Roadway Glare & Reflection Technical Data

Similar documents
ARMTEC.COM. noise control. Performance. Lightweight Low Maintenance

ACRYLITE LED White 0V606

ACRYLITE RinkShield, engineered for hockey...

ACRYLITE and EUROPLEX Films Always On Top

LA DOTD s Nighttime Standards for Construction Operations. Presented by: Tom Ervin Traffic Solutions, Inc.

General Information 11A-1. A. General. B. Industry Outlook. Design Manual Chapter 11 - Street Lighting 11A - General Information

Photometry for Traffic Engineers...

Photometry for Traffic Engineers...

APPENDIX GLOSSARY OF TERMS

daylight Spring 2014 College of Architecture, Texas Tech University 1

IMPACT OF MODERN HEADLAMPS ON THE DESIGN OF SAG VERTICAL CURVES. A Thesis Proposal by Madhuri Gogula

Evaluation of High Intensity Discharge Automotive Forward Lighting

PLEXIGLAS HEATSTOP XT 4029

Reflection and retroreflection

DOUGLAS COUNTY ZONING RESOLUTION Section 30 Lighting Standards 3/10/99. -Section Contents-

Spectral and Temporal Factors Associated with Headlight Glare: Implications for Measurement

ACRYLITE RinkShield. Physical Properties. Technical information

Work environment. Retina anatomy. A human eyeball is like a simple camera! The way of vision signal. Directional sensitivity. Lighting.

Introduction to Lighting

Section 2 concludes that a glare meter based on a digital camera is probably too expensive to develop and produce, and may not be simple in use.

CHAPTER VII ELECTRIC LIGHTING

THE RELATIVE IMPORTANCE OF PICTORIAL AND NONPICTORIAL DISTANCE CUES FOR DRIVER VISION. Michael J. Flannagan Michael Sivak Julie K.

UMTRI EFFECTS OF OVERALL LOW-BEAM INTENSITY ON SEEING DISTANCE IN THE PRESENCE OF GLARE

Work environment. Vision. Human Millieu system. Retina anatomy. A human eyeball is like a simple camera! Lighting. Eye anatomy. Cones colours

Sheet Metal Design Guidelines

ACRYLITE. for Aquariums and Specialty Glazing

ACRYLITE. for Lighting Technologies

EVALUATION OF RECENT U.S. TUNGSTEN-HALOGEN AND HID HEADLAMPS USING CHESS

P1.4. Light has to go where it is needed: Future Light Based Driver Assistance Systems

Sheet Metal Design Guidelines

Basic Lighting Terms Glossary (Terms included in the basic lighting course are italicized and underlined)

Lighting Terminologies Introduction

SOUTH AFRICAN NATIONAL STANDARD

Electrical Illumination and Design

Lumen lm 1 lm= 1cd 1sr The luminous flux emitted into unit solid angle (1 sr) by an isotropic point source having a luminous intensity of 1 candela

Discomfort and Disability Glare from Halogen and HID Headlamp Systems

The Satin Touch. PLEXIGLAS SATINICE PLEXIGLAS Crystal Ice PLEXIGLAS Satin Ice

The Satin Touch. PLEXIGLAS SATINICE PLEXIGLAS Crystal Ice PLEXIGLAS Satin Ice

Technical Information

Physics of Light. Light: electromagnetic radiation that can produce a visual sensation.

Transportation Safety Equipment Institute INTRODUCTION

3 Light Fiber Products

Report No.: HZ w. Stabilization Time (Light & Power) CRI. Table 1: Executive Data Summary. Figure 1- Overview of the sample

Lighting SAMPLE. Learner Workbook. Version 1. Training and Education Support Industry Skills Unit Meadowbank. Product Code: 5640

Lighting Design. Debra A. Kennaugh, P.E. Lighting Design by Debra A. Kennaugh, P.E. A SunCam online continuing education course

Lighting for seniors

Camera monitoring systems,

UMTRI EFFECTS OF REALISTIC LEVELS OF DIRT ON LIGHT DISTRIBUTION OF LOW-BEAM HEADLAMPS

LED T5 30cm Warm White by BS Ledlight

ANSI/IES RP-8-14 Addendum 1 Illuminating Engineering Society; All Rights Reserved Page 1 of 2

LED Driving Technology for Long Term Flexibility Application Note

Master thesis: Author: Examiner: Tutor: Duration: 1. Introduction 2. Ghost Categories Figure 1 Ghost categories

Advanced solutions for protection, light control and display enhancement.

