Experimental rig for measuring lubricant film thickness in rolling bearings

Similar documents
EHD2. Ultra Thin Film Measurement System

SKF TOROIDAL ROLLER BEARING CARB PRODUCTIVITY IMPROVEMENT AND MAINTENANCE COST REDUCTION THROUGH RELIABILITY AND SUSTAINABILITY

BEARING AND TYPES OF BEARING

Bearing fault detection of wind turbine using vibration and SPM


THE MANUFACTURING TECHNOLOGY OF AN ULTRA-PRECISION AEROSTATIC SPINDLE SYSTEM

FINITE ELEMENT SIMULATIONS OF THE EFFECT OF FRICTION COEFFICIENT IN FRETTING WEAR

University of Huddersfield Repository

This is a repository copy of The measurement of lubricant-film thickness using ultrasound.

VIBRATION ASSISTED DEEP HOLE MICRO-DRILLING: A PRELIMINARY EXPERIMENTAL STUDY

Fretting Wear Failures In Bearing Steel EN31 Mated Against Structural Steel EN 24

Precision Double Row Cylindrical Roller Bearings With Tapered Bore

4) Drive Mechanisms. Techno_Isel H830 Catalog

What Is EHD? examining the concepts involved in hydrodynamic lubrication is fundamental to our understanding of elastohydrodynamics.

AC : CLARIFICATIONS OF RULE 2 IN TEACHING GEOMETRIC DIMENSIONING AND TOLERANCING

The National Physical Laboratory (NPL)

Spall size estimation in bearing races based on vibration analysis

KRW bearing solutions for rotary tables

Technical Data. 17. Technical data Deep groove ball bearing radial internal clearances and axial internal clearances A

MONITORING THE LUBRICANT CONDITION IN A LOW-SPEED ROLLING ELEMENT BEARING USING HIGH FREQUENCY STRESS WAVES

A Mathematical Model to Determine Sensitivity of Vibration Signals for Localized Defects and to Find Effective Number of Balls in Ball Bearing

Traction and Efficiency Performance of Ball Type CVTs

Finite Element Modeling of Early Stage Self-loosening of Bolted Joints Haoliang Xu 1, a, Lihua Yang 1, b,, Lie Yu 1,2, c

CONDITION MONITORING OF THRUST BALL BEARINGS USING CONTINUOUS AE

KRW bearing solutions for rotary tables

Bearing Failures... root causes and preventive procedures Seminar Synopsis

Prediction of Defects in Roller Bearings Using Vibration Signal Analysis

PeakVue Analysis for Antifriction Bearing Fault Detection

Dynamic and tribological analysis of a toroidal CVT

University of Huddersfield Repository

Wavelet Transform for Bearing Faults Diagnosis

MA3. Miniature Absolute Magnetic Shaft Encoder Page 1 of 8. Description. Order Using #MA3 starting at $36.00 per unit. Features

ROOP LAL Unit-6 Lathe (Turning) Mechanical Engineering Department

THEORETICAL AND EXPERIMENTAL STUDIES ON VIBRATIONS PRODUCED BY DEFECTS IN DOUBLE ROW BALL BEARING USING RESPONSE SURFACE METHOD

Traction and Efficiency Performance of Ball Type CVTs

WHAT? WHERE? HOW?

Design and construction of double-blumlein HV pulse power supply

Vibrational Analysis of Self Align Ball Bearing Having a Local defect through FEA and its Validation through Experiment

High Sensitivity Interferometric Detection of Partial Discharges for High Power Transformer Applications

VIBRATION SIGNATURE ANALYSIS OF THE BEARINGS FROM FAN UNIT FOR FRESH AIR IN THERMO POWER PLANT REK BITOLA

VIBRATION MONITORING OF VERY SLOW SPEED THRUST BALL BEARINGS

APPLICATION NOTE. Detecting Faulty Rolling Element Bearings. Faulty rolling-element bearings can be detected before breakdown.

ROBUST AND LONG-LIVED ROLLING BEARINGS FOR MINING, PROCESSING AND CONSTRUCTION

SKF filament wound bushings

MECH-303: Gaskets, Packing and Mechanical Seal Failures Analysis

The Four Stages of Bearing Failures

Our service team is at your disposal for further information. Franke GmbH Obere Bahnstr Aalen Germany Tel.: /920-0 Fax.

