Research Article Beam-Scanning Reflectarray Based on a Single Varactor-Tuned Element

Similar documents
Research Article Tunable Reflectarray Cell for Wide Angle Beam-Steering Radar Applications

Frequency Agile Radial-Shaped Varactor-Loaded Reflectarray Cell

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

A Reconfigurable Antenna Based on an Electronically Tunable Reflectarray

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

A Broadband Reflectarray Using Phoenix Unit Cell

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Integration ofpin Diodes with Slot Embedded Patch Elements for Active Reflectarray Antenna Design

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

Design and Demonstration of 1-bit and 2-bit Transmit-arrays at X-band Frequencies

Investigations of advanced folded reflectarray antennas

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Reflectarray with Variable-patch-and-slot Size

Broadband electronically tunable reflection-based phase shifter for active-steering microwave reflectarray systems in Ku-band

Reflectarray Antennas

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Compact Multiantenna

A Novel Tunable Microstrip Patch Antenna Using Liquid Crystal

From Fresnel Zone Antennas to Reflectarrays

Application Article Synthesis of Phased Cylindrical Arc Antenna Arrays

EQUIVALENT ELECTRICAL CIRCUIT FOR DESIGN- ING MEMS-CONTROLLED REFLECTARRAY PHASE SHIFTERS

Transmitarrays, reflectarrays and phase shifters for wireless communication systems. Pablo Padilla de la Torre Universidad de Granada

Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

Design of Frequency and Polarization Tunable Microstrip Antenna

M. Y. Ismail and M. Inam Radio Communications and Antenna Design Laboratory (RACAD) Universiti Tun Hussein Onn Malaysia (UTHM) Batu Pahat, Malaysia

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

A VARACTOR-TUNABLE HIGH IMPEDANCE SURFACE FOR ACTIVE METAMATERIAL ABSORBER

DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK

Application Article Dual-Beam Antenna Design for Autonomous Sensor Network Applications

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article A Novel CP Horn Antenna with Switchable Polarization by Single Port Feeding

DESIGN OF RECONFIGURABLE PATCH ANTENNA WITH A SWITCHABLE V-SLOT

Research Article A Novel SIW H-Plane Horn Antenna Based on Parabolic Reflector

Liquid Crystal Based Beam Scanning Reflectarrays and Their Potential in SATCOM Antennas

Research Article A New Capacitor-Less Buck DC-DC Converter for LED Applications

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Research Article Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

Emerging wideband reconfigurable antenna elements for wireless communication systems

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Static Phase Range Enhancement of Reflectarray Resonant Elements

Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

Study Of Phasing Distribution Characteristics Of Reflectarray Antenna Using Different Resonant Elements

Research Article UWB Directive Triangular Patch Antenna

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Research Article BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

Research Article A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

Reconfigurable antenna using photoconducting switches

Research Article Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Research Article Effect of Parasitic Element on 408 MHz Antenna for Radio Astronomy Application

Progress In Electromagnetics Research C, Vol. 9, 13 23, 2009

Optically reconfigurable balanced dipole antenna

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

Study Of Phasing Distribution Characteristics Of Reflectarray Antenna Using Different Resonant Elements

THROUGHOUT the last several years, many contributions

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

A COMPACT RECTENNA DEVICE AT LOW POWER LEVEL

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed

Efficient Metasurface Rectenna for Electromagnetic Wireless Power Transfer and Energy Harvesting

Design Approach of a Wideband Frequency Tunable Triangular Patch Array with Concurrent Polarization Alteration

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

Special Issue Review. 1. Introduction

Design & Simulation of Circular Patch Antennafor Multiband application of X Band UsingVaractor Diodes

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

Ultrawideband Elliptical Microstrip Antenna Using Different Taper Lines for Feeding

Two-Dimensional Antenna Beamsteering Using Metamaterial Transmitarray

Transcription:

Antennas and Propagation Volume 212, Article ID 29285, 5 pages doi:1.1155/212/29285 Research Article Beam-Scanning Reflectarray Based on a Single Varactor-Tuned Element F. Venneri, S. Costanzo, G. Di Massa, E. Marozzo, A. Borgia, P. Corsonello, and M. Salzano Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria, 8736 Rende, Italy Correspondence should be addressed to S. Costanzo, costanzo@deis.unical.it Received 3 February 212; Accepted 16 April 212 Academic Editor: Raphaël Gillard Copyright 212 F. Venneri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A single varactor-tuned element is investigated as effective solution for the realization of reconfigurable reflectarray antennas. The proposed configuration is successfully implemented for the design of an X-band reflectarray prototype of 3 15 radiators. A dedicated electronic control board is designed as an integral part of the antenna. Good performances in terms of beam-scanning capabilities are obtained from measurements. 1. Introduction Microstrip reflectarray antennas have received considerable interests in the last two decades, due to their appealing features in terms of low cost, high efficiency, and reduced mass and volume. Many different implementations of the reflectarray concept have been proposed, ranging from the first simple configurations, based on the use of variable size patches [1] or identical elements with variable length stubs [2], up to more sophisticated structures, such three layers stacked [3] or aperture coupled patches [4]. The success obtained in the realization of passive reflectarray structures has recently attracted the attention towards the application of this technology to the design of reconfigurable reflector antennas. The main advantage deriving from the development of active reflectarrays over traditional-phased arrays is the elimination of complicated beam-forming networks, which typically introduce very high losses. Many different configurations have been proposed as phase-tunable reflectarray elements such as mechanically reconfigurable patches [5, 6], varactor-loaded microstrip radiators [7 9], reflectarrays printed on tunable liquid crystal substrates [1], and MEMS-based structures [11 14]. In this paper, a tunable radiating element based on the use of a single varactor diode [9] is implemented for the realization of a reconfigurable reflectarray antenna. The adopted element consists of a patch aperture-coupled to a varactor loaded line. The phase tuning capabilities of this configuration have been already demonstrated by the authors in [9]. When compared with the existing solutions, the adopted configuration offers a uniform reflecting surface, due to the fact that the tunable element and the biasing circuitries are located on the opposite side below the ground plane. Furthermore, as demonstrated in [9], an optimum phase tuning range of about 32 degrees is obtained by integrating a single diode to each radiating element. The proposed configuration is properly synthesized for the design of an X-band reflectarray with beam-scanning capabilities. A printed electronic circuit is integrated to the antenna in order to actively control the bias voltages across the diodes. The radiation pattern measurements of the reflectarray prototype show the ability to electronically scan the main beam along some prescribed directions. 2. Reflectarray Element Design The single radiator adopted for the realization of the proposed reconfigurable reflectarray is based on the use of a patch printed on a grounded dielectric substrate and slot coupled to a varactor loaded microstrip line (Figure 1). By changing the bias voltage across the diode, a variable capacitive load is obtained, which in turns introduces a tunable phase shift in the reradiated field. A biasing line is printed on the tuning line substrate, thus the reflectarray surface is

2 Antennas and Propagation L v Δy L s W = 9.3 mm W s = 3.7 mm L a = 5.8 mm Biasing line Δx L a W L = 8.2 mm Ls.6 mm t L Zt Varactor Patch z 5 4 Slot ε r1 Air ε r2 t d h y (Ω) 3 2 1 1 Phase tuning line Figure 1: Reflectarray element configuration: top view; side view. simply composed by identical rectangular patches separated by uniform spacings. This last feature makes the proposed reflectarray configuration free from unwanted reflections. The adopted reflectarray element is designed in order to obtain a full phase tuning range at the operating frequency f = 11.5 GHz. A MoM-based infinite array approach is adopted for the simulation and the optimization of the radiating structure. A cell size of Δx Δy =.7λ.7λ is fixed at the operating frequency f. Two identical dielectric slabs are chosen as patch and line substrates, having the following features: ε r1 = ε r2 = 2.33, t = h =.762 mm. A layer of air with a thickness d =.762 mm is placed between the antenna substrate and the ground plane. The following dimensions are obtained for the different parts composing the antenna: W = 9.3 mm, L = 8.2 mm, W a =.6 mm, L a = 5.8 mm, W s = 3.7 mm (Figure 2). The assumed line width W s corresponds to a characteristic impedance of value equal to 4 Ω. The input impedance Z t,(figure 2), evaluated at the center of the slot, results to be perfectly matched to the 4 Ω line when the stub L s is fixed at a value of 2 mm (Figure 2). A Microsemi MV3111-89 varactor diode, with a tunable capacitance ranging from.2 pf (V bias = 2 Volt) to 2 pf (V bias = Volt), is integrated to the above element in order to obtain the required reconfiguration capabilities. In this case, the two line sections L v and L s (see Figure 1) areoptimized in order to maximize the phase agility of the element in the assigned varactor capacitance range. At this purpose, the stub L s is fixed to a value of 7.8 mm, while the length L v is set to (Ω) 2 11 11.25 11.5 11.75 12 Frequency (GHz) Re(Z t )-L s = 2 mm lm(z t )-L s = 2 mm 23 2 17 14 11 8 5 2 11 11.25 11.5 11.75 12 lm(z t )-L s = 7.8 mm Re(Z t )-L s = 7.8 mm Frequency (GHz) (c) Figure 2: Synthesized aperture-coupled patch: element layout; simulated input impedance for L s = 2 mm; (c) simulated input impedance for L s = 7.8 mm. the value of 6.5 mm, in order to move the maximum phase variation within the diode capacitance range. The reflectarray element is analyzed in order to evaluate the behavior of the reflection phase versus diode capacitance, for different values of the stub length. A normally incident planewaveisassumed. The reflection phase curves, computed in the case of length L s equal to 2 mm and 7.8 mm, are reported in

