Research Article Design of Wide-Band Bandpass Filter Using Composite Right/Left-Handed Transmission Line Structure

Similar documents
Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

A MINIATURIZED UWB BPF BASED ON NOVEL SCRLH TRANSMISSION LINE STRUCTURE

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines with Novel Meander-shaped-slots CSSRR

Research Article Compact Two-Section Half-Wave Balun Based on Planar Artificial Transmission Lines

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Progress In Electromagnetics Research, Vol. 107, , 2010

DESIGN OF A DUAL-BAND METAMATERIAL BAND- PASS FILTER USING ZEROTH ORDER RESONANCE

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Research Article Design of a Broadband Band-Pass Filter with Notch-Band Using New Models of Coupled Transmission Lines

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs)

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

ON THE STUDY OF LEFT-HANDED COPLANAR WAVEGUIDE COUPLER ON FERRITE SUBSTRATE

High Selectivity Wideband Bandpass Filter Based on Transversal Signal-Interaction Concepts Loaded with Open and Shorted Stubs

Bandpass-Response Power Divider with High Isolation

CAD of Left-handed Transmission Line Bandpass Filters

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

ANALYSIS AND APPLICATION OF SHUNT OPEN STUBS BASED ON ASYMMETRIC HALF-WAVELENGTH RESONATORS STRUCTURE

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Compact Planar Quad-Band Bandpass Filter for Application in GPS, WLAN, WiMAX and 5G WiFi

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Tunable Via-free Microstrip Composite Right/Left-Handed Transmission Lines Using MEMS Technology

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012

A Novel Triple-Mode Bandpass Filter Using Half-Wavelength-Resonator-Coupled Square-Loop Resonator

Research Article Novel Notched UWB Filter Using Stepped Impedance Stub Loaded Microstrip Resonator and Spurlines

A Compact Quadruple-Mode Ultra-Wideband Bandpass Filter with a Broad Upper Stopband Based on Transversal-Signal Interaction Concepts

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

A NOVEL VIA LESS RESONANT TYPE ANTENNA BA- SED ON COMPOSITE RIGHT/LEFT-HANDED TRANS- MISSION LINE (CRLH-TL) UNIT CELL WITH DE- FECTED GROUND STRUCTURE

Metamaterial Inspired CPW Fed Compact Low-Pass Filter

Compact Circularly Polarized Patch Antenna Using a Composite Right/Left-Handed Transmission Line Unit-Cell

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS

A Folded SIR Cross Coupled WLAN Dual-Band Filter

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

An MNG-TL Loop Antenna for UHF Near-Field RFID Applications

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Analysis of a compact size second order composite right/left handed coupled resonator band pass filter for wireless applications

DESIGN OF LEAKY WAVE ANTENNA WITH COM- POSITE RIGHT-/LEFT-HANDED TRANSMISSION LINE STRUCTURE FOR CIRCULAR POLARIZATION RADIA- TION

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

A CRLH Microstrip Delay Line for High-speed Electronic Circuits

NOVEL TWO-DIMENSIONAL (2-D) DEFECTED GROUND ARRAY FOR PLANAR CIRCUITS

High-Selectivity UWB Filters with Adjustable Transmission Zeros

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

Research Article Embedded Spiral Microstrip Implantable Antenna

COMPACT TRI-LAYER ULTRA-WIDEBAND BAND- PASS FILTER WITH DUAL NOTCH BANDS

Novel Reconfigurable Left-handed Unit Cell for Filter Applications

Design of a Compact UWB Bandpass Filter using Via-Less CRLH TL 1 Dileep Kumar Upadhyay, 2 Uday Kumar, 3 Gajendra Kant Mishra

COMPACT DUAL-MODE TRI-BAND TRANSVERSAL MICROSTRIP BANDPASS FILTER

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR

Design of UWB bandpass filter with dual notched bands

A NOVEL DUAL-MODE BANDPASS FILTER US- ING STUB-LOADED DEFECTED GROUND OPEN-LOOP RESONATOR

Study on Transmission Characteristic of Split-ring Resonator Defected Ground Structure

Research Article Extended Composite Right/Left-Handed Transmission Line and Dual-Band Reactance Transformation

