Beamforming of Frequency Diverse Array Radar with Nonlinear Frequency Offset Based on Logistic Map

Similar documents
AN ALTERNATIVE METHOD FOR DIFFERENCE PATTERN FORMATION IN MONOPULSE ANTENNA

A STUDY OF AM AND FM SIGNAL RECEPTION OF TIME MODULATED LINEAR ANTENNA ARRAYS

Time-modulated arrays for smart WPT

ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL INFORMAZIONE

DESIGN OF A LOW SIDELOBE 4D PLANAR ARRAY INCLUDING MUTUAL COUPLING

Multipath Effect on Covariance Based MIMO Radar Beampattern Design

An Improved DBF Processor with a Large Receiving Antenna for Echoes Separation in Spaceborne SAR

A Folded SIR Cross Coupled WLAN Dual-Band Filter

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements

UNIVERSITY OF TRENTO SYNTHESIS OF TIME-MODULATED PLANAR ARRAYS WITH CONTROLLED HARMONIC RADIATIONS. P. Rocca, L. Poli, G. Oliveri, and A.

Synthesis of Simultaneous Multiple-Harmonic-Patterns in Time-Modulated Linear Antenna Arrays

Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation

38123 Povo Trento (Italy), Via Sommarive 14

Electronically Steerable planer Phased Array Antenna

A Modified Gysel Power Divider With Arbitrary Power Dividing Ratio

3D radar imaging based on frequency-scanned antenna

A Pin-Loaded Microstrip Patch Antenna with the Ability to Suppress Surface Wave Excitation

Frequency Diverse Array Radar Data Processing

Analysis of RF requirements for Active Antenna System

SIDELOBES REDUCTION USING SIMPLE TWO AND TRI-STAGES NON LINEAR FREQUENCY MODULA- TION (NLFM)

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation

Orthogonal Radiation Field Construction for Microwave Staring Correlated Imaging

A K-Band Flat Transmitarray Antenna with a Planar Microstrip Slot-Fed Patch Antenna Feeder

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

PERFORMANCE ANALYSIS OF DIFFERENT ARRAY CONFIGURATIONS FOR SMART ANTENNA APPLICATIONS USING FIREFLY ALGORITHM

STUDY OF PHASED ARRAY ANTENNA AND RADAR TECHNOLOGY

Waveform-Space-Time Adaptive Processing for Distributed Aperture Radars

Department of ECE, K L University, Vaddeswaram, Guntur, Andhra Pradesh, India. 1.

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA

Design and Test of a 0.3 THz Compact Antenna Test Range

A PLANT GROWTH SIMULATION ALGORITHM FOR PATTERN NULLING OF LINEAR ANTENNA ARRAYS BY AMPLITUDE CONTROL

A 10:1 UNEQUAL GYSEL POWER DIVIDER USING A CAPACITIVE LOADED TRANSMISSION LINE

Full-Wave Analysis of Planar Reflectarrays with Spherical Phase Distribution for 2-D Beam-Scanning using FEKO Electromagnetic Software

SMART ANTENNA ARRAY PATTERNS SYNTHESIS: NULL STEERING AND MULTI-USER BEAMFORMING BY PHASE CONTROL

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND

A VARACTOR-TUNABLE HIGH IMPEDANCE SURFACE FOR ACTIVE METAMATERIAL ABSORBER

Lab S-3: Beamforming with Phasors. N r k. is the time shift applied to r k

Space-Time Adaptive Processing for Distributed Aperture Radars

A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications

A NOVEL SCHEME FOR OPTICAL MILLIMETER WAVE GENERATION USING MZM

Ihor TROTS, Andrzej NOWICKI, Marcin LEWANDOWSKI

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

THE DESIGN AND FABRICATION OF A HIGHLY COM- PACT MICROSTRIP DUAL-BAND BANDPASS FILTER

A Complete MIMO System Built on a Single RF Communication Ends

Low RCS Microstrip Antenna Array with Incident Wave in Grazing Angle

Phase Error Effects on Distributed Transmit Beamforming for Wireless Communications

