Integrating Coupled Inductor and Switched- Capacitor based high gain DC-DC converter for PMDC drive

Similar documents
HIGH POWER IGBT BASED DC-DC SWITCHED CAPACITOR VOLTAGE MULTIPLIERS WITH REDUCED NUMBER OF SWITCHES

CLOSED LOOP CONTROL OF HIGH STEP-UP DC/DC CONVERTER BASED ON COUPLED INDUCTOR AND SWITCHED-CAPACITOR

A High Step-Up DC-DC Converter

Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors

A NOVEL High Step-Up Converter with a Voltage Multiplier Module for a Photo Voltaic System

ISSN Vol.07,Issue.06, July-2015, Pages:

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

International Journal of Research Available at

A DC DC Boost Converter for Photovoltaic Application

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

A Transformerless Boost Converters with High Voltage Gain and Reduced Voltage Stresses on the Active Switches

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

A High Step-Up Boost-Flyback Converter with Voltage Multiplier Module for Photovoltaic System

Matlab Simulation of a High Step-Up DC-DC Converter for a Micro grid Application

DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION

A DC-DC Boost Converter with Voltage Multiplier Module and Fuzzy Logic Based Inverter for Photovoltaic System

A Single Switch High Gain Coupled Inductor Boost Converter

Hardware Implementation of Interleaved Converter with Voltage Multiplier Cell for PV System

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 12, December ISSN

A Novel High Step up And High efficiency DC-DC converter for Grid Connected or Standalone PV applications

Dynamic Performance Investigation of Transformer less High Gain Converter with PI Controller

ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS

A high Step-up DC-DC Converter employs Cascading Cockcroft- Walton Voltage Multiplier by omitting Step-up Transformer 1 A.Subrahmanyam, 2 A.

Grid Connected Photovoltic System Using High Gain DC-DC Converter With Voltage Multiplier Circuit

Safety Based High Step Up DC-DC Converter for PV Module Application

A High Voltage Gain DC-DC Boost Converter for PV Cells

High Step up Dc-Dc Converter For Distributed Power Generation

Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain

A High Efficiency and High Voltage Gain DC-DC Converter for Renewable Energy Connected to Induction Motor

A Step up DC-DC Converter with Coupled Inductor for Renewable Energy Applications using MPPT

Design of New High Step up DC-DC Converter for Grid Connected System

Implementation of a Voltage Multiplier based on High Step-up Converter using FLC

Hybrid Transformer Based High Boost Ratio DC-DC Converter for Photovoltaic Applications

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

A Dual Switch Dc-Dc Converter with Coupled Inductor and Charge Pump for High Step up Voltage Gain

Zero current switching for Bidirectional dual boost DC-DC converter

Interleaved Boost Converter with a Voltage Multiplier for PV Module Using Grid Connected Load in Rural Areas

MATHEMATICAL MODELLING AND PERFORMANCE ANALYSIS OF HIGH BOOST CONVERTER WITH COUPLED INDUCTOR

An Innovative Converter to Reduce Current Stress While Constraining Current Ripple in Renewable Energy System

A Switched Capacitor Based Active Z-Network Boost Converter

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

Low Current Ripple, High Efficiency Boost Converter with Voltage Multiplier

COUPLED INDUCTOR BASED DC-DC CONVERTER FOR HIGH STEP- UP APPLICATION

Modelling and Simulation of High Step DC/DC Converter Fed Voltage Source Inverter

ANALYSIS AND IMPLEMENTATION OF A BIDIRECTIONAL DC-DC CONVERTER WITH COUPLED INDUCTOR

BIDIRECTIONAL dc dc converters are widely used in

Muhammad M, Armstrong M, Elgendy M. A Non-isolated Interleaved Boost Converter for High Voltage Gain Applications.

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

ZCS-PWM Converter for Reducing Switching Losses

An Asymmetrical Dc-Dc Converter with a High Voltage Gain

Investigation and Analysis of Interleaved Dc- Dc Converter for Solar Photovoltaic Module

A High Gain Single Input Multiple Output Boost Converter

I. INTRODUCTION II. LITERATURE REVIEW

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

High Gain Step Up DC-DC Converter For DC Micro-Grid Application

PHOTO VOLTAIC FED ASYNCHRONOUS MOTOR DRIVE WITH HIGH VOLTAGE GAIN CONVERTER

Highly Efficient step-up Boost-Flyback Coupled Magnetic Integrated Converter for Photovoltaic Energy

Closed loop control of an Improved Dual switch Converter With Passive Lossless Clamping For High Step-Up Voltage Gain

International Journal of Research Available at

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 8, AUGUST

Non-Isolated Three Stage Interleaved Boost Converter For High Voltage Gain

SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

High Gain DC-DC ConverterUsing Coupled Inductor and Voltage Doubler

3SSC AND 5VMC BASED DC-DC CONVERTER FOR NON ISOLATED HIGH VOLTAGE GAIN

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

SIMULATION OF FUZZY BASED SOFT SWITCHED SINGLE SWITCH ISOLATED DC-DC CONVERTER

High Boost Isolated DC-DC Converter with Controller

Design of Safety, High Step-Up DC DC Converter for AC PV Module Application

NOVEL TRANSFORMER LESS ADAPTABLE VOLTAGE QUADRUPLER DC CONVERTER WITH CLOSED LOOP CONTROL. Tamilnadu, India.

Page 1026

High Voltage-Boosting Converter with Improved Transfer Ratio

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter

TYPICALLY, a two-stage microinverter includes (a) the

A Novel Bidirectional DC-DC Converter with Battery Protection

Cascaded Boost Converter for PV Applications

Passive Lossless Clamped Converter for Hybrid Electric Vehicle

MODELING AND SIMULATION OF MODIFIED BRIDGELESS CONVERTER AND A SINGLE PHASE SEVEN-LEVEL INVERTER FOR A SOLAR POWER GENERATION SYSTEM

Muhammad M, Armstrong M, Elgendy MA. Analysis and implementation of high-gain non-isolated DC DC boost converter. IET Power Electronics 2017

Fuzzy controlled modified SEPIC converter with magnetic coupling for very high static gain applications

DC-DC booster with cascaded connected multilevel voltage multiplier applied to transformer less converter for high power applications

PERFORMANCE ENHANCEMENT OF HIGH VOLTAGE GAIN TWO PHASE INTERLEAVED BOOST CONVERTER USING MPPT ALGORITHM

Modeling and Stability Analysis of a New Transformer less Buck-Boost Converter for Solar Energy Application

Key words: Bidirectional DC-DC converter, DC-DC power conversion,zero-voltage-switching.

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Design of Soft Switching Sepic Converter Fed DC Drive Applications

A Novel Single-Switch High Conversion Ratio DC--DC Converter

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: ,p-ISSN: , PP

An Efficient High-Step-Up Interleaved DC DC Converter with a Common Active Clamp

Comparison Of DC-DC Boost Converters Using SIMULINK

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

Levels of Inverter by Using Solar Array Generation System

PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range

Design and Implementation of a Novel Transformer less DC to DC Converter for LED Display Application

SINGLE STAGE SINGLE SWITCH AC-DC STEP DOWN CONVERTER WITHOUT TRANSFORMER

Transcription:

Integrating Coupled Inductor and Switched- Capacitor based high gain DC-DC converter for PMDC drive 1 Narayana L N Nudaya Bhanu Guptha,PG Student,2CBalachandra Reddy,Professor&Hod Department of EEE,CBTVIT,Hyderabad Abstract -The transformer less DC-DC converters, such as the cascade boost type, the quadratic boost type, the switched-inductor type, the voltage-lift type, the voltage doubler technique, the capacitor-diode voltage multiplier type, and the boost type that is integrated using a switched-capacitor technique These converters can provide higher voltage gain than the conventional DC-DC boost converter However, the voltage gain of these converters is only moderately high The energy stored in the leakage inductance is recycled to improve the performance of the presented converter Furthermore, voltage stress on the main power switch is reduced Therefore, a switch with a low on-state resistance can be chosen The steady-state operation of the converter has been analyzed in detail Also, the boundary condition has been obtained Finally, a hardware prototype is implemented which converts the 40-V input voltage into 400-V output voltage I Introduction The DC-DC converter with high step-up voltage gain is widely used for many applications, such as fuelcell energy-conversion systems, solar-cell energyconversion systems and high-intensity-discharge lamp ballasts for automobile headlamps Conventionally, the DC-DC boost converter is used for voltage step-up applications, and in this case this converter will be operated at extremely high duty ratio to achieve high stepup voltage gain However, the voltage gain and the efficiency are limited due to the constraining effect of power switches, diodes, and the equivalent series resistance (E SR) of inductors and capacitors Moreover, the extremely high duty-ratio operation will result in a serious reverse-recovery problem Some literatures have researched the high step-up DC-DC converters that do not incur an extremely high duty ratio The transformer less DC-DC converters, such as the cascade boost type, the quadratic boost type, the switched-inductor type, the voltage-lift type, the voltage doubler technique, the capacitor-diode voltage multiplier type, and the boost type that is integrated using a switched-capacitor technique These converters can provide higher voltage gain than the conventional DC-DC boost converter However, the voltage gain of these converters is only moderately high If higher voltage gain is required, these converters must cascade more power stages, which will result in low efficiency The DC-DC flyback converter is adopted to achieve high step-up voltage gain by adjusting the turn s ratio of the transformer II LITERATURE SURVEY Proposed High Step Up converter This paper presents a novel high step-up dc/dc converter for renewable energy applications The suggested structure consists of a coupled inductor and two voltage multiplier cells in order to obtain high-step-up voltage gain In addition, a capacitor is charged during the switch-off period using the energy stored in the coupled inductor, which increases the voltage transfer gain The energy stored in the leakage inductance is recycled with the use of a passive clamp circuit The voltage stress on the main power switch is also reduced in the proposed topology Therefore, a main power switch with low resistance RDS(ON) can be used to reduce the conduction losses The operation principle and the steady-state analyses are discussed thoroughly Fig21 Circuit configuration of the presented high-stepup converter 22 Features of this converter A conventional high step-up DC-DC converter with coupled-inductor technique The structure of this converter is very simple and the leakage-inductor energy of the coupled inductor can be recycled to the output However, the voltage stresses on switch S1 and diode D1, which are equal to the output voltage, are high This paper wwwijastemsorg Page 1

presents a novel high step-up DC-DC converter The coupled-inductor and voltage-doubler techniques are integrated in the proposed converter to achieve high stepup voltage gain The features of this converter are as follows: 1 The leakage-inductor energy of the coupled inductor can be recycled 2 The voltage stresses on the switches are half the level of the output voltage Thus, the switches with low voltage rating and low ON-state resistance RDS (ON) can be selected 3 The voltage gain achieved by the proposed converter is double that of the conventional high step-up converter Under the same voltage gain and duty ratio, the turns ratio of the coupled inductor for the proposed converter can be designed to be less than the conventional high step-up converter 4 The frequency of the magnetizinginductor current for the proposed converter is double of the switching frequency III PROPOSED METHOD A Novel high step-up dc/dc converter This paper presents a novel high step-up dc/dc converter for renewable energy applications The suggested structure consists of a coupled inductor and two voltage multiplier cells in order to obtain high-step-up voltage gain In addition, a capacitor is charged during the switch-off period using the energy stored in the coupled inductor, which increases the voltage transfer gain The energy stored in the leakage inductance is recycled with the use of a passive clamp circuit The voltage stress on the main power switch is also reduced in the proposed topology Therefore, a main power switch with low resistance RDS(ON) can be used to reduce the conduction losses The operation principle and the steady-state analyses are discussed thoroughly Therefore, a main power switch with low resistance RDS(ON) can be used to reduce the conduction losses The operation principle and the steady-state analyses are discussed thoroughly Some transformer-based converters like forward, push pull, or fly back converters can achieve high step-up voltage gain by adjusting the turn ratio of the transformer However, the leakage inductor of the transformer will cause serious problems such as voltage spike on the main switch and high power dissipation In order to improve the conversion efficiency and obtain high step-up voltage gain, many converter structures have been presented Switched capacitor and voltage lift techniques have been used widely to achieve high step-up voltage gain However, in these structures, high charging currents will flow through the main switch and increase the conduction losses Coupled-inductor-based converters can also achieve high step-up voltage gain by adjusting the turn ratios However, the energy stored in the leakage inductor causes a voltage spike on the main switch and deteriorates the conversion efficiency To overcome this problem, coupled-inductor-based converters with an active-clamp circuit have been presented in Some high step-up converters with two-switch and single-switch are introduced in the recent published literatures However, the conversion ratio is not large enough Fig 31 A novel high step up dc/dc converter 32 OPERATING PRINCIPLE OF THE PROPOSED CONVERTER The circuit configuration of the proposed converter The proposed converter comprises a dc input voltage ( VI ), active power switch (S), coupled inductor, four diodes, and four capacitors Capacitor C1 and diode D1 are employed as clamp circuit respectively The capacitor C3 is employed as the capacitor of the extended voltage multiplier cell The capacitor C2 and diode D2 are the circuit elements of the voltage multiplier which increase the voltage ofclamping capacitor C The coupled inductor is modeled as an ideal transformer with a turn ratio N (NP/NS ), a magnetizing inductor Lm and leakage inductor Lk In order to simplify the circuit analysis of the converter, some assumptions are considered as follows: 1) All Capacitors are sufficiently large; therefore VC1, VC2, VC3, and VO are considered to be constant during one switching period; 2) All components are ideal but the leakage inductance of the coupled inductor is considered According to the aforementioned assumptions, the continuous conduction mode (CCM) operation of the proposed converter includes five intervals in one switching period The current-flow path of the proposed converter for each stage is depicted in Fig 2 Some typical waveforms under CCM operation are illustrated in Fig 3 The operating stages are explained as follows Stage I [t0 < t < t1 see Fig 2(a)]: In this stage, switch S is turned ON Also, diodes D2 and D4 are turned ON and diodes D1 and D3 are turned OFF The dc source ( VI ) magnetizes Lm through S The secondary-side of the coupled inductor is in parallel with capacitor C2 using diode D2 As the current of the leakage inductor Lk increases linearly, the wwwijastemsorg Page 2

secondaryside current of the coupled inductor ( is ) decreases linearly The required energy of load ( RL ) is supplied by the output capacitor CO This interval ends when the secondary-side current of the coupled inductor becomes zero at t = t1 Fig 32(a) mode I operation Fig 32(c) Mode III operation Stage IV [t3 < t < t4 see Fig 2(d)]: In this stage, S is turned OFF Diodes D1 and D4 are turned ON and diodes D2 and D3 are turned OFF The clamp capacitor C1 is charged by the capacitor C2 and the energies of leakage inductor Lk and magnetizing inductor Lm The currents of the leakage inductor Lk and magnetizing inductor Lm decrease linearly Also, a part of the energy stored in Lm is transferred to the secondary side of the coupled inductor The dc source VI, capacitor C3 and both sides of the coupled inductor charge output capacitor and provide energy to the load RL This interval ends when diode D1 is turned OFF at t = t4 Stage II [t1 < t < t2 see Fig 2(b)]: In this stage, switch S and diode D3 are turned ON and diodes D1, D2, and D4 are turned OFF The dc source VI magnetizes Lm through switch S So, the current of the leakage inductor Lk and magnetizing inductor Lm increase linearly The capacitor C3 is charged by dc source VI, clamp capacitor and the secondary-side of the coupled inductor Output capacitor CO supplies the demanded energy of the load RL This interval ends when switch (S) is turned OFF at t = t2 Fig 32(b) mode II operation Stage III [t2 < t < t3 see Fig 2(c)]: In this stage, switch S is turned OFF Diodes D1 and D3 are turned ON and diodes D2 and D4 are turned OFF The clamp capacitor C1 is charged by the stored energy in capacitor C2 and the energies of leakage inductor Lk and magnetizing inductor Lm The currents of the secondary-side of the coupled inductor ( is ) and the leakage inductor are increased and decreased, respectively The capacitor C3 is still charged through D3 Output capacitor CO supplies the energy to load RL This interval ends when ilk is equal to ilm at t = t3 fig 32(d) Mode IV operation Stage V [t4 < t < t5 see Fig 2(e)]: In this stage, S is turned OFF Diodes D2 and D4 are turned ON and diodes D1 and D3 are turned OFF The currents of the leakage inductor Lk and magnetizing inductor Lm decrease linearly Apart of stored energy in Lm is transferred to the secondary side of the coupled inductor in order to charge the capacitor C2 through diode D2 In this interval the dc input voltage VI and stored energy in the capacitor C3 and inductances of both sides of the coupled inductor charge the output capacitor Co and provide the demand energy of the load RL This interval ends when switch S is turned ON at t = t5 fig 32(e) Mode V operation IVSimulation Results wwwijastemsorg Page 3

fig 42 simulation waveforms 43 input and output voltage waveforms Fig 41 Simulation circuit diagram of novel step up dc/dc converter Fig 43 Input and output voltage of proposed system wwwijastemsorg Page 4

44 Extension system fig 44 Extension simulation circuit CONCLUSION This paper presents a new high-step-up dc/dc converter for renewable energy applications The suggested converter is suitable for DG systems based on renewable energy sources, which require high-step-up voltage transfer gain The energy stored in the leakage inductance is recycled to improve the performance of the presented converter Furthermore, voltage stress on the main power switch is reduced Therefore, a switch with a low on-state resistance can be chosen The steady-state operation of the converter has been analyzed in detail Also, the boundary condition has been obtained Finally, a hardware prototype is implemented which converts the 40-V input voltage into 400-V output voltage The results prove the feasibility of the presented converter suitable for half- bridgebased PV inverter system, IEEE Trans Power Electron, vol 29, no 6, pp 2807 2816, Jun 2014 [4] JH Lee, T J Liang, and J F Chen, Isolated coupledinductor-integrated DC DC converter with non-dissipative snubber for solar energy applications, IEEE Trans Ind Electron, vol 61, no 7, pp 3337 3348, Jul 2014 [5] COlalla, C Delineand, anddmaksimovic, Performance ofmismatched PV systems withsubmodule integrated converters, IEEE J Photovoltaic, vol 4, no 1, pp 396 404, Jan 2014 [6] C W Chen, K H Chen, and Y M Chen, Modeling and controller design of an autonomous PV module for DMPPT PV systems, IEEE Trans Power Electron, vol 29, no 9, pp 4723 4732, Sep 2014 [7] Y P Hsieh, J F Chen, T J Liang, and L S Yang, Analysis and implementation of a novel single-switch high step-up DC DC converter, IET Power Electron, vol 5, no 1, pp 11 21, Jan 2012 [8] Y Zhao, W Li, Y Deng, and X He, High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications, IET Power Electron, vol 4, no 8, pp 851 859, Sep 2011 [9] I Laird and D D Lu, High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator, IEEE Trans Power Electron, vol 28, no 7, pp 3147 3157, Jul 2013 [10] R J Wai, C Y Lin, C Y Lin, R Y Duan, and Y R Chang, Highefficiency power conversion system for kilowattlevel stand-alone generation unit with low input voltage, IEEE Trans Ind Electron, vol 55, no 10, pp 3702 3714, Oct 2008 [11] L SYang,T J Liang, and J FChen, TransformerlessDC DCconverter with high voltage gain, IEEE Trans Ind Electron, vol 56, no 8, pp 3144 3152, Aug 2009 [12] Y P Hsieh, J F Chen, T J Liang, and L S Yang, Novel high step-up DC DC converter with coupled-inductor and switched-capacitor techniques, IEEE Trans Ind Electron, vol 59, no 2, pp 998 1007, Feb 2012 [13] J A Carr, D Hotz, J C Balda, H A Mantooth, A Ong, and A Agarwal, Assessing the impact of SiC MOSFETs on converter interfaces for distributed energy resources, IEEE Trans Power Electron, vol 24, no 1, pp 260 270, Jan 2009 [14] C L Wei and M H Shih, Design of a switched-capacitor DC-DC converter with a wide input voltage range, IEEE Trans Circuits Syst, vol 60, no 6, pp 1648 1656, Jun 2013 [15] W Qian, D Cao, J G C Rivera, M Gebben, DWey, and F Z Peng, A switched-capacitor DC DC converter with high voltage gain and reduced component rating and count, IEEE Trans Ind Electron, vol 48, no 4, pp 1397 1406, Jul 2012 [16] Y P Hsieh, J F Chen, T J Liang, and L S Yang, Novel high step-up DC DC converter with coupled-inductor and switched-capacitor techniques, IEEE Trans Ind Electron, vol 59, no 2, pp 998 1007, Feb 2012 [17] T J Liang, J H Lee, S M Chen, J F Chen, and L S Yang, Novel isolated high-step-up DC DC converter with voltage lift, IEEE Trans Ind Electron, vol 60, no 4, pp 1483 1491, Apr 2013 REFERENCES [1] FNejabatkhah, S Danyali, S Hosseini, M Sabahi, and S Niapour, Modeling and control of a new three-input DC DC boost converter for hybrid PV/FC/battery power system, IEEE Trans Power Electron, vol 27, no 5, pp 2309 2324, May 2012 [2] R J Wai and K H Jheng, High-efficiency single-input multiple-output DC DC converter, IEEE Trans Power Electron, vol 28, no 2, pp 886 898, Feb 2013 [3] Y Zhao, X Xiang, C Li, Y Gu, W Li, and X He, Singlephase high step-up converter with improved multiplier cell wwwijastemsorg Page 5