A Novel Interconnection Technique Using Zero-Degree Phase Shifting Microstrip TL for RF QFN Package at S-Band

Research Article CPW-Fed Slot Antenna for Wideband Applications

A TUNABLE GHz BANDPASS FILTER BASED ON SINGLE MODE

Wide-Band Bandpass Filter Using CRLH Transmission Line and Floating Slot Approach

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

Progress In Electromagnetics Research Letters, Vol. 8, , 2009

Research Article Design of Compact UWB Bandpass Filter with Improved Out-of-band Performance Using Distributed CRLH Transmission Lines

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

Compact microstrip stepped-impedance lowpass filter with wide stopband using SICMRC

Research Article Realization of Negative Group Delay Network Using Defected Microstrip Structure

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

Compact Broadband End-Fire Antenna with Metamaterial Transmission Line

A Compact Miniaturized Frequency Selective Surface with Stable Resonant Frequency

Subminiature Multi-stage Band-Pass Filter Based on LTCC Technology Research

Design of UWB Bandpass Filter with WLAN Band Rejection by DMS in Stub Loaded Microstrip Highpass Filter

PLANAR MICROSTRIP BANDPASS FILTER WITH WIDE DUAL BANDS USING PARALLEL-COUPLED LINES AND STEPPED IMPEDANCE RESONATORS

Australian Journal of Basic and Applied Sciences

A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER

Research Article Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

A Novel Wideband Bandpass Filter Using Coupled Lines and T-Shaped Transmission Lines with Wide Stopband on Low-Cost Substrate

Progress In Electromagnetics Research C, Vol. 20, 83 93, 2011

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

A Compact Microstrip Low-Pass Filter Using D-CRLH Transmission Line with Ultra-Wide Stopband and High Selectivity

Compact Microstrip Narrow Bandpass Filter with Good Selectivity and Wide Stopband Rejection for Ku-Band Applications

Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan R.O.C. Wen-Hua Rd., Taichung, 40724, Taiwan R.O.C.

Progress In Electromagnetics Research C, Vol. 20, 67 81, 2011

Research Article A Dual-Band Printed End-Fire Antenna with DSPSL Feeding

Transcription:

Active and Passive Electronic Components Volume 206, Article ID 653200, 5 pages http://dx.doi.org/0.55/206/653200 Research Article Design of Wide-Band Bandpass Filter Using Composite Right/Left-Handed Transmission Line Structure Baoping Ren,,2 Haiwen Liu, Xuehui Guan, Pin Wen, Xiang Xiao, and Zhewang Ma 2 School of Information Engineering, East China Jiaotong University, Nanchang 33003, China 2 Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan Correspondence should be addressed to Baoping Ren; rbp2008@26.com Received 27 November 205; Revised 9 March 206; Accepted 29 March 206 Academic Editor: Jiun-Wei Horng Copyright 206 Baoping Ren et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A wide-band microstrip bandpass filter (BPF) based on the improved composite right/left-handed transmission line (CRLH-TL) structure is presented in this paper. Compared to the traditional CRLH-TL with via hole, the improved one is an all-planar structure, which owns the advantage of fabrication and loss. The equivalent lossless LC circuit model of the proposed structure is established. EM software Sonnet is adopted to design the wide-band filter with bandwidth of.4 GHz (from.9 GHz to 3.3 GHz). The circuit occupies only 20.6 2.8 mm 2. Finally, the fabrication and measurement are implemented. A good agreement between simulation and measured results verifies the validity of the design methodology.. Introduction In recent years, left-handed materials (LHMs) have received substantial attention in the scientific and engineering communities for their specific electromagnetic (EM) property (simultaneously negative permittivity ε and permeability μ) []. Science magazine named LHMs as one of the top ten scientific breakthroughs of 2003 [2]. The first artificial LHM composed of thin copper wires and copper split-ring resonators (SRRs) was realized by Smith group at the University of California [3]. However, this kind of structure is always difficult to implement for microwave applications because resonant units such as SRRs are lossy and narrow-banded [4]. Several researchers soon realized that transmission lines (TLs) approach towards LHMs was possible [5, 6]. In actual implementation, LHMs are considered to be a more general model of composite right/left-handed (CRLH) TLs, which also include right-handed (RH) effects that occur naturally in LH TLs. With CRLH structure, many new kinds of microwave devices are designed for low loss and broadband characteristics, such as divider, phase shifter, coupler, and leaky-wave antenna [7]. New ultra-wide-band radar and high-rate communication systems require very specialized RF devices capable of operating over wide frequency scope [8]. Thus, as the key element in RF system, high efficient wide-band bandpass filter (BPF) is no exception in this background. The popular way of designing wide-band filters is employing multiplemode resonators [9, 0] or signal-interference concepts [, 2]. However, the circuit sizes of the aforementioned are comparatively large. More recently, CRLH TL unit cells are applied to design compact wide-band filter [3, 4]. Nevertheless, a via hole or dual-layer structure is indispensable, which complexes the fabrication process. In our previous works, an all-planar CRLH resonator is proposed and fabricated on high-temperature superconducting film [5], which obtains a high performance filtering response with ultralow insertion loss, but the bandwidth is small. In this paper, an improved CRLH TL is proposed to design a wide-band BPF. Patch capacitance replaces traditional via hole connected to shunt inductance in this new structure cell, which reduces the fabrication difficulty and circuit loss. The filter is simulated and optimized by EM software Sonnet and the obtained circuit size is 0.3λ g 0.8λ g (λ g is the guided wavelength of the 50 Ω line at the center frequency). To observe the LH property, the dispersion diagram is given and researched in the paper. Simulation