DIAGNOSIS OF BEARING FAULTS IN COMPLEX MACHINERY USING SPATIAL DISTRIBUTION OF SENSORS AND FOURIER TRANSFORMS

University of Huddersfield Repository

Diamond dressing rollers

DETECTION THE CONDITION OF A FAN TRANSMISSION IN METAL SMELTER FENI KAVADARCI USING VIBRATION SIGNATURE

Берг АБ Тел. (495) , факс (495)

DRIVE COMPONENTS REMOVAL. 9. FXCW/C: see Figure Remove bolt (9), sprocket retainer (8), and thrust washer (7). NOTE PRIMARY DRIVE LOCKING TOOL

STUDY ON DIES FOR WOOD PELLET MACHINES

10/24/2011. Chapter 3

RBTS 25 th Annual Seminar

DETECTION THE CONDITION OF A FAN TRANSMISSION IN METAL SMELTER FENI KAVADARCI USING VIBRATION SIGNATURE

Natural frequencies of rotating disk-like structures submerged viewed from the stationary frame

Prediction Of Thrust Force And Torque In Drilling On Aluminum 6061-T6 Alloy

FAULT DETECTION IN DEEP GROOVE BALL BEARING USING FFT ANALYZER

RBTS 24 th Annual Seminar

Motor Bearing Damage and Variable Frequency Drives: - Diagnosing the Causes, - Implementing a Cure, and - Avoiding the Pitfalls

Superior Accuracy for Industrial Applications. Precision Tapered Roller Bearings

The machine tool business of SKF. The profile

Novel Electrically Small Spherical Electric Dipole Antenna

Manufacture For Slewing Bearings LYC All Rights Reserved

Prediction of Defects in Antifriction Bearings using Vibration Signal Analysis

Image Measurement of Roller Chain Board Based on CCD Qingmin Liu 1,a, Zhikui Liu 1,b, Qionghong Lei 2,c and Kui Zhang 1,d

Vibration Analysis of deep groove ball bearing using Finite Element Analysis

Efficiency. Efficiency is a measure of how much of the work put into a machine is changed into useful output work by the machine.

SLIDE SHAFT PRODUCTS. 777 Schwab Road, Suite T, Hatfield, PA Toll Free: Fax:

MA3. Miniature Absolute Magnetic Shaft Encoder Page 1 of 8. Description. Mechanical Drawing. Features

TOP WORK ISO 9001.CE UNIVERSAL CUTTER & TOOL GRINDER

KBS 40 Locking Device is a frictionally engaged detachable shaft-hub connection for cylindrical shafts and bores without keyway.

EXPERIMENTAL DETERMINATION OF CONTACT AREA BETWEEN A SPHERE AND A CIRCULAR PLATE USING A TECHNIQUE BASED ON LASER PROFILOMETRY

Student, Department of Mechanical Engineering, Knowledge Institute of Technology, Salem, Tamilnadu (1,3)

Replacement of Pitch Link Retainer and Service Improvement of the Pitch Control System. Effectivity: Helicopters manufactured prior to January, 1981

Technical Approach for Preventing Thermal Distortion in Machine Tools

DYNAMIC STUDIES OF ROLLING ELEMENT BEARINGS WITH WAVINESS AS A DISTRIBUTED DEFECT

Vibration Monitoring for Defect Diagnosis on a Machine Tool: A Comprehensive Case Study

Table 1 The wheel-set security system of China high-speed railway

General Four-Way Operation, Maintenance & Service Manual

DISC FINISHING MACHINES

Study of Vee Plate Manufacturing Method for Indexing Table

MINIATURE METAL BELLOWS COUPLINGS

ROLLING ELEMENT BEARING FREQUENCIES FROM 1986 FOILES REPORT, ROLLING ELEMENT BEARING FREQUENCIES 1. INTRODUCTION

IJMEIT// Vol.05 Issue 08//August//Page No: //ISSN x 2017

Linear Motion Guideways A Recent Technology for Higher Accuracy and Precision Motion of Machine Tool

Sealing Elements. Technical Handbook O-rings. 15. Tolerances and Surface Imperfections

A Spiral Antenna with Integrated Parallel-Plane Feeding Structure

Techniques for blade tip clearance measurements with capacitive probes

FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires

A Compact Miniaturized Frequency Selective Surface with Stable Resonant Frequency

