0 0 100 200 300 400 500 Output Current [ma] 22

Test board - EMI Test board at its maximum load and nominal Input voltage Easy to meet requirements of EN55011/22 Class B EMI limits 23

Protection Circuitry What happens if: LED Opens without LED (load) current the output voltages, including the Vcc (aux) voltage will tend to increase. When the Vcc voltage reaches the OVP threshold, typically 19 V, the system will shutdown. Output Short when the output shorts, all energy stored in the flyback transformer will transfer to the short circuit. The Vcc (aux) supply will also drop in value since there will not be enough energy to maintain the Vcc (aux) voltage. When the Vcc (aux) voltage drops to approximately 8 V (UVLO lockout) switching will terminate. The IC will then go through its startup sequence. When the Vcc voltage reaches 12 V it will start switching again. If the short is removed the system will startup again, otherwise the process will repeat. 24

Protection Circuitry Soft Start Another important circuit that increases reliability is the soft start. This circuit allows the duty cycle to increase gradually such that the output capacitors are also charged gradually. This helps to keep the output diodes and MOSFET within their ratings. It also helps to prevent transformer saturation. The typical soft start time is approximately 10 ms. 25

Three LED-350 ma PSR Board (90 270 Vac) 26

Protection Circuitry Open LED Output (LED) Opens: Drain-Source and Vcc Voltage During Open Load 27

Protection Circuitry Shorted Output Shorted Output: Drain-Source and Vcc Voltage During Output Short 28

Protection Circuitry Soft Start Drain-Source and Output Voltage During Startup 29

Conclusion Different current source characteristics are possible with this application circuit This application circuit can be used for low and high output currents Need of just a few external components Inexpensive circuit due to primary side regulation Inexpensive due to use of Fairchild Power Switch FPS Good output performance Easy to meet EMI requirements 30

Thanks for your attention Thank you! 31