2 Active and Passive Electronic Components C L C R (a) (b) C L C R (c) Figure : Equivalent circuits: (a) pure RH TL, (b) pure LH TL, and (c) CRLH TL. andmeasurementconductedvalidatetheproposeddesign principle. 2. Theoretical Analysis In the ideal condition, the equivalent circuit of the pure RH TLandpureLHTLisdepictedinFigures(a)and(b), respectively. It can be seen from Figure (a) that the pure RH TL includes series inductance and shunt capacitance C R, which provides a low-pass filtering response. Opposite to RH TL, the pure LH TL is composed of series capacitance C L and shunt inductance and indicates a high-pass response, as shown in Figure (b). The cutoff frequencies of these two responses can be expressed as ω cr = ω cl = C R, C L, where subscripts R and L represent RH and LH, respectively. In reality, a pure LH structure is not possible because of unavoidable RH parasitic parameters. Therefore, a CRLH structure represents the most general form of a structure with attributes. Figure (c) shows the general model of CRLH TL, which consists of inductance in series with capacitance C L and shunt capacitance C R in parallel with inductance. Thus, when w cl < w cr, a bandpass characteristic can be () constructedunderthebalancedcase.thecenterfrequency of the passband w 0 canbecalculatedby ω 0 = ω cr ω cl = 4 C R C L. (2) Because the passband is formed by two parts, that is, LH part and RH part, the bandwidth can be enlarged and a wideband response is always provided. Certainly, the other EM propertiescanalsobeachievedwhenw cl w cr. 3. Filter Implementation Based on the discussion above, a wide-band BPF can be designed with CRLH structure, and a wider bandwidth can be realized with larger, C L and smaller, C R. Therefore, a symmetrical circuit model of improved CRLH structure is proposed and illustrated in Figure 2. It can be seen that there are two shunt tanks such that a larger will be provided. Moreover, it should be noted that an additional capacitor C R isaddedtothebranchof,whichavoidsthegrounded operation directly and realizes the all-planar structure. Figure 3 shows the corresponding microstrip structure of circuit model in Figure 2. It can be observed that the structure is mainly made up of three parts, that is, interdigital structure, meander lines, and rectangle patch. In this work, the series tank is realized with microstrip interdigital capacitor, and the shunt tank is implemented by meander line inductor and rectangle patch capacitor. The interdigital capacitor has a relatively larger value of the series capacitor C L, while