The Canadian Tire Paint Roller A Technical Description

Optimizing lubrication effectiveness

DEVELOPMENT OF A NOVEL TOOL FOR SHEET METAL SPINNING OPERATION

A Novel Fault Diagnosis Method for Rolling Element Bearings Using Kernel Independent Component Analysis and Genetic Algorithm Optimized RBF Network

FRICTION NOISE CAUSED BY FRETTING UNDER GREASE LUBRICATION

Technical Trends Regarding Machine Tool High-Efficiency Machining, Main Spindles and Bearings

SPIETH Locknuts. Series MSW. Works Standard SN 04.03

Transcription:

Experimental rig for measuring lubricant film thickness in rolling bearings Article (Accepted Version) Zhang, Xingnan, Jablonka, Karolina Anna and Glovnea, Romeo (2014) Experimental rig for measuring lubricant film thickness in rolling bearings. Applied Mechanics and Materials, 658. pp. 381-386. ISSN 1662-7482 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/53613/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk

Experimental Rig for Measuring Lubricant Film Thickness in Rolling Bearings Xingnan Zhang 1, a, Karolina Jablonka 2, b 1, c* and Romeo Glovnea 1 Department of Engineering and Design, University of Sussex, United Kingdom 2 AC2T research GmbH, Viktor Kaplan-Straße 2D, 2700 Wiener Neustadt, Austria a Xingnan.Zhang@sussex.ac.uk, c R.P.Glovnea@sussex.ac.uk Keywords: rolling bearings, elastohydrodynamic, film thickness, capacitance. Abstract. Electrical capacitance has been applied in the past for measuring the lubricant film thickness in rolling element bearings. The main difficulty arises from the fact that the measured capacitance is a combination of the capacitances of many rolling elements, which come in contact with both the inner and outer rings. Besides, the capacitance of the Hertzian contact itself and the surrounding area must also be separated. It results in a complex system which, in order to be solved for the film thickness at a particular location on the bearing many approximations have to be made. In the present study the authors use an experimental rig in which the capacitance of a single ball can be isolated. Moreover the capacitance of the ball inner ring and ball outer ring contacts can be measured separately. Introduction Rolling element bearings are no doubt the most numerous machine elements in use. Every single machinery or piece of equipment which involves rotating parts needs bearings to support those. If one thinks only in terms of road vehicles, there are about 600 million running every year. This amounts to over 2.4 billion bearings only for the wheels, however there are many other bearings in any road vehicle. It is clear than rolling bearings are vital machine components thus their reliability and durability are of great importance for the global economy. Apart from careful choice of the material (most often steel) and manufacturing tolerances the most important factor influencing rolling bearings durability is their lubrication. The lubricant protects the metallic surfaces from direct contact, convects away heat generated, removes un-wanted inclusions and protects against corrosion. Lubrication also plays a key role in the contact fatigue failure of rolling bearings thus evaluation of the lubrication regime and the lubricant film thickness in conditions as close as possible to those in operation, are needed. The measurement of the thickness of the lubricant in elastohydrodynamic (EHD) contacts, characteristic to rolling elements bearings is not an easy task, given the small dimensions and the confined space available. Optical interferometry is widely used in laboratories to evaluate the film formation and measure the film thickness [1]. Refinements to this technique have allowed researchers to measure films as thin as few nanometers and made possible the study of behavior of additives and lubrication of rough surfaces [2 5]. The optical interferometry technique is precise and accurate but it is only suited for laboratory measurements. This is because it requires that one of the bodies is a flat disc and it is made out of a transparent material. The implications of these requirements are that the true geometry of the contact of rolling bearings and the combination of materials in bearings cannot be reproduced. The other methods which have been used for the study of elastohydrodynamic lubrication are based on measurement of electrical properties of the contact, such as electrical resistance and capacitance. Relatively recent a technique based on ultrasound has also been devised [6]. Electrical methods were first to be used for the measurement of lubricant film thickness in EHD contacts because of their relative simplicity and because they can be employed directly on real machine elements. Many studies based on electrical methods, that allowed important progress in the

