RF Power GaN Transistor

Similar documents
RF Power GaN Transistor

RF Power GaN Transistor

RF Power GaN Transistor

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power GaN Transistor

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power GaN Transistor

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifier

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

Test Methodology. Characteristic Symbol Min Typ Max Unit. V GS(th) Vdc. V GS(Q) Vdc. V DS(on)

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifier

RF LDMOS Wideband Integrated Power Amplifiers

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N Channel Enhancement Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N Channel Enhancement Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N Channel Enhancement Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

V GS(th) Vdc. V GS(Q) 2.6 Vdc. V GG(Q) Vdc. V DS(on) Vdc

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifier

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifiers

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

Characteristic Symbol Value (2,3) Unit. Test Methodology

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

Characteristic Symbol Value (2) Unit R JC 57 C/W

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Driver or Pre -driver General Purpose Amplifier

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistors N Channel Enhancement Mode Lateral MOSFETs

Characteristic Symbol Value (1,2) Unit. Test Methodology. Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115)

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

Enhancement Mode phemt

RF LDMOS Wideband Integrated Power Amplifiers

Characteristic Symbol Value (2) Unit R JC 92.0 C/W

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

Enhancement Mode phemt

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

Enhancement Mode phemt

Driver or Pre -driver Amplifier for Doherty Power Amplifiers

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

Transcription:

Freescale Semiconductor Technical Data Document Number: A2G35S2--1S Rev., 5/216 RF Power GaN Transistor This 4 W RF power GaN transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth covering the frequency range of 34 to 36 MHz. This part is characterized and performance is guaranteed for applications operating in the 34 to 36 MHz band. There is no guarantee of performance when this part is used in applications designed outside of these frequencies. 35 MHz Typical Single--Carrier W--CDMA Performance: V DD =48Vdc, I DQ = 291 ma, P out = 4 W Avg., Input Signal PAR = 9.9 db @.1% Probability on CCDF. 34 36 MHz, 4 W AVG., 48 V AIRFAST RF POWER GaN TRANSISTOR Frequency G ps (db) D (%) Output PAR (db) ACPR (dbc) IRL (db) 34 MHz 14.7 32.4 7.2 34.9 1 35 MHz 16.1 35.3 7. 34.7 19 36 MHz 16.1 36.7 6.6 32.8 9 NI -4S -2S Features High Terminal Impedances for Optimal Broadband Performance Designed for Digital Predistortion Error Correction Systems Optimized for Doherty Applications RF in /V GS 2 1 RF out /V DS (Top View) Figure 1. Pin Connections, 216. All rights reserved. 1

Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage V DSS 125 Vdc Gate--Source Voltage V GS 8, Vdc Operating Voltage V DD to+55 Vdc Maximum Forward Gate Current @ T C =25 C I GMAX 25 ma Storage Temperature Range T stg 65to+15 C Case Operating Temperature Range T C 55to+15 C Operating Junction Temperature Range T J 55to+225 C Absolute Maximum Junction Temperature (1) T MAX 275 C Table 2. Thermal Characteristics Characteristic Symbol Value Unit Thermal Resistance by Infrared Measurement, Active Die Surface--to--Case Case Temperature 75 C, P D =81W Thermal Resistance by Finite Element Analysis, Junction--to--Case Case Temperature 85 C, P D =8W R JC (IR) 1.3 (2) C/W R JC (FEA) 1.75 (3) C/W Table 3. ESD Protection Characteristics Test Methodology Human Body Model (per JESD22--A114) Machine Model (per EIA/JESD22--A115) Charge Device Model (per JESD22--C11) Class 1B A IV Table 4. Electrical Characteristics (T A =25 C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics Drain--Source Breakdown Voltage (V GS = 8Vdc,I D = 24.3 madc) V (BR)DSS 15 Vdc On Characteristics Gate Threshold Voltage (V DS =1Vdc,I D = 24.3 madc) Gate Quiescent Voltage (V DD =48Vdc,I D = 291 madc, Measured in Functional Test) Gate--Source Leakage Current (V DS =Vdc,V GS = 5Vdc) V GS(th) 3.8 2.8 2.3 Vdc V GS(Q) 3.6 3.1 2.3 Vdc I GSS 7.5 madc 1. Functional operation above 225 C has not been characterized and is not implied. Operation at T MAX (275 C) reduces median time to failure by an order of magnitude; operation beyond T MAX could cause permanent damage. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/rf and search for AN1955. 3. R JC (FEA) must be used for purposes related to reliability and limitations on maximum junction temperature. MTTF may be estimated by the expression MTTF (hours) = 1 [A + B/(T + 273)], where T is the junction temperature in degrees Celsius, A = 1.3 and B = 826. (continued) 2

Table 4. Electrical Characteristics (T A =25 C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (1) (In Freescale Test Fixture, 5 ohm system) V DD =48Vdc,I DQ = 291 ma, P out = 4 W Avg., f = 35 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 db @.1% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHzOffset.[See note on correct biasing sequence.] Power Gain G ps 14.3 16.1 17.4 db Drain Efficiency D 29.4 35.3 % Output Peak--to--Average Ratio @.1% Probability on CCDF PAR 6.4 7. db Adjacent Channel Power Ratio ACPR 34.7 29.9 dbc Input Return Loss IRL 19 9 db Load Mismatch (In Freescale Test Fixture, 5 ohm system) I DQ = 291 ma, f = 35 MHz, 12 sec(on), 1% Duty Cycle VSWR 1:1 at 55 Vdc, 25 W Pulsed CW Output Power No Device Degradation (3 db Input Overdrive from 18 W Pulsed CW Rated Power) Typical Performance (In Freescale Test Fixture, 5 ohm system) V DD =48Vdc,I DQ = 291 ma, 34 36 MHz Bandwidth P out @ 1 db Compression Point, CW P1dB 18 W P out @ 3 db Compression Point (2) P3dB 225 W AM/PM (Maximum value measured at the P3dB compression point across the 34 36 MHz bandwidth) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) 12 VBW res 1 MHz Gain Flatness in 2 MHz Bandwidth @ P out =4WAvg. G F 1.2 db Gain Variation over Temperature ( 3 C to+85 C) Output Power Variation over Temperature ( 3 C to+85 C) G.3 db/ C P1dB.1 db/ C Table 5. Ordering Information Device Tape and Reel Information Package A2G35S2--1SR3 R3 Suffix = 25 Units, 32 mm Tape Width, 13--inch Reel NI--4S--2S 1. Part internally input matched. 2. P3dB = P avg + 7. db where P avg is the average output power measured using an unclipped W--CDMA single--carrier input signal where output PAR is compressed to 7. db @.1% probability on CCDF. NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors Turning the device ON 1. Set V GS to the pinch--off (V P ) voltage, typically 5 V 2. Turn on V DS to nominal supply voltage (5 V) 3. Increase V GS until I DS current is attained 4. Apply RF input power to desired level Turning the device OFF 1. Turn RF power off 2. Reduce V GS downtov P, typically 5 V 3. Reduce V DS down to V (Adequate time must be allowed for V DS to reduce to V to prevent severe damage to device.) 4. Turn off V GS 3

C5 C7 C1 C12 C6 C8 C4 C9 C11 C13 + A2G35S2--1S Rev. 1 C14 C1* C3 R1 C15* C2 CUT OUT AREA D74468 *C1 and C15 are mounted vertically. Figure 2. Test Circuit Component Layout Table 6. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1.7 pf Chip Capacitor ATC1BR7BT5XT ATC C2, C7, C8, C15 1 pf Chip Capacitors ATC8B1JT5XT ATC C3 1 pf Chip Capacitor ATC1B1RBT5XT ATC C4, C9 8.2 pf Chip Capacitors ATC8B8R2CT5XT ATC C5, C6 1 F Chip Capacitors GRM32ER61H16KA12L Murata C1, C11 12 pf Chip Capacitors ATC8B12JT5XT ATC C12, C13 1 F Chip Capacitors C575X7S2A16M23KB TDK C14 22 F, 1 V Electrolytic Capacitor EEV-FK2A221M Panasonic-ECG R1 5.6, 1/4 W Chip Resistor CRCW1265R6FKEA Vishay PCB Rogers RO435B,.23, r =3.66 D74468 MTL 4

TYPICAL CHARACTERISTICS 34 36 MHz G ps, POWER GAIN (db) 18 17.5 17 16.5 16 15.5 15 14.5 V DD =48Vdc,P out =4W(Avg.),I DQ = 291 ma Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth G ps D ACPR 14 38 IRL PARC 13.5 4 Input Signal PAR = 9.9 db @.1% Probability on CCDF 13 42 338 341 344 347 35 353 356 359 362 f, FREQUENCY (MHz) Figure 3. Single -Carrier Output Peak -to -Average Ratio Compression (PARC) Broadband Performance @ P out = 4 Watts Avg. 42 39 36 33 3 32 34 36 D, DRAIN EFFICIENCY (%) ACPR (dbc) 5 1 15 2 25 3 IRL, INPUT RETURN LOSS (db) 1.6 1.9 2.2 2.5 2.8 3.1 PARC (db) IMD, INTERMODULATION DISTORTION (dbc) 15 3 45 6 V DD =48Vdc,P out = 7 W (PEP), I DQ = 291 ma Two--Tone Measurements, (f1 + f2)/2 = Center Frequency of 35 MHz IM7--U IM7--L IM5--U IM5--L IM3--U IM3--L 75 1 1 1 3 TWO--TONE SPACING (MHz) Figure 4. Intermodulation Distortion Products versus Two -Tone Spacing G ps, POWER GAIN (db) 2 19 18 17 16 15 14 OUTPUT COMPRESSION AT.1% PROBABILITY ON CCDF (db) 1 1 2 3 V DD =48Vdc,I DQ = 291 ma, f = 35 MHz Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth G ps 1 db = 2.3 W 2 db = 33.5 W 3 db = 47 W 4 ACPR PARC Input Signal PAR = 9.9 db @.1% 1 5 Probability on CCDF 15 3 45 6 75 D 6 5 4 3 2 D DRAIN EFFICIENCY (%) 2 25 3 35 4 45 5 ACPR (dbc) P out, OUTPUT POWER (WATTS) Figure 5. Output Peak -to -Average Ratio Compression (PARC) versus Output Power 5

TYPICAL CHARACTERISTICS 34 36 MHz G ps, POWER GAIN (db) 24 21 18 15 12 9 6 1 V DD =48Vdc,I DQ = 291 ma Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 db @.1% Probability on CCDF 36 MHz 34 MHz D 35 MHz 36 MHz 35 MHz 34 MHz P out, OUTPUT POWER (WATTS) AVG. 36 MHz 35 MHz ACPR Figure 6. Single -Carrier W -CDMA Power Gain, Drain Efficiency and ACPR versus Output Power G ps 34 MHz 1 1 2 6 5 4 3 2 1 D, DRAIN EFFICIENCY (%) 1 2 3 4 5 6 ACPR (dbc) 21 18 5 15 Gain 1 GAIN (db) 12 IRL 15 IRL (db) 9 2 V DD =48Vdc 6 P in =dbm 25 I DQ = 291 ma 3 3 295 31 325 34 355 37 385 4 415 f, FREQUENCY (MHz) Figure 7. Broadband Frequency Response 6

PACKAGE DIMENSIONS 7

8

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software RF High Power Model.s2p File Development Tools Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/rf 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu The following table summarizes revisions to this document. REVISION HISTORY Revision Date Description May 216 Initial Release of Data Sheet 9

How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including typicals, must be validated for each customer application by customer s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/salestermsandconditions. Freescale and the Freescale logo are trademarks of, Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of All other product or service names are the property of their respective owners. E 216 Document Number: A2G35S2--1S 1 Rev., 5/216