EQUIVALENT ELECTRICAL CIRCUIT FOR DESIGN- ING MEMS-CONTROLLED REFLECTARRAY PHASE SHIFTERS

STAP approach for DOA estimation using microphone arrays

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

ADAPTIVE ANTENNAS. TYPES OF BEAMFORMING

Digital Beamforming Using Quadrature Modulation Algorithm

Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability

Progress In Electromagnetics Research C, Vol. 12, , 2010

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012

A Direct Approach for Coupling Matrix Synthesis for Coupled Resonator Diplexers

Broadband Microphone Arrays for Speech Acquisition

ORTHOGONAL frequency division multiplexing (OFDM)

Progress In Electromagnetics Research C, Vol. 12, , 2010

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

Adaptive Beamforming Applied for Signals Estimated with MUSIC Algorithm

Chapter 5. Array of Star Spirals

TOWARDS A GENERALIZED METHODOLOGY FOR SMART ANTENNA MEASUREMENTS

Ultra-Wideband Antenna Arrays: Systems with Transfer Function and Impulse Response

ONE of the most common and robust beamforming algorithms

A Spiral Antenna with Integrated Parallel-Plane Feeding Structure

ANALYSIS AND APPLICATION OF SHUNT OPEN STUBS BASED ON ASYMMETRIC HALF-WAVELENGTH RESONATORS STRUCTURE

Optimum Design of Multi-band Transformer with Multi-section for Two Arbitrary Complex Frequency-dependent Impedances

INDUCTIVE TRI-BAND DOUBLE ELEMENT FSS FOR SPACE APPLICATIONS

Non Unuiform Phased array Beamforming with Covariance Based Method

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR

S. K. Sanyal Department of Electronics and Telecommunication Engineering Jadavpur University Kolkata, , India

M. Shabani * and M. Akbari Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., P. O. Box , Tehran, Iran

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 3, Issue 2, March 2014

AN OPTIMAL ANTENNA PATTERN SYNTHESIS FOR ACTIVE PHASED ARRAY SAR BASED ON PARTICLE SWARM OPTIMIZATION AND ADAPTIVE WEIGHT- ING FACTOR

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings

A Compact Miniaturized Frequency Selective Surface with Stable Resonant Frequency

Nonlinear Companding Transform Algorithm for Suppression of PAPR in OFDM Systems

Null-steering GPS dual-polarised antenna arrays

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL

Postprint. This is the accepted version of a paper presented at IEEE International Microwave Symposium, Hawaii.

A Broadband Omnidirectional Antenna Array for Base Station

Intermodulation in Active Array Receive Antennas

Antenna Array Synthesis for Suppressed Side Lobe Level Using Evolutionary Algorithms

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs)

A Broadband Reflectarray Using Phoenix Unit Cell

Radiation Pattern of Waveguide Antenna Arrays on Spherical Surface - Experimental Results

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

WIDE SCANNING PHASED ARRAY ANTENNA USING PRINTED DIPOLE ANTENNAS WITH PARASITIC ELEMENT

Low-Complexity Beam Allocation for Switched-Beam Based Multiuser Massive MIMO Systems

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

JOINT TRANSMIT ARRAY INTERPOLATION AND TRANSMIT BEAMFORMING FOR SOURCE LOCALIZATION IN MIMO RADAR WITH ARBITRARY ARRAYS

Design and Demonstration of 1-bit and 2-bit Transmit-arrays at X-band Frequencies

Transcription:

Progress In Electromagnetics Research M, Vol. 64, 55 63, 2018 Beamforming of Frequency Diverse Array Radar with Nonlinear Frequency Offset Based on Logistic Map Zhonghan Wang, Tong Mu, Yaoliang Song *, and Zeeshan Ahmad Abstract In this paper, a multi-carrier nonlinear frequency modulation system based on pseudorandom frequency offset is designed. The reduction of the main lobe 3 db width and the side-lobe peaks cannot be realized simultaneously in conventional beamforming schemes, especially when the number of array elements remains unchanged. The proposed system can reduce the main-lobe 3 db width and suppressing the side-lobe peaks simultaneously. This is done by adjusting the number of sub-signals, frequency offset coefficient and the inter-element spacing. Then, through time slot processing, signal power is focused on different targets. Numerical simulation experiments are implemented to validate the theoretical analysis of the proposed methodology, and comparisons with other techniques are made. 1. INTRODUTION Unlike phased-array antenna, the frequency diverse array (FDA) antenna controls the range-angle dependent transmit energy distribution [1], instead of steering a beam towards a desired direction only, as in [2]. On account of this feature, FDA plays an important role in many areas. Usually, the main lobe of a spatial power pattern is desired as sharp as possible. The waveforms of the transmitted signals determine the focusing performance of the array system. Therefore, an excellent frequency diverse array based on waveforms design is desired. FDAs based on cross-array elements of progressive frequency offset were first proposed by Antonik et al. [3, 4]. However, the spatial power pattern generated by FDAs with progressive frequency offset has multiple-maxima. As a result, the maximum power will appear in undesired area because angular coupling cannot be eliminated. Logarithmic frequency offset has been applied in [5] and [6], which can achieve a maximum value at the target with no maximum value at any other point in the space. However, the signal power will focus on the target point only if t = 0. Another kind of nonlinear frequency offset, which is based on hamming window, has been applied in [7]. However, this solution is affected by the same time-variant issue as in [5] and [6]. A compensated time-modulation Optimized Frequency Offset (-TMOFO) scheme has been proposed in [8, 9]. It enables the signal power to reach the maximum at the target within the duration of the pulse. However, the optimization process of -TMOFO is computationally expensive for real-time processing. The desired focus position cannot be modified in time, since it requires a large amount of memory to store the optimized values for all possible targets in advance for the scan space. In that case, the application scenario of the -TMOFO scheme is limited. The combination of the nonlinear frequency modulation and nonlinear inter-element frequency offset has been used in [10 13], to generate spatial focusing waveforms. In these schemes, the working time of each element is controlled by a corresponding switch. Thus, the array elements are not fully utilized. Differently, a time-modulated array excitation with periodic sum-of-weighted-cosine pulses has been proposed in [14]. However, the energy of the transmitted signal is reduced due to the Received 31 October 2017, Accepted 18 January 2018, Scheduled 27 January 2018 * orresponding author: Yaoliang Song (ylsong@njust.edu.cn). The authors are with the School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, hina.

56 Wang et al. amplitude weighting. An S-shaped range-angle beampattern has been achieved in [15] by combining nonlinear frequency modulation and logarithmic frequency offsets. A convex-multi-log-fda system has been proposed in [16] in order to generate dot-shaped range-angle beampatterns. However, the coefficients of each sub-signal need to be optimized at each instant during the pulse duration. In this paper, we propose a multi-carrier NLFM FDA system based on pseudo-random frequency offset. The pseudo-random frequency offset is generated by Logistic map and applied to eliminate the angle coupling. Nonlinear frequency modulation is applied to eliminate range coupling. This scheme has three main features: 1) the system is simplified by omitting the optimization algorithm; 2) signal power will focus on different targets during desired time period; 3) four tunable parameters make the system more flexible. The rest of this paper is organized as follows. Section 2 presents the proposed scheme. More specifically, in this section, the theories of focusing signal power on a single-target and multi-targets are given, respectively. Then, Section 3 reports and discusses a set of simulation examples. Finally, conclusions are drawn in Section 4. 2. PROPOSED SYSTEM DESIGN 2.1. Theory of Focusing Signal Power on a Single-Target Let us consider a uniformly-spaced linear array consisting of (2N + 1) elements, as shown in Fig. 1. The observation point P is in the far field. r n is the range between the nth element and the observation point. θ is the azimuth angle between the observation point and the center element. f 0 is the center carrier frequency, and Δf n,m (t) is the frequency offset of each element. The frequency of each element is f n,m (t) = f 0 +Δf n,m (t), t [0,T], where n ( N n N) representsthen th element, m (1 m M) them th sub-signal on each element, and T the pulse width. y Observation point P Array elements r -N r -1 r r 1 d f -N,1 f -1,1 f 0,1 f1,1 f N,1 f -1,M f 0,M f-n,m f 1,M f N,M θ r N x Figure 1. A uniformly-spaced linear array consisting of (2N + 1)elements. The transmitted signal of each element can be expressed as S n,m (t) =e j2π(fn,m t+ϕn,m), t [0,T] (1) Then the resulting array factor observed at the target position (r P,θ P )canbederivedas AF (t; r P,θ P )= N n= N m=1 M S n,m (t rn P / ) (2) where is the speed of light in free space. The frequency offset function Δf n,m (t) isdesignedas Δf n,m (t) = K x n M+m / (3) t rn P

Progress In Electromagnetics Research M, Vol. 64, 2018 57 orrespondingly, the phase ϕ n,m is designed as ϕ n,m = f 0 rn P / K x n M+m (4) where x n is the Logistic map: x n+1 =4 x n (1 x n ),x 0 =1/3,andK is the frequency offset coefficient. Obviously, the phase ϕ n,m of each sub-signal is fixed. For narrowband system, Δf n,m (t) should satisfy the condition Δf n,m (t) /f 0 < 0.1. Thus, the pulse width T and frequency offset coefficient K should respectively satisfy the following condition. T<min r P / n, ( N n N) f 0 (T rn P / ) <K< f ( / ) 0 T r P n (5) ( N n N), (1 m M) 10 x n M+m 10 x n M+m Taking the far-field approximation, we have rn P rp nd sin θ P (6) By substituting Eqs. (3), (4) and (6) into Eq. (1), the resulting transmitted signal model is given by S n,m (t) =exp j2π f K x n M+m 0 + t rp nd sin θ P t + f 0 rp nd sin θ P K x n M+m (7) Similarly, by substituting Eqs. (3), (4) and (6) into Eq. (2), the resulting array factor observed at position (r, θ) canbederivedas AF (t; r, θ) = = N n= N m=1 N n= N m=1 M S n,m (t r n /) M exp j2π f 0+ K x ( n M+m t rp nd sin θ P t r nd sin θ r )+f P nd sin θ P 0 K x n M+m onsequently, the resulting power pattern at target P can be expressed as AF (t; r P,θ P ) =(2N +1) M, t [0,T] (8) It can be seen from Equation (8) that the maximum energy of the signal is obtained at the target point P in the pulse duration. By normalization, the final transmitted signal model can be obtained as 1 S n,m (t) = (2N +1) M exp { j2π(f n,m t + ϕ n,m )} K x n M+m f n,m (t) =f 0 + t rp nd sin θ P ϕ n,m = f 0 rp nd sin θ P K x n M+m 2.2. Theory of Focusing Signal Power on Multi-Targets When it comes to multi-targets, the slot processing mode is used. Different time periods are assigned to different targets. In each time period, signal power is focused only at the corresponding target. Therefore, the targets location (r P,θ P ) can be designed as { r P (t) =[ε(t t k 1 ) ε(t t k )]r k, t [t θ P k 1,t k ) (10) (t) =[ε(t t k 1 ) ε(t t k )]θ k (9)

58 Wang et al. where, k indicates the time slot number, and ε(t) is a step function. orrespondingly, each sub-signal frequency and phase are designed as K x n M+m f n,m (t) =f 0 + t rp (t) nd sin θ P (t) (11) ϕ n,m = f 0 rp (t) nd sin θ P (t) K x n M+m 3. NUMERIAL SIMULATIONS This section provides numerical simulation results to validate the theoretical model proposed earlier. More precisely, the reported results are intended to: 1) verify the effectiveness of the proposed scheme to focus the signal power at a single-target and multi-targets during the pulse duration; 2) demonstrate the performance of the proposed scheme with respect to previous methods including -TMOFO scheme and multi-log FDA scheme. 3.1. Focused Transmit Beampatterns Synthesis In this experiment, the FDA system parameters are as follows: the number of array elements is 21; f 0 = 3 GHz is the center carrier frequency; the number of sub-signals is M = 4; frequency offset coefficient is K = 20; the inter-element spacing is d = λ 0 /2 = 0.05 m; T = 30 ns is the transmitted signal pulse duration. The numerical simulation parameters are as follows: the whole range-angle region is Ω = {(r, θ) 5m r 30 m, π/2 θ π/2}, r step =0.1m and θ step = π/720 are the accuracies of space grid, and the accuracy of time is t step = 1 ns. Besides, the target is located at (15 m, π/3). The resulting normalized power patterns at time instants t =0andt =30nsareshowninFigs.2(a) and 2(b), respectively. The distribution of signal power at the target location over time is shown in Fig. 3. Fig. 3(a) shows the distribution of the signal power on the range and time dimension at θ = π/3. Meanwhile, Fig. 3(b) represents the distribution of signal power in azimuth and time dimension at r =15m. It is observed from Fig. 2 and Fig. 3 that the maximum power of the signal is always obtained at the target P within the pulse width. The maximum side-lobe peak at each instant is shown in Fig. 4. During the pulse duration, the normalized maximum side-lobe peak appears at t =30ns,withavalue of 0.1728. Taking into account Fig. 2, Fig. 3 and Fig. 4, it is proved that the proposed scheme can precisely focus the signal power at the target P during the pulse duration. In the pulse duration, the 3 db width in the range and angle dimension vary with time, as shown in Fig. 5(a) and Fig. 5(b), respectively. It can be seen that with the evolution of time, the focusing on Figure 2. t =30ns. (a) The resulting normalized power pattern, (a) at time instant t = 0, (b) at time instant (b)

Progress In Electromagnetics Research M, Vol. 64, 2018 59 (a) Figure 3. The distribution of signal power at the target over time, (a) in the range and time dimension at θ = π/3, (b) in the azimuth and time dimension at r =15m. (b) Figure 4. The maximum side lobe peak at each instant. the range gets concentrated, while the focusing on the angle gets blurred. When it comes to multi-targets, let us assume that there are two targets respectively located at (15 m, π/3) and (20 m,π/3). The pulse duration is divided into two time slots (slot a: 0 <t<15 ns and slot b: 15 ns <t<30 ns). Then the targets function can be designed as { r P (t) =[ε(t t k 1 ) ε(t t k )]r k θ P, t [t k 1,t k ) (12) (t) =[ε(t t k 1 ) ε(t t k )]θ k where, (r 1,θ 1 )=(15m, π/3), (r 2,θ 2 )=(20m,π/3), t 0 =0,t 1 =15nsandt 2 = 30 ns. All the other system parameters are identical to before. onsequently, the resulting power pattern is shown in Fig. 6. It is observed from Fig. 6 that the maximum power of the signal is obtained at different targets in different time slots. 3.2. Performance omparison The proposed scheme is compared with the -TMOFO and multi-log-fda schemes in this section, in order to show the advantages of the proposed scheme in reducing the side-lobe peak and 3 db width. In comparative experiment, the parameters used for all the three schemes are as follows: f 0 =3GHzisthe center carrier frequency; number of elements is 21; number of sub-signals on each element is M = 4; interelement spacing is d = λ 0 /2 = 0.05 m; the target location is (15 m, π/6); pulse duration is T =30ns. The simulation parameters are identical to those in previous setup. Different from -TMOFO scheme, in both multi-log-fda scheme and the proposed scheme, the frequency offset coefficient is K = 20.

60 Wang et al. (a) (b) Figure 5. Relationship between focusing performance and time, (a) azimuth angle 3 db width changes over time, (b) range 3 db width changes over time. Figure 6. Normalized power pattern of two targets. (a) (b) (c) Figure 7. omparison of focusing performance of three schemes, (a) the range 3 db width versus time curve, (b) the angle 3 db width versus time curve, (c) the maximum side lobe peak versus time curve. The focusing performances of three schemes are compared in detail in Fig. 7. More specifically, Fig. 7(a) shows the range dimension 3 db width versus time curve, and the curve with angle dimension 3 db width varying with time is displayed in Fig. 7(b). Moreover, the maximum side-lobe peak versus time curve is shown in Fig. 7(c). Obviously, it can be seen that the proposed scheme is superior to the - TMOFO scheme and multi-log FDA in terms of side lobe suppression and range focusing accuracy. The

Progress In Electromagnetics Research M, Vol. 64, 2018 61 -TMOFO scheme achieves better azimuth focusing performance than the proposed scheme. However, the performance of the proposed scheme is better than multi-log FDA. Another great advantage of the proposed scheme is its flexibility. Double the inter-element spacing (d = λ 0 =0.1 m) and keep other parameters constant. The new comparison results are shown in Fig. 8. The arrangement of Fig. 8 is the same as that of Fig. 7. (a) (b) (c) Figure 8. omparison of focusing performance of three schemes, (a) the range 3 db width versus time curve, (b) the angle 3 db width versus time curve, (c) the maximum side lobe peak versus time curve. It can be seen from Fig. 8 that the performance of the proposed scheme is better than the other two schemes, when the inter-element spacing is doubled. Moreover, after comparing Fig. 8 with Fig. 7, we find that the performance of the -TMOFO scheme is not changed significantly after the inter-element spacing is doubled. Although the main lobe width of the multi-log FDA scheme is similar to that of the proposed scheme, the side lobe suppression is far less. In -TMOFO scheme, the focusing performance is mainly determined by the number of array elements and the optimization algorithm. In -TMOFO scheme, the side lobe suppression and the decrease of main lobe width should be taken into account simultaneously in the optimization process. Therefore, the optimization results usually cannot meet these requirements at the same time. For example, in the above comparison experiment, the maximum side lobe peak expectation is 0.35, but the actual optimization result is about 0.45. Moreover, the focusing performance can be improved by increasing the number of array elements. However, once the number of elements has been changed, the system needs to be optimized again. Even worse, the amount of computation of the algorithm grows geometrically, when adding an element. Therefore, it is not convenient to change the number of array elements in -TMOFO scheme, and the application scenario of the -TMOFO focus scheme is limited. In the proposed scheme, two groups of different system parameters are selected to do contrast experiment. The system parameters combination of experiment 1 is as follows: The number of array elements is 11; the number of sub-signals is 2; the frequency offset coefficient is 16; the inter-element spacing is 0.05 m. On the other hand, the system parameters combination of experiment 2 is as follows: the number of array elements is 11; the number of sub-signals is 4; the frequency offset coefficient is 20; the inter-element spacing is 0.1 m. The contrast experiment results are shown in Fig. 9. The arrangement of Fig. 9 is the same as that of Fig. 7. It is clear that the performance indicators in experiment 2 are better than experiment 1. It can be seen that the ability to suppress side lobes and reduce the main lobe width is improved by adjusting the system parameters, with the number of elements unchanged. In the proposed scheme, the effects of changing the system parameters are as follows: 1) increasing the number of elements of the system can reduce the azimuth 3 db width and the side lobe peak; 2) increasing the number of sub-signals can reduce the side lobe peak, but the azimuth 3 db width will be widened; 3) increasing the frequency offset coefficient can increase the system bandwidth and reduce the range 3 db width; 4) and increasing the inter-element spacing can reduce the azimuth 3 db width and increase the side lobe peak.

62 Wang et al. (a) (b) (c) Figure 9. omparison of focusing performance of two experiments, (a) the range 3 db width versus time curve, (b) the angle 3 db width versus time curve, (c) the maximum side lobe peak versus time curve. The number of elements, number of sub-signals, frequency offset coefficient and inter-element spacing of the system can be adjusted separately or simultaneously. The desired focusing performance can be obtained or approached by adjusting these parameters. In addition, system performance varies over time. Specifically, range focusing performance and side lobe suppression performance will be enhanced, and azimuth focusing performance will be deteriorated. Therefore, it is necessary to pay attention to the selection of pulse width in specific applications. 4. ONLUSION In this paper, we are engaged in beamforming of a frequency diverse array radar utilizing nonlinear frequency offset based on logistic map. A novel multi-carrier nonlinear frequency modulation system based on pseudo-random frequency offset has been proposed which is capable to reduce the main lobe 3 db width and the side-lobe peaks simultaneously. The numerical simulation results show that the proposed scheme can focus the signal power on both single-target and multi-targets. ompared to -TMOFO scheme and multi-log FDA scheme, the proposed scheme simplifies the system. By appropriately adjusting the number of sub-signals, the frequency offset coefficient and the inter-element spacing, it is possible to reduce the peak of the side lobe without widening the main lobe, when the number of elements remains unchanged. Multiple adjustable parameters provide more application scenarios for the system. The power focusing of different targets is achieved by time slot processing. AKNOWLEDGMENT This work was supported in part by the National Natural Science Foundation of hina under Grant 61271331 and in part by the National Natural Science Foundation of hina under Grant 61571229. REFERENES 1. So, H.., M. G. Amin, S. Blunt, et al., Introduction to the special issue on time/frequency modulated array signal processing, IEEE Journal of Selected Topics in Signal Processing, Vol. 11, No. 2, 225 227, 2017. 2. Ren, W., H. hen, and W. Gao, On the design of time-domain implementation structure for steerable spherical modal beamformers with arbitrary beampatterns, Applied Acoustics, Vol. 122, 146 151, 2017. 3. Antonik, P., M.. Wicks, H. D. Griffiths, and. J. Baker, Frequency diverse array radars, Proc. IEEE Radar onf., 215 217, Verona, Italy, Apr. 2006.

Progress In Electromagnetics Research M, Vol. 64, 2018 63 4. Antonik, P., M.. Wicks, H. D. Griffiths, and. J. Baker, Range dependent beamforming using element level waveform diversity, Proc. Int. Waveform Diversity Des. onf., 1 4, Las Vegas, NV, USA, Jan. 2006. 5. Khan, W., I. M. Qureshi, and S. Saeed, Frequency diverse array radar with logarithmically increasing frequency offset, IEEE Antennas Wireless Propag. Lett., Vol. 14, 499 502, 2015. 6. Khan, W., I. M. Qureshi, A. Basit, and W. Khan, Range bins based MIMO Frequency diverse array radar with logarithmic frequency offset, IEEE Antennas Wireless Propag. Lett., Vol. 15, 885 888, 2016. 7. Basit, A., I. Qureshi, W. Khan, et al., Beam pattern synthesis for an FDA radar with hamming window based non-uniform frequency offset, IEEE Antennas & Wireless Propagation Letters, PP(99), 1 1, 2017. 8. Fang, D.-G., A.-M. Yao, and W. Wu, Synthesis of 4-D beampatterns using 4-D arrays, Proc. IEEE APS/URSI, Fajardo, Puerto Rico, 703 704, Jun. 26 Jul. 1, 2016 (Special session invited paper). 9. Yao, A.-M., W. Wu, and D.-G. Fang, Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern, IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4434 4446, Oct. 2016. 10. Rocca, P., L. Manica, L. Poli, and A. Massa, Synthesis of compromise sum-difference arrays through time-modulation, IET Radar Sonar Navig., Vol. 3, No. 6, 630 637, 2009. 11. Poli, L., Poli, P. Rocca, L. Manica, and A. Massa, Handling sideband radiations in time-modulated arrays through particle swarm optimization, IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1408 1411, Apr. 2010. 12. Poli, L., P. Rocca, and A. Massa, Sideband radiation reduction exploiting pattern multiplication in directive time-modulated linear arrays, IET Microw. Antennas Propag., Vol. 6, No. 2, 214 222, 2012. 13. Rocca, P., Q. Zhu, E. T. Bekele, S. Yang, and A. Massa, 4D arrays as enabling technology for cognitive radio systems, IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1102 1116, Mar. 2014. 14. Maneiro-atoira, R., J.. Brégains, J. A. García-Naya, et al., Enhanced time-modulated arrays for harmonic beamforming, IEEE Journal of Selected Topics in Signal Processing, Vol. 11, No. 2, 259 270, 2017. 15. Wang, Y., W. Li, G. Huang, et al., Time-invariant range-angle dependent beampattern synthesis for FDA radar targets tracking, IEEE Antennas & Wireless Propagation Letters, PP(99), 1 1, 2017. 16. Shao, H., J. Dai, J. Xiong, H. hen, and W.-Q. Wang, Dot-shaped rangeangle beampattern synthesis for frequency diverse array, IEEE Antennas Wireless Propag. Lett., Vol. 15, 1703 1706, 2016.