understanding of elastohydrodynamic lubrication to be made, have been published in the past [7 11] however only those related directly rolling bearings will be detailed here. Electrical capacitance proved suitable for measuring the lubricant film thickness firstly because it relates directly to capacitance and secondly because this relationship is an inverse proportionality, which means the method is more accurate at small thicknesses, as it is the case of the EHD films. Wilson [12] used the capacitive method developed by Dyson et al [13] for measuring the film thickness in spherical and cylindrical roller bearings lubricated by grease. The measured capacitance was done for the contacts between all balls and both the inner and outer rings. He took into account the variation of the load with the angular position of the rotating ring and used the parallel-plate capacitor formula to extract film thickness from capacitance. Wilson recognized that the film thickness at the inner and outer rings should not be equal due to different geometry and heat flow conditions. To account for this he made the assumption that the film thickness at the outer ring contact is 20 percent larger than that at the inner ring. Hemskerks and co-workers [14] employed a more sophisticated apparatus that was able to measure both film thickness and number of asperity contacts. From theoretical calculations they estimate that the difference between the outer and inner ring is 10 percent. They compared the percentage of metallic contact time measured by the instrument with theoretical predictions. The same instrument was used by Leevers and Houpert [15] to evaluate the lubricant film thickness in a deep groove ball and a spherical roller bearing. The film thickness was extracted from measured capacitance between the outer and inner rings of the bearing using a procedure similar to that of Dyson et al [13]. They also measured the temperature of inner and outer rings and applied a correction factor to the film thickness, to allow for a drop in viscosity due to temperature increase. Their results showed that the capacitance of the unloaded zone of the bearing is significantly large especially for the smaller, ball bearing. They also revealed that a continuous film was present in the contacts even in very poor lubrication conditions (film ratio = 0.1). This surprising finding was explained by the deformation of the asperities of the surfaces in the contact. Their results showed a remarkable correspondence with theoretical values predicted by smooth surfaces formulas. Wittek et al investigated the film thickness in thrust bearings [16]. They were particularly interested by grease lubricated bearings used in electrical machines and on how the electrical current might discharge through the film. They consider that there is a constant multiplying factor of 3.5 between the total capacitance of a contact and the capacitance of the Hertzian zone only. The film thickness is considered constant throughout the contact area and the parallel plate capacitor formula is employed to calculate the film thickness. In this paper an experimental rig for measuring lubricant film thickness separately for the contacts between rolling elements and inner and outer rings is presented. The film thickness is calculated from capacitance with a methodology published previously by the authors and briefly shown in the next section. Preliminary film thickness results are also shown. Background Some of the advantages of the capacitance method of measuring film thickness in elastohydrodynamic contacts have been mentioned in the previous section. One of the disadvantages is the number of approximations and assumptions made when extracting film thickness from capacitance measurements. These assumptions are needed because there was no way of comparing the film thickness estimated from capacitance with separate measurements. Recently, however, Jablonka et al [17] have devised a method which overcomes this shortcoming. This method was detailed in previous publications thus will only briefly summarized in this paper. The elastohydrodynamic contact under study was formed in a test rig, between the flat of a disc and a ball. The disc was made out of glass and had on the contacting surface a thin chromium layer. The ball was made out of bearing steel thus the film thickness in contact thus formed could be measured by optical interferometry. To be mentioned that the thickness of the chromium layer was greater