Antennas and Propagation 3 Reflection phase (deg) 2 15 1 5 Ground plane with slots 5 Patches 1 15 2.25.5.75 1.25 1 1.5 Varactor capacitance (pf) 1.75 Back side: varactor loaded lines 2 Ls = 2 mm Ls = 7.8 mm Reflection amplitude 1 2 Reflectarray 3 4 15 5 Feed 34 cm 6.25.5.75 1 1.25 1.5 Varactor capacitance (pf) 1.75 DACs Copper plane board reducing back radiation 2 Ls = 2 mm Ls = 7.8 mm y x z Figure 3: Simulated reflection coefficient for a normally incident plane wave: phase and amplitude versus varactor capacitance for different stub lengths. Figure 4: Reflectarray structure scheme aperture-coupled array; array illuminated by the feed. Microcontroller Figure 3. The curves are computed by varying the diode capacitance Cv in the range between.2 pf and 2 pf. From a comparison of the two considered curves, it can be stated that an higher phase tuning range can be obtained by introducing a proper inductive effect in the input impedance Zt, (Figure 2(c)). In this case, more pronounced reflection losses are obtained (Figure 3), which can be reduced by adopting a varactor with a lower series resistance. In the above simulations, a value of 1.36 Ω is assigned for this diode parameter, resulting into a value of 3.7 db for the losses due to the varactor insertion. The correctness of the simulated design curves has been experimentally verified in [9], where a good agreement between measurements and simulations can be appreciated. 3. Reflectarray Prototype Description and Experimental Results The synthesized element is adopted as elementary cell of a 3 15 reflectarray (Figure 4). The array is illuminated by an X-band horn, located at a distance of 34 cm from the reflecting surface, with an offset angle of 15 degrees in the y-z plane DACs USB port Supply voltage Figure 5: Photograph of the designed DACs board. (Figure 4). The antenna is integrated with an electronic board composed by an array of digital to analog converters (AD5764R DACs) driven by a microcontroller (ATMEL ATmega1284P). Each AD5764R integrated circuit is composed by four 16-bit DACs. A photograph of the designed electronic board is illustrated in Figure 5. A metallic plane is placed between the antenna and the DACs-board (Figure 4) in order to reduce the back-radiation as well as the occurrence of any undesired interference effect.

4 Antennas and Propagation 2 3 4 5 6 7 8 6 4 2 2 4 6 8 Figure 6: Photograph of the reflectarray prototype into the anechoic chamber. Copolar Cross-polar Figure 9: Measured radiation pattern (copolar and cross-polar components on x-z plane) for a main beam θ mb = 1. 1 2 3 4 8 6 4 2 2 4 6 8 θ mb = θ mb =±1 θ mb =±2 Figure 7: Normalized radiation patterns (copolar components on thex-z plane) measured for different biasing voltage distributions. 2 3 4 5 6 7 8 6 4 2 2 4 6 8 Copolar Cross-polar Figure 8: Measured radiation pattern (copolar and cross-polar components on x-z plane) for a main beam θ mb =. The reflectarray antenna can be easily reconfigured by a PC, which communicates with the ATmega1284P microcontroller through an USART interface. The microcontroller sends the desired voltage levels to the DACs array, which is properly connected to the varactor diodes. The fabricated structure, illustrated in Figure 6, is validated by performing the measurement of the radiation pattern for different configurations of the bias voltages across the diodes. The considered voltage distributions are determined in order to scan the radiation pattern main beam θ mb from 2 to 2 degrees in the x-z plane (Figure 4). The required bias voltages levels are computed by a synthesis algorithm based on the iterative projection method [15]. A far-field measurement facility is adopted, which is placed into the anechoic chamber of the University of Calabria. A double-ridged broadband horn, operating within the frequency range equal to (1 18) GHz, is adopted as probe at a far-field distance of 5.6 m from the reflectarray. The measured copolar patterns on the x-z plane, reported under Figure 7, show the main beam θ mb effectively scanned along the assigned directions. A measurement frequency equal to 11.25 GHz is assumed. As the aim of the realized prototype is to simply demonstrate the validity of the proposed scanning technique, a small number of elements is assumed on the y-z plane, with no specific tuning, so the characterization of the radiation patterns on this plane has no significant validity and it is not reported. As a further characterization, the cross-polar patterns on the x-z plane are measured for three different main beam conditions, namely, θ mb =,1,2, and the comparison with the relative copolar components is reported in Figures 8, 9, and 1. In all cases, a cross-polarization approximately below 4 db can be observed. A loss analysis on the reflectarray is performed for a main beam in the broadside direction. The measured gain versus frequency is reported in Table 1. In particular, at the central design frequency of 11.25 GHz, a gain value of 9.3 dbi is obtained. At the same frequency, the maximum

Antennas and Propagation 5 2 3 4 5 6 7 8 6 4 2 2 4 6 8 Copolar Cross-polar Figure 1: Measured radiation pattern (copolar and cross-polar components on x-z plane) for a main beam θ mb = 2. Table 1: Measured Gain versus Frequency (Broadside Configuration). Frequency (GHz) Gain 1.9 6.6 11 8.1 11.1 7 11.15 7.8 11.2 8.6 11.25 9.3 11.35 5.8 11.5 6.6 directivity for a reflectarray with an aperture area of 21.21λ 2 is calculated as 24.24 dbi. Using the measured gain, the antenna efficiency is estimated as 3.3%. This small value is mainly due to the high spillover in the y-z plane. 4. Conclusion An aperture-coupled patch loaded by a single tunable varactor diode has been adopted for the implementation of a reconfigurable reflectarray prototype. The good phase agility associated to the designed reflectarray element has allowed the realization of a 3 15 reflectarray antenna with beamscanning capabilities within an angular range of about 4 degrees. The experimental tests on the fabricated antenna have demonstrated the validity of the implemented reflectarray configuration. [3] J. A. Encinar and J. Agustín Zornoza, Broadband design of three-layer printed reflectarrays, IEEE Transactions on Antennas and Propagation, vol. 51, no. 7, pp. 1662 1664, 23. [4] E. Carrasco, M. Barba, and J. A. Encinar, Reflectarray element based on aperture-coupled patches with slots and lines of variable length, IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 82 825, 27. [5] J. Huang and R. J. Pogorzelski, A ka-band microstrip reflectarray with elements having variable rotation angles, IEEE Transactions on Antennas and Propagation, vol.46,no.5,pp. 65 656, 1998. [6] M. E. Cooley, J. F. Walker, D. G. Gonzalez, and G. E. Pollon, Novel reflectarray element with variable phase characteristics, IEE Proceedings, vol. 144, no. 2, pp. 149 151, 1997. [7] S. V. Hum, M. Okoniewski, and R. J. Davies, Realizing an electronically tunable reflectarray using varactor diode-tuned elements, IEEE Microwave and Wireless Components Letters, vol. 15, no. 6, pp. 422 424, 25. [8] M. Riel and J. J. Laurin, Design of an electronically beam scanning reflectarray using aperture-coupled elements, IEEE Transactions on Antennas and Propagation, vol.55,no.5,pp. 126 1266, 27. [9] F. Venneri, S. Costanzo, and G. Di Massa, Reconfigurable aperture-coupled reflectarray element tuned by single varactor diode, Electronics Letters, vol. 48, no. 2, pp. 68 69, 212. [1] A. Moessinger, S. Dieter, W. Menzel, S. Mueller, and R. Jakoby, Realization and characterization of a 77 GHz reconfigurable liquid crystal reflectarray, in Proceedings of the 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Sciences Meeting (ANTEM/ URSI 9), February 29. [11] J. P. Gianvittorio and Y. Rahmat-Samii, Reconfigurable patch antennas for steerable reflectarray applications, IEEE Transactions on Antennas and Propagation, vol. 54, no. 5, pp. 1388 1392, 26. [12] R. Sorrentino, R. V. Gatti, L. Marcaccioli, and B. Mencagli, Electronic steerable mems antennas, in Proceedings of the European Conference on Antennas and Propagation (EuCAP 6), November 26. [13] J. Perruisseau-Carrier and A. K. Skrivervik, Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 36 phase range, IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 138 141, 28. [14] O. Bayraktar, O. A. Civi, and T. Akin, Beam switching reflectarray monolithically integrated with RF MEMS switches, IEEE Transactions on Antennas and Propagation, vol. 6, no. 2, part 2, Article ID 65655, pp. 854 862, 212. [15] F. Venneri, S. Costanzo, G. Di Massa, and G. Angiulli, An improved synthesis algorithm for reflectarrays design, IEEE Antennas and Wireless Propagation Letters, vol.4,no.1,pp. 258 261, 25. References [1] D. M. Pozar and T. A. Metzler, Analysis of a reflectarray antenna using microstrip patches of variable size, Electronics Letters, vol. 29, no. 8, pp. 657 658, 1993. [2] J. Huang, Microstrip reflectarray, in Proceedings of the IEEE International Symposium on Antennas and Propagation, pp. 612 615, Ontario, Canada, June 1991.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Volume 21 Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration