Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Similar documents
Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span. Steven Wang, Tal Carmon, Eric Ostby and Kerry Vahala

Controllable optical analog to electromagnetically induced transparency in coupled high-q microtoroid cavities

Feedback control of ultra-high-q microcavities: application to micro-raman lasers and microparametric

Phase Noise Modeling of Opto-Mechanical Oscillators

Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics

Characterization of a 3-D Photonic Crystal Structure Using Port and S- Parameter Analysis

Frequency comb from a microresonator with engineered spectrum

High-Q surface plasmon-polariton microcavity

Optical Isolation Can Occur in Linear and Passive Silicon Photonic Structures

Ultra-high quality factor planar Si 3 N 4 ring resonators on Si substrates

Supplementary Information. On-Chip Optical Nonreciprocity Using an Active Microcavity

Session 2: Silicon and Carbon Photonics (11:00 11:30, Huxley LT311)

Narrowing spectral width of green LED by GMR structure to expand color mixing field

Demonstration of directly modulated silicon Raman laser

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Fiber-coupled Ultra-high-Q Microresonators for Nonlinear and Quantum Optics

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Smooth coherent Kerr frequency combs generation with broadly tunable pump by higher

Guided Propagation Along the Optical Fiber

Supplementary Information - Optical Frequency Comb Generation from a Monolithic Microresonator

arxiv: v1 [physics.optics] 10 Jun 2014

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator

arxiv: v1 [physics.optics] 14 Sep 2011

THE WIDE USE of optical wavelength division multiplexing

SUPPLEMENTARY INFORMATION

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson University

Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b,

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Non-reciprocal phase shift induced by an effective magnetic flux for light

Microresonator-based comb generation without an external laser source

arxiv: v1 [physics.optics] 24 Dec 2009

Supporting Information: Plasmonic and Silicon Photonic Waveguides

Reflectionless Multichannel Wavelength Demultiplexer in a Transmission Resonator Configuration

Modeling of ring resonators as optical Filters using MEEP

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

THE QUALITY factor and modal volume of

Additional research into novel whispering-gallery devices

InGaAsP photonic band gap crystal membrane microresonators*

Rayleigh scattering boosted multi-ghz displacement sensitivity in whispering gallery opto-mechanical resonators

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson Comm. Lab

A novel tunable diode laser using volume holographic gratings

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Supplementary Information

arxiv: v1 [physics.optics] 25 Mar 2014

Directional coupler (2 Students)

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Compact hybrid TM-pass polarizer for silicon-on-insulator platform

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Electrostatic actuation of silicon optomechanical resonators Suresh Sridaran and Sunil A. Bhave OxideMEMS Lab, Cornell University, Ithaca, NY, USA

Chad A. Husko 1,, Sylvain Combrié 2, Pierre Colman 2, Jiangjun Zheng 1, Alfredo De Rossi 2, Chee Wei Wong 1,

G. Norris* & G. McConnell

OPTICAL microresonators are key enabling elements for

Silica polygonal micropillar resonators: Fano line shapes tuning by using a Mach-Zehnder interferometer

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

All-Fiber Wavelength-Tunable Acoustooptic Switches Based on Intermodal Coupling in Fibers

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

Single-mode lasing in PT-symmetric microring resonators

Suppression of Rayleigh-scattering-induced noise in OEOs

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Deliverable Report. Deliverable No: D2.9 Deliverable Title: OAM waveguide transmission

Supplementary Figure S1. Schematic representation of different functionalities that could be

ANALYSIS OF EPSILON-NEAR-ZERO METAMATE- RIAL SUPER-TUNNELING USING CASCADED ULTRA- NARROW WAVEGUIDE CHANNELS

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Electromagnetically Induced Transparency with Hybrid Silicon-Plasmonic Travelling-Wave Resonators

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL.

Demonstration of an air-slot mode-gap confined photonic crystal. slab nanocavity with ultrasmall mode volumes

Single-photon excitation of morphology dependent resonance

CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

A new picosecond Laser pulse generation method.

Optical trapping on waveguides. Olav Gaute Hellesø University of Tromsø Norway

A Low-loss Integrated Beam Combiner based on Polarization Multiplexing

Demonstration of a chip-based optical isolator with parametric amplification

Two bit optical analog-to-digital converter based on photonic crystals

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

All-Optical Logic Gates Based on No Title Waveguide Couplers. Author(s) Fujisawa, Takeshi; Koshiba,

Figure 1 Basic waveguide structure

Ultracompact Adiabatic Bi-sectional Tapered Coupler for the Si/III-V Heterogeneous Integration

Slow-light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides

Cavity QED with quantum dots in semiconductor microcavities

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

Critical optical coupling between a GaAs disk and a nanowaveguide. suspended on the chip

Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality

Visible to infrared high-speed WDM transmission over PCF

Experiments with Toroidal Microresonators in Cavity QED

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

Devices Imaged with Near-eld Scanning Optical Microscopy. G. H. Vander Rhodes, M. S. Unlu, and B. B. Goldberg. J. M. Pomeroy

Journal of Visualized Experiments. Video Article Microwave Photonics Systems Based on Whispering-gallery-mode Resonators

AFRL-RY-WP-TR

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Gain-clamping techniques in two-stage double-pass L-band EDFA

Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Design of Mid-IR Er 3þ -Doped Microsphere Laser

Transcription:

Wavelength-independent coupler from fiber to an on-chip, demonstrated over an 85nm span Tal Carmon, Steven Y. T. Wang, Eric P. Ostby and Kerry J. Vahala. Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125 USA tal@caltech.edu, www.vahala.caltech.edu Abstract: A robust wide band (85 nm) fiber coupler to a whisperinggallery with ultra-high quality factor is experimentally demonstrated. The device trades off ideality for broad-band, efficient input coupling. Output coupling efficiency can remain high enough for practical applications wherein pumping and power extraction must occur over very broad wavelength spans. 27 Optical Society of America OCIS codes: (14.478) Optical resonators; (6.181) Couplers, switches, and multiplexers References and links 1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes," Phys. Lett. A 137, 393-397 (1989). 2. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid micro on a chip," Nature 421, 925-928 (23). 3. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (23). 4. V. S. Ilchenko, and A. B. Matsko, "Optical resonators with whispering-gallery modes - Part II: Applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (26). 5. T. Carmon, and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third harmonic generation," Nat. Phys 3, 43-435 (27). 6. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallerymode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997). 7. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silicamicrosphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2). 8. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to quantum electrodynamics," Phys. Rev. Lett. 91, 4392 (23). 9. M. L. Gorodetsky, and V. S. Ilchenko, "Optical microsphere resonators: optimal coupling to high-q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999). 1. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, "Rayleigh scattering in high-q microspheres," J. Opt. Soc. Am. B 17, 151-157 (2). 11. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984). 12. All the way from being critically-coupled to touching the 13. When -to-coupler distance is larger than the distance necessary for critical coupling 14. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-q photonic crystal micro," Phys. Rev. B 7, 8136 (24). 15. Yet, one should calculate how wide is the band in which phase match is maintained in his specific configuration. Whispering gallery devices based on silica have attained remarkably high Q factors [1] and also in formats that enable fabrication on a silicon chip [2]. High Q factors in conjunction with micro-scale mode volumes, provide for immense resonant enhancement of weak input signals. This has enabled demonstration of a variety of nonlinear oscillators [3, 4]. Recently, very broad band frequency tripling from IR to visible has also been demonstrated in these devices

[5]. In all of these applications, the coupling technology has been the silica fiber taper [6-8]. These devices provide high-ideality coupling to and from the resonator over fairly broad wavelength spans. Third-harmonic generation, however poses a unique challenge to these devices as whispering gallery and fiber taper dispersion do not track well over such wavelength spans. In this paper we demonstrate a bent-taper coupler whose design is intended to match closely toroidal whispering galleries. This, in turn, endows this device with enhanced coupling bandwidth. Illustrations and micrographs of both a loop coupler and a conventional straighttaper coupler are provided in figure 1. The key idea in this device is to provide a more symmetrical coupling geometry in which a tightly-bent coupling mimics the form factor (for dispersion) of the toroidal whispering gallery. Efficient-input coupling to microtoroid resonators over spans as large as 85 nm is demonstrated. This enhancement is achieved, in part, by compromise with output coupling efficiency and overall ideality, which are not as high as with normal fiber tapers. Nonetheless, this compromise can result in acceptable output coupling efficiency over very broad wavelength spans, without resorting to other, more complex coupling approaches (e.g., multiple taper couplers). (a) Description Bent coupler fiber Symmetrical coupling (wavelength independent) Tapered fiber fiber Asymmetrical coupling (wavelength dependent) (b) Experiment 4μm 5μm ~1 μm Fig. 1. Comparison between tapered-fiber coupler and bent taper coupler. (a) Schematic description. (b) Micrograph of the and coupler region. The bent coupler is made from a standard fiber through conventional flame pulling, followed by pushing of the resulting tapered fiber (~1mm while flame is off). This process is then followed by twisting of the fiber (in order to induce a loop) and then pulling (in order to reduce the loop radius). Mechanical stress in the bent coupler is released by thermal annealing of the looped structure. The fact that the geometry in the bent fiber now mimics the toroid- geometry (in the relevant coupling region, Fig. 1 a, b LHS) implies that the propagation velocity is also similar in these two symmetrical sides of the coupler. In particular, both geometrically (curvature and thickness) of the bent coupler is better matched to the toroidal so that waveguide induced dispersion tends to track better than for the case of a straight and narrow

taper. In exchange for this improved dispersion matching, the bent coupler, owing to its greater thickness (versus a straight coupler), will support multiple higher-order transverse modes. Although these modes do not interfere with coupling from the coupler to the resonator (as this is determined by the temporal frequency), the presence of these modes does interfere with output coupling. As described experimentally and theoretically [8, 9], these modes reduce coupler ideality by introducing parasitic output coupling. On the other hand, in certain applications reduced output coupling can be tolerated. Furthermore, we note that extremely narrow, minor diameter toroids would be well suited to bent couplers with narrow diameters. In this case, there should be little or no loss of ideality while attaining excellent broad-band phase match. These devices are a subject of future study. Figure 2 contains data showing operation of a bent coupler. Operation in the IR is presented in Fig. 2a (LHS) (where typical coupling efficiencies of 94% are measured) and in figure 2b (LHS) at a wavelength more than twice as short. The fact that we used a single mode fiber in the 1.5 micron band implies that some of the visible power in this measurement is in a high-order transverse mode. It is believed that this is the reason the coupling efficiency in the visible (Fig. 2b LHS) is slightly lower than in the IR. In the future, by using single-mode fiber for the shortest wavelength, it is expected to further improve efficiency. The quality factor is measured with the same bent coupler to be 24 and 23 million in the IR and visible, respectively, by monitoring the resonance linewidth (Fig. 2 a, b LHS, insets). We performed all linewidth measurements in the under-coupled regime. It is visible at the insets in Fig. 2 that the linewidth is narrow enough to resolve a fine splitting between the clockwise and counter clockwise circulating modes [1]. Bent coupler Tapered fiber Experimental coupling results (a) IR, 154.2nm (b) Visible, 682.1 1 8 6 4 FWHM Q = 2 =7.7MHz 24 x 1 6 3 6 9 Detuning Frequency (MHz) 1 2 3 1 8 6 Transmission [AU] Detuning Wavelength (x1-12 m) 4 FWHM Q = 2 =17MHz 1 23 x 1 6 2 Detuning Frequency (MHz) 1 2 3 4 5 Transmission [AU] Detuning Wavelength (x1-12 m) 1 8 6 4 2 1 2 3 4 5 1 8 6 4 2 Detuning wavelength (x1-11 ) 1 2 3 4 5 Detuning wavelength (x1-12 ) Fig. 2. Comparison between tapered-fiber coupler and bent taper coupler, experimental results. (a) Coupling at IR (154.2nm). (b) Coupling at visible (682.1nm). Insets describe the transmission in the under-coupled regime and are used for measuring the resonance width. The linewidth is narrow enough to resolve a fine splitting between the clockwise and counter clockwise modes. We now compare experimentally the wavelength-independent-nature of the bent-taper coupler with that of the straight-taper coupler. Pulling a straight-taper coupler to be phase-matched in the IR [Fig. 1b RHS] enables high quality factor (Q= 24 million) and efficient coupling (8%) at this specific wavelength [Fig. 2a RHS]; yet, as expected, this coupler does not function at all in the visible [Fig. 2b RHS]. In fact, there was not even a small sign of visible resonance

when using the straight taper in the wavelength region of the previously measured visible resonance. 1 682.1nm Transmission (%) 8 6 4 2 154.2 nm 1 2 3 Detuning Wavelength (x 1-11 m) Fig. 3. Simultaneous coupling with bent coupler over 85nm span Because the required coupling gap, itself, scales with wavelength, optimal coupling in visible and IR requires some adjustment of the coupling gap. However, using a single gap distance, it is possible to obtain coupling (albeit not optimal) at extreme wavelengths as demonstrated in figure 3. An important question is the influence of high-order modes on the coupling process. The reason is that when light is coupled out of the, radiation can be coupled to high-order modes of the coupler that will be afterward lost upon entering the single-mode fiber. To quantify coupling to high-order modes, the coupler ideality is defined as the amount of power coupled to the desired mode (the fundamental coupler mode) divided by the amount of power coupled into all modes. Ideality can be deduced by experimentally measuring transmission while changing the coupler-to- distance as explained in [8, 11]. Experimentally performing such a transmission versus-distance measurement (Fig. 4) allowed us to infer ideality better than 6% for the over-coupled regime [12] and ideality better than 4% for the under-coupled region [13]. The physical reason that ideality decreases with coupling distance is that high-order modes extend (evanescently) from the coupler to a greater distance which is longer than that of the fundamental mode. Previously-studied straight-taper couplers do not suffer from coupling to high-order modes and achieve remarkably high idealities over bandwidths of approximately 1 nm [8]. However, as noted above, these devices exhibit phase mismatch over broad tuning ranges. As such the bent coupler approach provides a complementary tool in cases where ideality can be traded-off against bandwidth. We also note that coupling to high-order modes in the bent coupler is relevant only to coupling out of the. Coupling into the is not affected at all by high-order modes since temporal resonance constrains a single target mode at the wavelength of operation.

1.8 Transmission.6.4.2.5 1 1.5 2 2.5 Coupler to distance [μm] Fig. 4. Experimental measurement of the bent-coupler transmission Vs. coupling distance (squares); the line is a guide for the eye. Cavity external diameter is 32 μm with minor diameter of 6 μm, coupler outer diameter is 37 μm with minor diameter 3.5 μm. Optical quality factor is 22 million and wavelength is 1542.4 nm. It is important to note that the bend here is only tens of microns in diameter and functions to allow wavelength-independent coupling. This is in contrast with previous work (e.g. reference [14]) in which a mm-scale bend provided a geometrical function of allowing access to flat cavities but had no optical purpose. It is worth mentioning that the bent coupler in figure 1 is not limited for coupling light into toroids, it can also be used for coupling light to spheres or other types of non whisperinggallery-mode cavities [15]. Also, although the main goal here was to build a wavelengthindependent coupler, the bent fiber possesses additional advantages. In particular, improved power handling capability is expected since replacing the ~1 μ m straight taper with a bent fiber of 1 μ m diameter will increase the area through which heat is dissipated by a factor of 1. Additionally, the bent fiber is stronger mechanically. In conclusion, a wavelength-independent fiber coupler is experimentally demonstrated over an 85nm span. The cross-sectional area of the coupler demonstrated is more than one order of magnitude larger than straight tapers suggesting proportionally better mechanical strength and heat dissipation for high-power applications. This bent coupler is expected to also work throughout the whole silica transparency band (25-2nm) and opens current technology of ultra-high Q cavities to be fiber accessible for applications and scientific research in a regime spanning from the extreme UV to the IR band. Acknowledgement We acknowledge support from the Caltech Lee Center and DARPA.