Active and Passive Electronic Components 3 C L C R2 C R2 C R C R p Figure 2: Symmetrical equivalent circuit of the improved CRLH structure. Figure 4: Photograph of the proposed filter. Interdigital capacitor w 0 g 0 L 0 5 Meander line inductor s h h L 2 S-parameters (db) 0 5 20 25 30 35 Patch capacitor L 3 40.0.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz) s 2 s 3 Figure 3: Microstrip implementation of the improved CRLH structure. Simulation Measurement Figure 5: Measured and simulated responses of the wide-band filter. two meander lines provide a large shunt inductor,which ensure the wide-band BPF condition w cl <w cr.theother parameters are carefully selected to meet the balanced CRLH requirement, which averts the bandgap in the wide passband range. EM simulated software Sonnet is applied to simulate the designed filter and optimize its size parameters. The Taconic- RF-35A2 substrate with a relative dielectric constant of 3.5 and a thickness of 0.76 mm is used. In this paper, a wide-band BPF with passband ranges from.9 GHz to 3.3 GHz (total 3 db bandwidth is.4 GHz) will be designed. According to the parameters extracted and converted method described in [6, 7], the filter size can be obtained and finally optimized by Sonnet as follows: w 0 =g 0 = 0.2, s = 2.6, s 2 = 2.8, s 3 =3, h = 0.5, h 2 = 3.5, L = 3.8, L 2 = 4.7, andl 3 = 3.5 (unit: millimeters). 4. Results and Discussion For demonstration purpose, the well-designed wide-band filter is fabricated on Taconic-RF-35A2 substrate. Without the via hole, it is easy to process the circuit with ordinary technology. Figure 4 depicts the photograph of the fabricated filter. The tapped coupling structure is used to design the input/output structure and wedge shape is introduced for impedance matching. The fabricated filter is measured by network analyzer of CETC AV3629. A comparison between simulation and measurement is presented in Figure 5, where the red solid lines and blue dashed lines indicate the simulated and measured results, respectively. A wide-band bandpass response with the passband ranges from.9 to 3.32 GHz is obtained and the corresponding 3 db bandwidth is about 5.9%. The maximum measured insertion loss is approximately.38 db and the return loss in passband is better than 7 db. Two transmission zeros located at lower and upper side of passband enhance the filter selectivity. A good agreement obtained between the measured and simulated results indicates the validity of the design principle. Some discrepancy between the measured and simulated data can be attributed to the inevitable inaccuracy in fabrication and larger dielectric loss at high frequency. Moreover, the complex propagation constant γ will be discussed to interpret behaviors of the proposed CRLH