PHOTOMETRIC INDICATORS OF HEADLAMP PERFORMANCE

20W TL 324 smd LED Warm White by Simplify-It

APPLICATIONS FOR TELECENTRIC LIGHTING

Huang Ke 1,2 *, Weng Ji 1 1 Faculty of Architecture and Urban Planning, Chongqing University, Chongqing,

LIGHT REFLECTION AND REFRACTION

Solutions for Signage

ABB i-bus EIB Light controller LR/S and light sensor LF/U 1.1

Match the correct description with the correct term. Write the letter in the space provided.

THE SCHOOL BUS. Figure 1

ii) When light falls on objects, it reflects the light and when the reflected light reaches our eyes then we see the objects.

Michael J. Flannagan Mchael Sivak

Don t miss surprising. facts about the way we see

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors

INTERNALLY ILLUMINATED SIGN LIGHTING. Effects on Visibility and Traffic Safety United States Sign Council

LIGHT REFLECTION AND REFRACTION


AVR122: Calibration of the AVR's internal temperature reference. 8-bit Microcontrollers. Application Note. Features.

Basic lighting quantities

Visibility, Performance and Perception. Cooper Lighting

07-Lighting Concepts. EE570 Energy Utilization & Conservation Professor Henry Louie

Maryland SHA LED Lighting. Brian Grandizio PE / Amol Ranade EIT

ISO INTERNATIONAL STANDARD

DARK SKIES ORDINANCE

WSA 8 BOX RELE Installation Manual

Design Process. ERGONOMICS in. the Automotive. Vivek D. Bhise. CRC Press. Taylor & Francis Group. Taylor & Francis Group, an informa business

Lumen, Lux & Candela

E X P E R I M E N T 12

Fact File 57 Fire Detection & Alarms

PHYSICS - Chapter 16. Light and Color and More

TI Designs: Biometric Steering Wheel. Amy Ball TIDA-00292

MaxLite LED Self-Driven LiteBars

We design polymers that make your wishes come true. Customized Adhesives & Sealants solutions for your bright ideas.

Moving from legacy 24 GHz to state-of-the-art 77 GHz radar

TI Designs: TIDA Passive Equalization For RS-485

E T W GLOSSARY OF LIGHTING TERMS

Characteristics of the Visual Perception under the Dark Adaptation Processing (The Lighting Systems for Signboards)

User Manual January Opticom Infrared System RC790 Remote Coding Unit

Comparison of LED Circuits Application Note

COLOR FILTER PATTERNS

Lighting Technology. Technical Information

Atmel ATA6629/ Atmel ATA6631 Development Board V2.2. Application Note. Atmel ATA6629/ATA6631 Development Board V

Using Mirrors to Form Images. Reflections of Reflections. Key Terms. Find Out ACTIVITY

UMTRI EFFECTS OF REALISTIC LEVELS OF DIRT ON LIGHT OUTPUT OF REAR SIGNAL LAMPS

INSTRUCTION MANUAL FOR THE MODEL C OPTICAL TESTER

Module 3. Illumination Systems. Version 2 EE IIT, Kharagpur 1

Company synopsis. Regulations and Standards

Evaluation of Photometric Data Files for Use in Headlamp Light Distribution

Transcription:

PARAGLAS SOUNDSTOP noise barrier sheet Roadway Glare & Reflection Technical Data Technical Overview The purpose of this Technical Brief is to discuss reflective glare relative to PARAGLAS SOUNDSTOP noise barrier sheet panels and offer explanation as to why it has not been a significant deterrent for the driving public. The Technical Brief will expand on three characteristic facts: 1. Most reflections are above the line of sight. 2. Intensity of light diminishes sharply as distance increases. 3. PARAGLAS SOUNDSTOP sheet reflects only a portion of the light that is projected against its surface. PARAGLAS SOUNDSTOP sheet is a lightweight sound insulating panel that features outstanding optical clarity, long-term weatherability, and excellent impact resistance. A common misconception associated with transparent PARAGLAS SOUNDSTOP sound walls is the potential for glare due to the headlights of oncoming vehicular traffic. For many years, transparent PARAGLAS SOUNDSTOP sound walls have been installed along highways in Europe, Asia and other parts of the world. To our knowledge, reflected glare from a noise barrier has not created issues with traffic in any of these installations. A close examination of the geometry and optics involved suggests why. The Reflections are Typically Above the Line-of-Sight In many sound wall installations, the PARAGLAS SOUNDSTOP sheet only makes up a portion of the sound wall panel material. It is very common for walls to have a concrete, wood or metal base, with the transparent panels mounted above. When the bottom of the transparent sound wall panel is above the sight line of the driver, then all reflections will be above the driver. The Intensity of Light is Significantly Reduced as Distance Increases In general, the intensity of the light decreases proportionally to the square of the distance traveled. Hence, the intensity of the light reflected from a sound wall is greatly diminished due to the distance it travels from the headlamp to the PARAGLAS SOUNDSTOP wall and from the PARAGLAS SOUNDSTOP wall to the driver. Illuminance is the measurement of how bright a point source of light appears to the eye. Figure 1 shows the decrease in illuminance over distance for a typical automotive high beam headlamp directed into a 45 cone. It illustrates how significantly light will diminish in intensity over distance traveled. For example at a distance of 20 meters, a standard headlamp high beam brightness is measured at 50 vertical lux. At 110 meters distance, that same light source measures 5 vertical lux. Simply stated, the brightness of a light source will diminish over greater distance in the same manner that objects appear smaller as distance increases.

Longitudinal Distance from Headlamps (m) Figure 1. Iso-illuminance diagram (vertical lux) at the road surface from a pair of lamps having the median luminous intensities for the sales-weighted sample representing the high beam headlamps on current passenger vehicles in the U.S. 1 Source: The University of Michigan Transportation Research Institute, Report UMTRI-2001-19 When light is projected against a PARAGLAS SOUNDSTOP panel, only a portion of that light is reflected. The remainder passes through the panel. Since PARAGLAS SOUNDSTOP has a very smooth high gloss surface it is assumed that it also has a very high reflectance but this is not necessarily true. When light is projected at a PARAGLAS SOUNDSTOP panel, a portion of the light passes through the sheet and the remainder is reflected. The percentages of light that are transmitted and reflected will vary according to the angle of projection. At very low angles (see Figure 2) PARAGLAS SOUNDSTOP sheet reflects a majority of the incident light. As angles or reflection increase, the amount of light reflected diminishes sharply. For light projected at angles below 10 the light typically travels a very long distance and this has the effect of reducing the brightness of the light as seen by the oncoming driver. Reflection of PARAGLAS SOUNDSTOP Sheet Figure 2. 1. The University of Michigan Transportation Research Institute, Report No. UMTRI-2001-19, May 2001. 2 of 5

The effects of both distance and angle of reflection combine together to greatly reduce the intensity of reflected light. The intensity of the light is greatly diminished due to the distance the light has traveled from the headlamp to the PARAGLAS SOUNDSTOP sound wall. It is then reduced in intensity further according to the angle at which it is reflected and then further reduced in intensity due to the distance the reflected light travels from the PARAGLAS SOUNDSTOP sound wall to the driver. In most circumstances, the light projected directly from the headlights of an oncoming vehicle is significantly more intense than the reflected light. How much glare is too much? Disability glare is created by a light so bright that its intensity results in a measurable reduction in a driver s ability to perform visual tasks. This reduction in performance is a direct result of the effects of stray light within the eye, which in turn are dependent on the age of the driver. At night, vehicle headlights produce direct glare by shining into the eyes of drivers in approaching cars and indirect glare such as reflections from rearview mirrors. Typically, the effects of glare on drivers is much greater at night than during the day, because at night drivers are adapted to lower light levels. For example, lights that are barely noticeable by day can be uncomfortably glaring at night. The following are two examples to help illustrate the differences between direct glare from an oncoming vehicle s headlamp and indirect glare from a sound wall constructed from PARAGLAS SOUNDSTOP sheet. Example 1 Example 1. First, consider the glare from an oncoming vehicle with the following assumptions: One lane of traffic in each direction Each lane is 10-ft wide The driver is 50 years old and looking straight ahead along the middle of the lane The cars are separated by a distance of 225-ft 2 A background luminance of 0.026-cd/ft (an unlighted roadway at night) A headlamp luminous intensity of 42,500-cd and 25,431-cd at 2.5 left of center. In this example, the luminance of the glare reaching the drivers eyes is calculated to be 0.50-fc. Thus, an object in the roadway will have to have its luminance compared to the background luminance increased over 40-fold to be detected. In other words an object in the roadway will have to be about 40 times brighter to be seen when there is glare from an oncoming high beam headlight at 225 feet away. 3 of 5

Now lets look at the case of glare from light reflected from a transparent PARAGLAS SOUNDSTOP sound wall. Example 2 Example 2. Consider a highway curve with the following geometry: Two lanes of traffic in each direction The cars moving in opposite directions approach each other, they are in the inside lanes Each lane is 10-ft wide The radius of curvature is 840 feet (very tight for a highway) The driver is 50 years old and looking straight ahead along the middle of the lane 2 A background luminance of 0.026-cd/ft (an unlighted roadway at night) A headlamp luminous intensity of 42,500-cd and 29,440-cd at 2 left of center The cars on the outside of the curve (represented by vehicle A) will cross paths with both reflected light (indirect glare) from the PARAGLAS SOUNDSTOP sound wall panels coming from the cars on the inside of the curve (represented by vehicle B in Example 2) and then, afterwards, direct light (direct glare) coming from the same cars (vehicle B). The light from vehicle B s headlamps will strike the PARAGLAS SOUNDSTOP sound wall after traveling a distance of 225 feet. The incident light will be reduced in intensity by 40% when it strikes the PARAGLAS SOUNDSTOP panel at an angle of 8. The reflected light will then travel a distance of approximately 185 feet and will cross the path of vehicle A at an angle of 2. The illuminance of the glare reaching the drivers eyes is.10-fc and therefore, an object in the roadway will need to have its luminance increased 13-fold in order to be seen. If we compare the 13-fold increase in contrast threshold for reflected light from a PARAGLAS SOUNDSTOP sound wall with the over 40-fold increase for direct glare from an oncoming headlight it is easy to understand why indirect glare from a PARAGLAS SOUNDSTOP sound wall has not created any known complaints. 4 of 5

Definitions Glare occurs when the intensity of a light is greater than that to which the eyes are accustomed. It is usually defined as a bright light or a brilliant reflection. Direct glare is caused by light sources in the field of view and reflected glare is a bright reflection from a polished or glassy surface (for example, the vehicles side view mirror). Disability glare is caused by light scattered within the eye, causing a haze of veiling luminance that decreases contrast and reduces visibility. Reflectance is a measure of the reflected incident light (illuminance) that is reflected away from a surface. Reflectance will depend on the surface properties of the material as well as the angle from which it is illuminated. Luminous intensity is the light-producing power of a source, measured as the luminous flux per unit solid angle in a given direction. It is a measure of the strength of the visible light given off by a source of light in a specific direction. In this brief luminous intensity is expressed in terms of candelas (cd). Luminance is the amount of luminous flux reflected or transmitted by a surface into a solid angle per unit of area perpendicular to a given direction. It is a physical measure of the amount of light reflected or emitted from a surface and roughly corresponds to the subjective impression of brightness. Luminance does not vary with distance. It may be computed by dividing the luminous intensity by the source area, or by multiplying illuminance and reflectance. Illuminance is the amount of light incident per unit area of a surface at any given point on the surface. The illuminance E at a surface is related to the luminous intensity I of a source by the inverse square law E = I/d2, where d is the distance between the source and the surface. In this brief illuminance is expressed in terms of foot-candles (fc). Evonik Cyro LLC 379 Interpace Parkway Parsippany, NJ 07054 USA phone +1 800 631-5384 +1 973 541-8000 paraglas@evonik.com www.paraglassoundstop.com Important Notice: This information and all technical and other advice are based on Evonik s present knowledge and experience. However, Evonik assumes no liability for such information or advice, including the extent to which such information or advice may relate to third party intellectual property rights. Evonik reserves the right to make any changes to information or advice at any time, without prior or subsequent notice. EVONIK DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, WHETHER EXPRESS OR IMPLIED, AND SHALL HAVE NO LIABILITY FOR, MERCHANTABILITY OF THE PRODUCT OR ITS FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE), OR OTHERWISE. EVONIK SHALL NOT BE RESPONSIBLE FOR CONSEQUENTIAL, INDIRECT OR INCIDENTAL DAMAGES (INCLUDING LOSS OF PROFITS) OF ANY KIND. It is the customer s sole responsibility to arrange for inspection and testing of all products by qualified experts. Reference to trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik Cyro LLC is an Evonik Degussa Corporation group company. PARAGLAS SOUNDSTOP is a registered trademark of Evonik Röhm GmbH, Darmstadt, Germany. 2010 Evonik Cyro LLC. All Rights Reserved. 3116A-1010-cyro