Application Note. Low Power DC/DC Converter AN-CM-232

Similar documents
Application Note. External Oscillator Solutions with GreenPAK AN-CM-233

Application Note. Over Current Latch with Low Side Sense AN-CM-223

Application Note. Brushless DC Motor Control AN-1114

Application Note. Customized Glucometer using GreenPAK AN-CM-222

Application Note. Servo Overload Protection AN-CM-247

Application Note. Smart LED Dimmer Controlled via Bluetooth AN-CM-225

Application Note. PWM Control for PC Fans AN-CM-248

Application Note. 3-Phase Brushless DC Motor Control with Hall Sensors AN-CM-244

iw3627 Off-Line Digital Constant-Voltage LED Driver with Power Factor Correction 1 Description 2 Features 3 Applications

Reference Design EBC iw1760b-00 for 15W Dual Output Home Appliance Switched Mode Power Supply Design

1X6610 Signal/Power Management IC for Integrated Driver Module

iw1815 Product Summary

AN1489 Application note

AN GreenChip SR TEA1791T integrated synchronous rectification controller. Document information

ML4818 Phase Modulation/Soft Switching Controller

AN2961 Application note

STEVAL-ISA005V1. 1.8W buck topology power supply evaluation board with VIPer12AS. Features. Description. ST Components

Regulating Pulse Width Modulators

AN3134 Application note

VNP10N06 "OMNIFET": FULLY AUTOPROTECTED POWER MOSFET

FAN2013 2A Low-Voltage, Current-Mode Synchronous PWM Buck Regulator

AN3302 Application note

AN2446 Application note

EDEM3-Programmable EconoDual TM Electrical Series

Obsolete Product(s) - Obsolete Product(s)

MIC23156 Evaluation Board

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

STSR30 SYNCHRONOUS RECTIFIER SMART DRIVER FOR FLYBACK

AN2447 Application note

Response time reduction of the ZXCT1009 Current Monitor

ZLED7000 / ZLED7020 Application Note - Buck Converter LED Driver Applications

STCS05A. 0.5 A max constant current LED driver. Features. Applications. Description

AN1441 Application note

Caution: Do not connect the evaluation board to a supply voltage, VIN, greater than 25V!

ST755 ADJUSTABLE INVERTING NEGATIVE OUTPUT CURRENT MODE PWM REGULATORS

AN1642 Application note

AN2385 Application note

Universal High Brightness LED Driver

AN1954 APPLICATION NOTE

MIC4414/4415. General Description. Features. Applications. Typical Application. 1.5A, 4.5V to 18V, Low-Side MOSFET Driver

Description. Part numbers Order codes Packages Output voltages

Obsolete Product(s) - Obsolete Product(s)

Description. Table 1. Device summary table. Order code Temperature range Package Packing Marking SO-14. (automotive grade) (1)

ZXLD1366EV3 USER GUIDE

MJD122 MJD127 Complementary power Darlington transistors Features Applications Description

Obsolete Product(s) - Obsolete Product(s)

Atmel U6032B. Automotive Toggle Switch IC DATASHEET. Features. Description

AN2625 Application note High AC input voltage limiting circuit Introduction

Features. Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking

LM2903W. Low-power, dual-voltage comparator. Features. Description

.100 Hz TO 500 KHz OSCILLATOR RANGE

60 V, 310 ma N-channel Trench MOSFET

AN4269. Diagnostic and protection features in extreme switch family. Document information

STCL1100 STCL1120 STCL1160

R 1 typ. = 15 kω. Order codes Marking Polarity Package Packaging. 2N6036 2N6036 NPN SOT-32 Tube 2N6039 2N6039 PNP SOT-32 Tube

Atmel ATA6629/ Atmel ATA6631 Development Board V2.2. Application Note. Atmel ATA6629/ATA6631 Development Board V

AN2649 Application note

W588AXXX Data Sheet. 8-BIT MCU WITH VOICE SYNTHESIZER (PowerSpeech TM Series) Table of Contents-

AN2810 Application note

60 V, N-channel Trench MOSFET

HT77xxS 100mA PFM Synchronous Step-up DC/DC Converter

Obsolete Product(s) - Obsolete Product(s)


Wide range isolated flyback demonstration board, single output 12 V/4.2 W based on the VIPER16LN. Description

HT77xxSA 200mA PFM Synchronous Step-up DC/DC Converter

AN1514 Application note

MIC33153 Evaluation Board

HT77xxSA 200mA PFM Synchronous Step-up DC/DC Converter

400 ma nano-quiescent synchronous step-down converter with digital voltage selection and Power Good

Full bridge control IC for HID automotive lighting

PMGD290UCEA. 1. General description. 2. Features and benefits. 3. Applications. Quick reference data

Automotive High Side TMOS Driver

Obsolete Product(s) - Obsolete Product(s)

IX Evaluation Board User s Guide INTEGRATED CIRCUITS DIVISION. 1. Introduction. 1.1 Features:

LM2901. Low power quad voltage comparator. Features. Description

MIC23099 Evaluation Board

AN1387 APPLICATION NOTE APPLICATION OF A NEW MONOLITHIC SMART IGBT IN DC MOTOR CONTROL FOR HOME APPLIANCES

AN3332 Application note

Current-Mode PWM Multiple Output Flyback Converter

Obsolete Product(s) - Obsolete Product(s)

STV300NH02L. N-channel 24V - 0.8mΩ - 280A - PowerSO-10 STripFET Power MOSFET. Features. Applications. Description

VNP10N07 "OMNIFET": FULLY AUTOPROTECTED POWER MOSFET

Pin 19 GPIO. Counters/Delay Generators CNT1 CNT2 CNT3 CNT4 CNT5 CNT6 CNT7 CNT8 CNT9. DFF/Latches. Pin 15 GPIO DFF0 DFF1 DFF2 DFF3 DFF4

PAM2421/ PAM2422/ PAM2423. Pin Assignments. Description. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

2N7000 2N7002. N-channel 60V - 1.8Ω A - SOT23-3L / TO-92 STripFET Power MOSFET. General features. Description. Internal schematic diagram

STAC3932B. HF/VHF/UHF RF power N-channel MOSFET. Features. Description

Obsolete Product(s) - Obsolete Product(s)

AN1513 Application note

AP5004 PWM CONTROL 2.5A STEP-DOWN CONVERTER. Description. Pin Assignments. Applications. Features AP5004 SOP-8L. (Top View ) EN FB Vboost Output

Low noise and low drop voltage regulator with shutdown function. Description

N-channel 75 V, Ω typ., 78 A STripFET DeepGATE Power MOSFET in a TO-220 package. Order codes Marking Package Packaging

2STA1695. High power PNP epitaxial planar bipolar transistor. Features. Applications. Description

AN1756 Application note

STBC ma standalone linear Li-Ion battery charger with thermal regulation. Datasheet. Features. Applications. Description

STD1802T4-A. Low voltage fast-switching NPN power transistor. Features. Description. Applications

AN2359 Application note

AN2333 Application note

Order code Temperature range Package Packaging Marking

TS19460 AC/DC WLED Driver with Average-Mode Constant Current Control

Transcription:

Application Note AN-CM-232 Abstract This application note presents a low cost and low power DC/DC push-pull converter based on the Dialog GreenPAK SLG46108 device. This application note comes complete with design files which can be found in the References section.

Contents Abstract... 1 Contents... 2 Figures... 2 1 Terms and Definitions... 3 2 References... 3 3 Introduction... 4 4 Operation Principle of Push-Pull Topology... 4 5 Board Schematic and Layout... 6 6 SLG46108 schematic... 7 6.1 Clock Configuration... 8 6.2 PWM Configuration... 8 6.3 Design Start-up... 8 6.4 T1 and T2 Signals... 8 6.5 PWM Output Signals... 8 7 Measurements... 9 8 Conclusion... 13 Revision History... 14 Figures Figure 1: Push-pull Topology Schematic... 4 Figure 2: Push Pull Control Waveform... 5 Figure 3: Circuit Model for MOSFET Gate Charge Influence. Source: [5]... 5 Figure 4: MOSFET Turn On and Turn Off Time Graph. Source: modified from [6]... 6 Figure 5: Push-Pull Circuit Schematic... 6 Figure 6: Board Picture... 7 Figure 7: SLG46108 GreenPAK Design... 7 Figure 8: Steady State Control Signals... 9 Figure 9: Dead Time Interval Measurement... 10 Figure 10: Steady State Drain Voltage... 10 Figure 11: Start-up PWM After the Rising of T1 Signal... 11 Figure 12: Start-up PWM After the Rising of T2 Signal... 11 Figure 13: Measurement of Input Current and Output Voltage with a Light Load... 12 Figure 14: Measurement of Input Current and Output Voltage with Heavy Load... 12 Figure 15: Measurement of Input Current During Shutdown... 12 CFR0014 2 of 15 2018 Dialog Semiconductor

1 Terms and Definitions ADC DC MCU MOSFET PWM Analogue-digital convertor Direct current Micro controller unit Metal-oxide-semiconductor field-effect transistor Pulse width modulation 2 References For related documents and software, please visit: https://www.dialog-semiconductor.com/configurable-mixed-signal. Download our free GreenPAK Designer software [1] to open the.gp files [2] and view the proposed circuit design. Use the GreenPAK development tools [3] to freeze the design into your own customized IC in a matter of minutes. Dialog Semiconductor provides a complete library of application notes [4] featuring design examples as well as explanations of features and blocks within the Dialog IC. [1] GreenPAK Designer Software, Software Download and User Guide, Dialog Semiconductor [2] AN-CM-232 Low Power DC-to-DC Converter.gp, GreenPAK Design File, Dialog Semiconductor [3] GreenPAK Development Tools, GreenPAK Development Tools Webpage, Dialog Semiconductor [4] GreenPAK Application Notes, GreenPAK Application Notes Webpage, Dialog Semiconductor [5] Power MOSFET Basics: Understanding the Turn ON Process, AN-850, Vishay [6] Power MOSFET Basics: Understanding Gate Charge and Using it to Assess Switching Performance, AN-608A, Vishay CFR0014 3 of 15 2018 Dialog Semiconductor

3 Introduction Galvanically isolated interfaces are a common requirement within industrial devices for safety reasons. In this type of application, a digital isolator is used to galvanically isolate an MCU from a communication transceiver or an ADC. Digital isolators work at two power domains, using an isolated DC power supply in one domain. The low DC voltage for isolated power domain could be achieved with a small and simple push-pull converter. The push-pull converter is a transformer-isolated topology using two transistors switching in complementary mode. This application note will present a low cost and low power DC/DC push-pull converter based on the Dialog GreenPAK SLG46108 device. The following sections will show how to: Generate a complementary PWM with dead time using the programmable delay block. Generate a start-up sequence using a pipe-delay block. Obtain multiple clock frequencies via an internal oscillator. 4 Operation Principle of Push-Pull Topology A push-pull converter schematic topology is shown in Figure 1. This converter uses a transformer with center-tap in the primary and secondary windings. Two transistors (Q1 and Q2) work to switch the DC input voltage VIN in alternate half-cycles. Figure 1: Push-pull Topology Schematic On the primary side, when the PUSH command signal (Figure 1) is HI, Q2 transistor is turned on and transformer current flows from Vin to Q2 transistor. Simultaneously in the second winding a transformer current flows from diode D1 to the output capacitor, returning through the center-tap. The PUSH command is HI during one half cycle. The PULL command is high during the other half cycle. When the PULL command is high, Q1 transistor is turned on and the current flows from VIN to Q1 in the primary, and from D2 to the output capacitor in the secondary. The current flows in the same direction in the output capacitor during both current cycles, keeping a positive output voltage VOUT. The converter output voltage could be given by equation (1) VOUT = 2 D VP n VDIODE (1) Where VOUT is the output voltage, D is the duty cycle, VP is the voltage in the transformer primary winding, n is the transformer turn-ratio and VDIODE is the voltage drop in outputs at diodes (D1 and D2). Vp is given by equation (2): VP = VIN VDS (2) CFR0014 4 of 15 2018 Dialog Semiconductor

where VDS is the voltage drop from the internal resistance of transistors Q1 and Q2. An issue with this topology is the variation on output voltage with load current change. To ensure a stable output voltage a linear regulator should be added to the output, and the converter output voltage must be higher than the minimum specified for the regulator. The PUSH and PULL command signals are shown in Figure 2. Command signals are complementary and should have the same duty cycle to avoid transformer core saturation. Figure 2: Push Pull Control Waveform An important aspect for push pull converters is the need for a short time interval where both commands are low, as can be seen in Figure 2. This time interval is required to avoid the short circuit of both primary ends of the transformer. The transistors Q1 and Q2 require a small amount of time to effectively turn-on and turn-off. The MOSFET turn-on and turn-off involves a process of charging and discharging a MOSFET gate. A common approach is to model MOSFET gate charge influence as capacitors between MOSFET source and drain. This is shown in Figure 3. Figure 3: Circuit Model for MOSFET Gate Charge Influence. Source: [5] In datasheets the turn-on and turn-off transitions are presented as shown in Figure 4. However, the switching times are highly affected by circuit conditions, such as gate drive resistance, drain-source voltage, etc. CFR0014 5 of 15 2018 Dialog Semiconductor

Figure 4: MOSFET Turn On and Turn Off Time Graph. Source: modified from [6] The time interval is short and should be generated by the driver, which generates a dead time interval between the switches command. The push pull duty cycle is lower than 50 % because of dead time interval. That usually reduces duty-cycle by 3-5 %. This reduction in duty cycle lowers the output voltage and increases dissipation losses. 5 Board Schematic and Layout Figure 5 depicts the board schematic of a low power converter module using the SLG46108. The module has an input DC voltage of 5 Volts (J1 connector) and an isolated output with more than 5 Volts. Output voltage (J2 connector) is higher than 5 V to enable the operation of a linear regulator. In this circuit the SLG46108 generates the control signals PWMPOS and PWMNEG to switch the two transistors Q1 and Q2. The PWM signal is active when SHUTDOWN input is low or is left open. When SHUTDOWN is high the PWM signal is inactive and both transistors are turned off. Figure 5: Push-Pull Circuit Schematic CFR0014 6 of 15 2018 Dialog Semiconductor

The switching dead time interval is defined to generate a duty cycle of 45 %, considering a switching frequency of 250 khz. This approach enables the use of different transistors with the developed controller. The drawback is the reduction in the output voltage and the reduction in efficiency. The selected transformer is the Wurth Electronic part-number 760390014 that has a turns-ratio of 1:1.3. The output diodes are the part-number BAS32, from Nexperia. For this project we have considered the maximum diode drop-out voltage as 0.7 V. Both transistors are the well-known 2N7002 NMOS. For this circuit we calculate the expected minimum output voltage, when the diode drop-out voltage is maximum, using equation 1. Then: VOUT = 2 * 0.45 * 5 * 1.3 0.7 = 5.85 0.7 = 5.15 V The drop-out voltage in transistors is neglected for simplicity, as the load current is low and the MOSFET equivalent resistance is low too. The output voltage must be higher than the calculated minimum voltage, especially at light loads. Figure 6 shows a picture of the mounted module board: Figure 6: Board Picture 6 SLG46108 schematic The project design developed in GreenPAK Designer is shown in Figure 7. Figure 7: SLG46108 GreenPAK Design CFR0014 7 of 15 2018 Dialog Semiconductor

6.1 Clock Configuration The implemented solution uses a 250 khz clock signal (CLK/8) from the OSC block as the base PWM signal. The OSC block is configured to a main clock frequency of 2 MHz (CLK) and two of its outputs are used: the clock divided by four (CLK/4) and by eight (CLK/8). The main oscillator clock is sourced to block CNT1/DLY1 to generate a clock divided by two (CLK/2). 6.2 PWM Configuration To generate the complementary PWM signal with a dead time between the transitions, we used the structure of block P DLY, 2-L2 and 2-L3. Base PWM signal of 250 khz frequency is delayed in Programmable Delay block by nearly 222ns (2 cells delay at 5 V). These two signals are inputs to blocks 2-L2 and 2-L3. Block 2-L2 is an AND logic port and the output will be high only when the CLK/8 and his delayed version are high. Block 2-L3 is an NOR logic port and the output will be high only when CLK/8 and his delayed version are both logic low. This structure generates the complementary PWM signal with the same duty cycle in both outputs and a dead time interval between transitions. Before output signals OUT P and OUT N can drive output pins, the signals should pass through blocks 3bit-LUT0 and 3bit-LUT1. 6.3 Design Start-up Blocks 3bit-LUT0 and 3bit-LUT1 are part of the design start-up logic. Start- up sequence logic is required in the converter to avoid high inrush current during initialization. The start-up process has two phases that are controlled by the signals T1 and T2, generated via a Pipe Delay block. The Pipe Delay block starts counting pulses of the CNT0/DLY0 block after block reset. The CNT0/DLY0 block generates a pulse every 128 µs. This keeps the T1 and T2 signals LO during the first 128 µs of operation. 6.4 T1 and T2 Signals T1 signal is an input for 3bit-LUT2 block. The LUT2 block sends a PWM signal with a small duty cycle generated by the AND operation of signals CLK/4 and CLK/2 when T1 is high and a continuous LO signal when T1 is low. The T2 signal is an input for 3bit-LUT0 and 3bit-LUT1 blocks. The T2 signal is used in these blocks to select the duty cycle of the output PWM drive signals. When T2 is LO the signals OUT P and OUT N are ANDed with the signal PWM that comes from block 3bit-LUT2. In this situation the output signals P, from 3-bit LUT0, and N, from 3-bit LUT1, have the same duty cycle of PWM signal. When T2 is HI the output signals P and N are the same as OUT P and OUT N. If T2 and T1 signal are both low, PWM signal is always low and the outputs P and N will be always low too. This group of blocks enables the control of PWM output signals using T1 and T2. After the initial 128 µs LO signal both PWM outputs will have a small duty cycle, until T2 signal rises to high level. A T2 signal rise to high logic level will happen after 640 µs of the start operation, or after 512 µs after the rising edge of T1 signal. 6.5 PWM Output Signals The PWM output signals P and N drive the output pins. They pass through two enable blocks, the 2bit-LUT0 and 2bit-LUT1. These blocks enable output signals when SHUTDOWN signal is low. When SHUTDOWN signal is high the output will be always low. SHUTDOWN signal is an input signal from PIN2.This pin is configured with a pull-down of 1 MΩ and is used to put all the circuit into a low power mode. When SHUTDOWN is high the oscillator is put in low power mode and Pipe Delay block is reset. This procedure guarantees the application of start-up logic after SHUTDOWN signal falling, turning on the circuit again. The block 3bit-LUT3 is used to enable Pipe Delay counting only after the rising of POR signal and when SHUTDOWN signal is low. CFR0014 8 of 15 2018 Dialog Semiconductor

PIN 8 and PIN 7 are outputs that receive the PWM signals from 2-bit LUT1 and 2-bit-LUT0 respectively, driving the two transistors Q1 and Q2. PINs 6, 4 and 3 are configured as outputs and receive signals T1, T2 and POR respectively. These signals are used for the measurement of startup signals only. 7 Measurements The board module was tested for an input voltage of 5V and the control signals were measured with an oscilloscope. Figure 8 shows the complementary output PWM when the circuit is in steady state operation. The measured PWM frequency is 252.5 khz, near to the expected 250 khz frequency. Figure 8: Steady State Control Signals Figure 9 shows the measurement of the circuit dead time interval. The difference between cursor 1 and 2 is about 200 ns, nearly the expected value of 222 ns. The voltage on the drain of Q1 and Q2 MOSFET is shown in Figure 10. The voltage is low when the MOSFET is conducting. The voltage in the drain MOSFET is double of VIN when it is off, because of the voltage reflection on the primary. During start-up the control generates a PWM that has a reduced duty cycle. It can be seen in Figure 11. Figure 12 shows the duty cycle change after the rising edge of T2 signal. The transistor On time is measured as 320 ns during the first PWM cycle. CFR0014 9 of 15 2018 Dialog Semiconductor

Figure 9: Dead Time Interval Measurement Figure 10: Steady State Drain Voltage CFR0014 10 of 15 2018 Dialog Semiconductor

Figure 11: Start-up PWM After the Rising of T 1 Signal Figure 12: Start-up PWM After the Rising of T 2 Signal Converter output voltage and input current were measured with a 10 KΩ resistor in parallel with a 1 KΩ resistor. The measured voltage is 5.89 Volts and input current was 15.7 ma, as shown in Figure 13. CFR0014 11 of 15 2018 Dialog Semiconductor

Figure 13: Measurement of Input Current and Output Voltage with a Light Load The output voltage and input current were measured with a heavy load of 120 Ω resistor too. The measured voltage is 5.18 Volts (almost 44 ma output current) and input current was 64.4 ma, as shown in Figure 14. Figure 14: Measurement of Input Current and Output Voltage with Heavy Load The circuit input current during shutdown was measured too, achieving 5.7 µa of current, as can be seen in Figure 15. The most significant part of shutdown current is from the presence of 1 MΩ pulldown resistor. Figure 15: Measurement of Input Current During Shutdown CFR0014 12 of 15 2018 Dialog Semiconductor

8 Conclusion This application note presented how to implement a low power and small-factor DC/DC push-pull converter with a GreenPAK CMIC. The main advantage of GreenPAK over other solutions is the presence of a programmable delay block. This block makes the design of dead time insertion logic really simple. It is interesting to see how it was possible to add a personalized start-up sequence using pipe delay block and the addiction of a shutdown mode control. Although this circuit was designed to operate on supply voltage of 5 Volts, it can also work at a supply voltage of 3 Volts. The only limitation on the supply voltage is the threshold voltage of MOSFETs and maximum IC supply voltage. CFR0014 13 of 15 2018 Dialog Semiconductor

Revision History Revision Date Description 1.0 13-Mar-2018 Initial Version CFR0014 14 of 15 2018 Dialog Semiconductor

Status Definitions Status DRAFT APPROVED or unmarked Definition The content of this document is under review and subject to formal approval, which may result in modifications or additions. The content of this document has been approved for publication. Disclaimer Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor. Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications. Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect. Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor. All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor s Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated. Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of their respective owners. 2018 Dialog Semiconductor. All rights reserved. Contacting Dialog Semiconductor United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700 Germany Dialog Semiconductor GmbH Phone: +49 7021 805-0 The Netherlands Dialog Semiconductor B.V. Phone: +31 73 640 8822 Email: enquiry@diasemi.com North America Dialog Semiconductor Inc. Phone: +1 408 845 8500 Japan Dialog Semiconductor K. K. Phone: +81 3 5769 5100 Taiwan Dialog Semiconductor Taiwan Phone: +886 281 786 222 Web site: www.dialog-semiconductor.com Hong Kong Dialog Semiconductor Hong Kong Phone: +852 2607 4271 Korea Dialog Semiconductor Korea Phone: +82 2 3469 8200 China (Shenzhen) Dialog Semiconductor China Phone: +86 755 2981 3669 China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058 CFR0014 15 of 15 2018 Dialog Semiconductor