than that usually chosen for optical interferometry work for three reasons: to provide a conductive layer which can act as the plate of a capacitor, to provide an increase phase shift between the light rays reflected at the ball and chromium surfaces, and to enhance its wear resistance. Interference images of the whole contact were recorded in various conditions of speed and load, simultaneous with measurements of capacitance of the disc ball system. Obviously this system comprises the capacitance of the Hertzian contact and of the region surrounding it. Measurements were carried out at rather low film thickness in order to get as large as possible values of the capacitance and because in these conditions the side lobes characteristic to EHD contacts are very shallow and therefore the Hertzian contact approaches a parallel plate capacitor. The knowledge of central film thickness from the optical interferometry measurements allowed a much better evaluation of the contribution of the outside region to the total capacitance. It was found that at very thin films the Hertzian area capacitance dominates but as the film increases the roles reverse. At over 200 nm the ratio of outside region to Hertzian area capacitance is about 3 and increasing. Analysis of data from reference [16] by Wittek and co-workers shows that most of their film thickness exceed 200 nm, so the value of 3.5 for the ratio of outside region to Hertzian area capacitance may be justified, however to be noted that this is only valid at relatively thick films and it is not constant. The analysis carried out in [17] has also revealed that taking the extent of out of contact region up to a distance, from the contact centre, where the separation between surfaces is equal to nine times the central film thickness gives good approximation to calculated film thickness. Based on the glass/steel contact measurements Jablonka et al [17] have proposed a procedure for evaluation of film thickness, from capacitance, for steel/steel contacts. According to this procedure the capacitance of the region outside the Hertzian area is calculated using Hamrock & Dowson formula for central film thickness and the dielectric constant of a non-polar lubricant, at the contact pressure, is estimated with the aid of Clausius Mossotti formula. Experimental rig The film thickness at the contacts between the rolling elements and the two rings are not equal. The inner ring surface conforms relatively closely to the ball surface only in a direction perpendicular to the rolling direction. The outer ring surface on the other hand, conforms to the ball surface in both the rolling direction and a direction perpendicular to that, thus the conditions of film formation are more favourable. Another cause for the difference of the film thickness at the inner and outer rings is the heat transfer, which is bound to be different due to the arrangement of the bearing. The outer ring is attached to the housing, which is larger but stationary, while the inner ring fitted to the shaft which has a smaller mass but is rotating. As seen previously researchers make various assumptions regarding the ratio between the inner and outer ring contacts film thickness. The present rig is able to separately measure the capacitance of the inner and out ring contacts. Moreover the capacitance of only one ball is measured, thus the procedure of evaluating film thickness from capacitance is much more simplified and thus more precise. The bearing under test is a deep groove ball bearing 6306 with eight balls, tolerance class C3. The test bearing is attached to a rotating shaft and its outer ring is fitted to the inner ring of larger bearing via an insulating sleeve. When the shaft rotates the cage of the test bearing is held fixed. The rotating outer ring allows the balls to roll relative to the rings, although they are in a fixed angular position. Pure rolling conditions are encountered in normal operation of rolling bearings the only difference to the present rig is the value of the entrainment velocity of the lubricant. As the entrainment velocity is the same at both contacts in both, real operating conditions and in the present arrangement, this difference does not affect the ratio of the film thickness at the inner and outer rings. One of the balls is extracted from the bearing and a central hole is drilled through. A shaft is then interference fitted to this hole such that it rotates with the ball. Slip rings are attached to this shaft thus the capacitance of the contact at the inner and outer rings can be measured separately. The material of the cage is electrically insulating in order to isolate completely the desired ball.

Test bearing Support bearing Load Figure 1. Detail of the testing bearing arrangement The temperature of the rings of the test bearing was measured by thermocouples placed close to the location of the test ball. The oil used for the preliminary tests is poly-alpha-olefin (PAO4) with a viscosity of, 0.024Pas at a temperature of 30 o C. To be noted that this the temperature of the bearing increased from 30 o C to34 o C during the duration of the test. Few drops of oil were placed on each ring and the shaft was rotated by hand such that the oil spreads on the surfaces of the raceways and balls. The motor was then started and the capacitances of the contacts at the inner and outer rings as well as the temperatures were recorded. For the measurement of the capacitance an impedance phase shift analyser Solartron 1260 was employed. Results The measured capacitance for the two rings, at a radial load on the bearing of 1000 N and a range of rotational speeds of the shaft between 240 rpm and 1020 rpm is shown in Fig. 2. It can be seen that the capacitance of the inner ring is larger than that of the outer ring, which indicates thinner film thickness for the inner ring. Also, as expected the capacitance falls with entrainment speed. Using the procedure explained in reference [17] for steel/steel contact, the film thickness was extracted from these capacitance values. The results are shown in Fig. 3. It is obvious that the inner ring film thickness is consistently smaller than the outer ring value. The difference is between 40 and 28 percent throughout the range of speeds employed. It is also to be noted that the measured film thickness is smaller than the values predicted by Hamrock and Dowson formula. At this moment it is not clear where this discrepancy comes from and it is not relevant anyway as only the difference between the inner and outer ring film thickness was sought in this paper. As far as the authors are aware this is the first paper where separate film thickness measurement in the contacts of a rolling element bearing with the inner and outer rings is reported.

Total capacitance [pf] 900 800 700 600 500 400 300 200 100 0 Inner ring Outer ring 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Entrainment velocity [m/s] Figure 2. Dependence of capacitance of entrainment velocity 160 Film thickness [nm] 140 120 100 80 60 40 20 0 Inner ring Outer ring 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Entrainment speed [m/s] Figure 3. Difference between lubricant film thickness at inner and outer ring Summary A novel experimental rig for measuring the lubricant film thickness in rolling element bearings, based on electrical capacitance, has been designed and manufactured. Unlike other test rigs this is able to measure separately the capacitance of the contacts between the rolling elements and the inner and outer ring respectively. The results show that, over the range of speeds employed, the film thickness at the outer ring contact is between 28 and 40 percent larger than that at the inner ring contact. This is a first paper where measurements of the lubricant film thickness at the inner and outer rings contacts are reported. More tests are envisaged in order to extend the range of lubricants used (for example the use of grease) and to elucidate the difference observed between theoretical and measured values.

References [1] Cameron, A., and Gohar, R., 1966, Theoretical and Experimental studies of the Oil Film in Lubricated Point Contact, Proc. Roy. Soc. Lond., A291, 520-536. [2] Johnston, G. J., Wayte, R. C., and Spikes, H.A., 1991, The Measurements and Study of Very Thin Lubricant Films in Concentrated Contacts, Trib. Trans., 34, pp 187-194. [3] Luo, J., Wen, S and Huang, P., 1996, Thin film lubrication: Study on the transition between EHL and thin film lubrication using a relative optical intensity technique, Wear, 194, 107-115. [4] Glovnea, R.P., Forrest, A.K., Olver, A.V., and Spikes, H.A., 2003, Improved Resolution Ultra-Thin Film Optical Interferometry, Trib. Lett., Vol. 15, 3, 217-230. [5] Krupka, I. and Hartl, M. 2007, Experimental Study of Microtextured Surfaces Operating Under Thin-Film EHD Lubrication Conditions, ASME Trans. J. Trib., 129, 502-508. [6] Drinkwater, B. W., DwyerJoyce, R. S., and Harper P., 2004, OnLine Measurement of Lubricant Film Thickness Using Ultrasonic Reflection Coefficients, AIP Conf. Proc., Review of Quantit. Nondestructive Evaluation Vol. 23, ed. by D. O. Thompson and D. E. Chimenti, 984-991. [7] Crook, A.W., 1958, Lubrication of rollers, Phil. Trans. Roy. Soc. Lon. Series A, Vol. 250, 981, 387-409. [8] Archard, J.F. and Kirk, M.T., 1960, Lubrication of point contacts, Phil. Trans. Roy. Soc. Lon. Series A, Vol. 261, 1307, 532-550. [9] Furey, M.J., 1961, Metallic Contact and Friction Between Sliding Surfaces, ASLE Trans., 4, 1-11. [10] Tallian, T.E., Chiu, Y.P., Huttenlocher, D.F., Kamenshine, J.A., Sibley, L.B. and Sindlinger, N.E., 1964, Lubricant Films in Rolling Contact of Rough Surfaces, ASLE Trans., 7, 109-126. [11] Vichard, J.P., Transient effects in the lubrication of Hertzian contacts, 1971, J. Mech. Eng. Sci., Vol. 13, 173-189. [12] Wilson, A.R., 1979, The relative thickness of grease and oil films in rolling bearings, Proc. I. Mech. E., Vol. 193, 185-192. [13] Dyson, A., Naylor, H., and Wilson, A.R., (1965-56), The Measurement of Oil-Film Thickness in Elastohydrodynamic Contacts, Proc. I. Mech. E., Vol. 180, 119-134. [14] Heemskerk, R. S., Vermeiren, K. N., and Dolfsma, H., (1982), Measurement of Lubrication Condition in Rolling Element Bearings, ASLE Trans., 24, 4, 519-527. [15] Leenders P, Houpert L. 1987, Study of the lubricant film in rolling bearing; effects of roughness, Tribology Series, 11, 629 638. [16] Wittek E, Kriese M, Tischmacher H, Gattermann S, Ponick B, Poll G. 2010, Capacitances and lubricant film thicknesses of motor bearings under differ- ent operating conditions, Proceedings of the XIX International Conference on Electrical Machines - ICEM 2010, Rome, Italy. [17] Jablonka K, Glovnea R, Bongaerts J. 2012, Evaluation of EHD films by electrical capacitance, Journal of Physics D: Applied Physics, 45, 385301.