4 Active and Passive Electronic Components 3.5 3.0 2.5 4 3 Competing Interests The authors declare that there are no competing interests regarding the publication of this paper. β p (rad) 2.0.5.0 0.5 0.0.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz) Figure 6: Dispersion characteristic diagram of the designed filter with improved CRLH structure. device. According to circuit network analysis, γ(w) can be expressed as 2 0 α p (NP) γ (ω) =α(ω) +jβ(ω) = cos (A), (3) p where α(w) and β(w) represent the attenuation factor and propagation constant, respectively. p is the total length of improved CRLH filter. Parameter A is a matrix element of ABCD-matrix and it can be obtained from A= S S 22 +S 2 S 2 2S 2. (4) Therefore, γ(w) canbeeasilycalculatedfromthesimulated or measured S parameters. Figure 6 shows γ(w) of the designed wide-band filter with CRLH TL structure. In general, the bigger the attenuation factor α is, the greater the electromagnetic wave is attenuated. If attenuation factor α = 0, a passband will be presented since γ(w) = jβ(w) is an imaginary. Otherwise, a stopband occurs in certain frequency range. So, a passband occurs within the frequency ranges from.9 to 3.3 GHz. On the other hand, it can be found that the product of group velocity and phase velocity V g V p < 0 (V g = ω/ β, V p = ω/β)inthe frequency range from.9 to 2.2 GHz and shows the LH performance. Similarly, it can be obtained that V g V p >0in the frequency range from 2.2 to 3.32 GHz and indicates the RH performance. 5. Conclusions In this paper, a wide-band BPF is designed with the improved CRLH TL. Additional patch capacitance is added to remove traditional via hole, which reduces the fabrication difficulty andcircuitloss.thefilterissimulatedandoptimizedbyem software Sonnet. Good agreement between simulation and measurement validates the validity of the proposed design principle. To observe the LH property, the dispersion diagram is given and explained in the paper. Acknowledgments This work was supported by the National Natural Science Foundation of China under Grant 646020 and International Cooperation Funds and Science (nos. 2033BDH80007, 204BDH80002) and Technology Innovation Team of Jiangxi Province (no. 2042BCB24004) and Research Funds of East China Jiaotong University (no. 5XX03). References [] N. Engheta and R. W. Ziolkowsiki, Electromagnetic Metamaterials Physics and Engineering Explorations, Wiley and IEEE Press, 2006. [2] Breakthrough of the year. The runners-up, Science, vol. 338, no.64,pp.525 532,202. [3] R.A.Shelby,D.R.Smith,andS.Schultz, Experimentalverification of a negative index of refraction, Science,vol.292,no.554, pp. 77 79, 200. [4]A.Lai,C.Caloz,andT.Itoh, Compositeright/left-handed transmission line metamaterials, IEEE Microwave Magazine, vol. 5, no. 3, pp. 34 50, 2004. [5] C. Caloz and T. Itoh, Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH line, in Proceedings of the IEEE Antennas and Propagation Society International Symposium, vol.2,pp.42 45, IEEE, usa, June 2002. [6] G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer, Transmission line models for negative refractive index media and associated implementations without excess resonators, IEEE Microwave and Wireless Components Letters,vol.3,no.2,pp.5 53,2003. [7] C.CalozandT.Itoh,Electromagetic Metamaterials: Transmission Line Theory and Microwave Applications, JohnWiley& Sons and IEEE Press, 2006. [8] W. J. Feng, W. Q. Che, and Q. Xue, Transversal signal interaction: overview of high-performance wideband bandpass filters, IEEE Microwave Magazine,vol.5,no.2,pp.84 96,204. [9] H. Wang, Q.-X. Chu, and J.-Q. Gong, A compact wideband microstrip filter using folded multiple-mode resonator, IEEE Microwave and Wireless Components Letters, vol.9,no.5,pp. 287 289, 2009. [0] S.-J. Sun, B. Wu, T. Su, K. Deng, and C.-H. Liang, Wideband dual-mode microstrip filter using short-ended resonator with centrally loaded inductive stub, IEEE Transactions on Microwave Theory and Techniques, vol.60,no.2,pp.3667 3673, 202. [] S. Sun, L. Zhu, and H.-H. Tan, A compact wide-band bandpass filter using transversal resonator and asymmetrical interdigital coupled lines, IEEE Microwave and Wireless Components Letters,vol.8,no.3,pp.73 75,2008. [2] R. Gómez-García, M. Sánchez-Renedo, B. Jarry, J. Lintignat, and B. Barelaud, A class of microwave transversal signalinterference dual passband planar filters, IEEE Microwave and Wireless Components Letters,vol.9,no.3,pp.58 60,2009. [3] B. Li, X. W. Dai, B. Wu, and C. H. Liang, Ultra wideband filter design based on composite right-/left-handed transmission

Active and Passive Electronic Components 5 line, Microwave and Optical Technology Letters, vol.49,no.0, pp. 2379 238, 2007. [4] S.-H. Oh, K.-T. Kim, J.-H. Lee, S. Kahng, and H.-S. Kim, Design of the miniaturized ultra-wide band (UWB) filter using the metamaterial characteristic, in Proceedings of the 3rd Asia- Pacific Microwave Conference (APMC 3), pp. 954 956, IEEE, November 203. [5]H.W.Liu,P.Wen,S.S.Zhu,B.P.Ren,andY.S.He, Hightemperature superconducting composite right/left-handed resonator, IEEE Trasaction on Applied Superconductivity, vol. 26, no. 3, Article ID 500204, 206. [6] B. Li, J. P. Yang, and W. Wu, A planar microstrip implementation of dual-composite right/left handed transmission line, in Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT 08), pp. 67 69, IEEE, Nanjing, China, April 2008. [7] J.S.HongandM.J.Lanaster,Microwave Filter for RF/Microwave Application, John Wiley & Sons, New York, NY, USA, 200.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration